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Abstract: Air classifier devices have a distinct advantage over other systems used to separate mate-
rials. They maximize the mill’s capacity and therefore constitute efficient methods of reducing the
energy consumption of crushing and grinding operations. Since improvement in their performance
is challenging, the development of an efficient modeling system is of great practical significance.
The paper introduces a novel, knowledge-based classification (FLClass) system of bulk materials. A
wide range of operating parameters are considered in the study: the mean mass and the Sauter mean
diameter of the fed material, classifier rotor speed, working air pressure, and test conducting time.
The output variables are the Sauter mean diameter and the cut size of the classification product, as
well as the performance of the process. The model was successfully validated against experimental
data. The maximum relative error between the measured and predicted data is lower than 9%. The
presented fuzzy-logic-based approach allows an optimization study of the process to be conducted.
For the considered range of input parameters, the highest performance of the classification process
is equal to almost 362 g/min. To the best of our knowledge, this paper is the first one available in
open literature dealing with the fuzzy logic approach in modeling the air classification process of
bulk materials.

Keywords: classification model; separation control; fuzzy logic; machine learning; artificial
intelligence

1. Introduction

Air classifiers are used to separate materials (fine dry powders) by combining particle
size, particle shape, and density. They separate particles using airflow and the physical
principles of inertia force, drag force, collision, and gravity, with a high-precision classifying
process method. Dry classifying is often a more environmental and economical alternative
to wet classifying as no water is used. Air classifiers can be used as a single sizing device
in an open circuit where the feed is split into fine and coarse products. These classifiers
can also be used in a closed circuit with grinding equipment such as ball mills, rod mills,
stirred mills, roller mills, hammer mills, vibration mills or jet mills. In this case, the air
classifier is used to select the required size material and return the oversized to the milling
system. The use of the air classifier maximizes the mill’s capacity, reduces the mill’s energy
consumption, and reduces the production costs [1].

It is essential to develop an efficient method of reducing the energy consumption of
crushing and grinding operations. These processes expend more than 50% of the total
energy in mineral processing plants [2]. It is also estimated that size reduction accounts for
up to 50% of the energy used in mining operations [3]. In comminution, only 1% to 2% of
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the supplied energy is effectively translated into the creation of new surface areas [4]. The
majority of the supplied energy is lost as heat or mechanical energy.

Air classifiers are widely used in the following industrial processes: mining, mineral,
power engineering, chemical, cement, ceramics, cosmetics, pharmaceutical, pigments,
plastics, food, and others. Flammable and explosive, oxidizable materials can be classified
with inert gas shielding.

The best material circulation and precision can be achieved when an air classifier is
working with a jet mill [5]. Jet milling is a standard grinding method for high added-value
materials. It is mainly used for abrasive or heat-sensitive materials or when the grinding
process has to be carried out in ultra-high purity conditions. Jet mills are commonly used
to produce particles from 1 µm to 10 µm in the chemical, pharmaceutical, and mineral
industries. The breakage of particles in the jet mill is dependent on the following operational
parameters: classifier rotational speed, feed rate, and grinding pressure. The air classifier
has a crucial influence on reducing energy consumption and reducing the grinding costs in
a jet mill.

The classification process is widely employed in various technologies. In the literature,
there are works on both the theoretical and experimental research of the classification pro-
cess. In modeling the classification process, numerical methods are often used. Most works
use computational fluid dynamics (CFD). Huang et al. (2012) performed inner flow field
simulations with Fluent software of a modified turbo air classifier [6]. Material classification
performance experiments confirmed the computational fluid dynamics simulation results.
The Fluent CFD code was also applied by Guizani et al. (2014) to model the highly turbulent
fluid flow and selectivity curves inside a dynamic rotor classifier [7]. The simulation results
were analyzed to understand the fish-hook effect and the classifier’s separation mechanism.
Liu et al. (2015) used Fluent software to simulate the inner flow of different structures in
a turbo air classifier [8]. Calcium carbonate classification experiments were performed to
verify the simulation results. A new parametric prediction model of the turbo air classifier
cut size was presented by Yu and Liu (2018) in [9]. The inner flow field and Lagrangian
equation of particle motion, as well as the particle trajectory in the annular region, were
simulated using MATLAB Software. Talc powder classification experiments were carried
out to verify this cut size prediction model. Yu et al. (2019) employed a logarithmic spi-
ral volute design method for the turbo air classifier [10]. The Ansys Fluent simulations
of airflow motion and discrete phase indicate that the presented method can provide a
well-distributed flow field for classification. Zeng et al. (2020) analyzed the influence of
the rotor cage speed and inlet air velocity on the flow field in a turbo air classifier using
Ansys Fluent Software [11]. Classification experiments of two materials (barite and iron-ore
powder) were employed to verify the optimal process parameters. The effects of other
parameters as the rotor cage’s outer and the inner radii on the turbo air classifier’s flow
field were also analyzed via CFD simulation using Ansys Fluent by Yu et al. (2020) [12].
Calcium carbonate classification experiments were performed. The experimental results
reflect the characteristics of the numerically simulated inner flow field in the classifier.
The inclined plane classifier, designed for the classification of limestone particles, was
modeled and optimized by Petit et al. (2020) in [13]. The velocity and pressure fields inside
the classifier were modeled using computational fluid dynamics. The particle trajectories
were computed using Lagrangian discrete phase modeling. The Taguchi method was
used to optimize the classification performance and the particle size distribution of the
classification product.

Apart from the use of CFDs in modeling the classification process, there are works
based on Whiten’s approach (in open and closed circuits). Whiten’s efficiency curve
approach was used in the mathematical model for high-efficiency air classifiers operating
in cement grinding circuits [14]. The variation in the rotor size and air volume parameters
with the capacity of the classification process were investigated. Experimental studies of
the air classification of materials with different densities (clinker, copper ore, magnetite,
coal) were carried out by Altun et al. (2016) [15]. The resulting correlations were integrated
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into an existing air classifier model. In the presented model, mass balancing studies were
performed, and the size-by-size efficiencies were calculated and then put into Whiten’s
efficiency curve equation. The classification efficiency of the static air classifier in a vertical
spindle mill was investigated by Li et al. (2019) [16]. Samples of the following materials
with different particle sizes and densities were used: pyrite, carborundum, quartz, and
coal. Whiten’s model was applied to determine the influence of density on the accuracy
of classification, cut size, and fish-hook effect. A new model containing both material
size and density was established to illustrate the difference in the classification effect of
multi-component particles within the classifier.

For the mill’s classifier device, several other models for classification were devel-
oped as well. Özer et al. (2010), Özer et al. (2016), Wei et al. (2014), Shi et al. (2015),
Kojovic et al. (2015), and Li et al. (2018) investigated classifier parameters empirically [17–22].
Classification tests of coal samples were carried out in a static classifier of a vertical spindle
mill to investigate the effect of size and density on particle segregation [15–20].

Currently, the fuzzy inference approach is increasingly commonly used in modeling
various technological processes. The fuzzy method (such as fuzzy artificial neural networks,
fuzzy genetic algorithms, fuzzy ant colony optimization, fuzzy artificial immune systems)
is an alternative to traditional notions of set membership and logic. Fuzzy inference systems
are associated with several names, such as fuzzy-rule-based systems, fuzzy expert systems,
fuzzy logic controller, fuzzy model, fuzzy associative memory, and fuzzy system [23–26].

In modeling the processes of the mechanical processing of mineral raw materials, the
fuzzy logic algorithm is most often used in modeling closed milling circuits. A fuzzy-
prediction controller was applied to control the overflow density of a milling-classifier’s
operating system, which had uncertainty factors and nonlinear, time-delay characteristics
in [27]. Practical production has proved that the ore feeding of the ball mill improved
significantly. Costea et al. (2015) described a control system architecture for cement milling
based on fuzzy logic to adjust the fresh feed [28]. The dynamic behavior of the ball cement
mill was simulated using a Matlab Simulink scheme. The modeling of a cement mill was
also conducted by Retnam et al. (2016), and fuzzy control was also introduced [29]. The
milling system was also simulated using Matlab Simulink. Zhang et al. (2016) employed
intelligent fuzzy logic for grinding and classification control. Three grinding-classification
circuits were studied [30].

The fuzzy logic approach is rarely used to model the classification process. Yu and
Liu (2013) used a turbo air classifier as the classification system and talc powders as the
materials [31]. The fuzzy analytic hierarchy process was applied to calculate the weights of
the classification performance indices. This assessment method avoids the limitation of
evaluating a single classification performance index and incomplete information derived
from single-factor experiments. A fuzzy model was developed to predict the cut size of
the classifier as a process response by Khoshdast et al. (2019) [32]. The proposed modeling
approach was verified by simulating a coal hydraulic classifier in an industrial environment.

The first fuzzy logic-based modeling of a fluidized bed jet milling process is presented
in [33]. The following input variables were considered in the study: working air pressure,
classifier rotor speed, and test conducting time. The mass of the product and the Sauter
mean diameters of the grinding product were the outputs. The results evaluated using the
developed FLMillPlus model were in good agreement with the relevant experimental data.
The maximum relative errors were lower than 10% [33].

Contemporary trends in the modeling of multiphase systems in mineral processing
were presented in Cisternas et al. (2020). Several examples of the applications of CFD in
classification were given.

The above literature review shows that the fuzzy-logic approach is rarely used in
classification process modeling. The fuzzy-logic approach is one of the paper’s main
contributions. Moreover, FL provides a convenient way to map the input to an output space
as a precise logic of imprecision and approximate reasoning [34]. Finally, the most crucial
advantage of FL-based systems is their ability to perform simple, cheap, and fast solutions
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when modeling complex systems [23]. The present work aims to develop a comprehensive
knowledge-driven AI system to model the material air classification process. Based on
previous experience, we developed a fuzzy-logic-based classification (FLClass) system of
bulk materials, comprehensively describing the classification process using a wide range of
operational variables driving the process.

2. Materials and Methods
2.1. Description of the Process

The study presented in this paper was conducted on the experimental stand presented
in Figure 1. A schematic diagram of the experimental stand is shown in Figure 2.
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The system is located at the Faculty of Mechanical Engineering and Computer Science,
Czestochowa University of Technology, Poland. Quartz sand was used in the study of
the classification process. It is characterized by abrasion resistance; the shape of the sand
particles is close to a ball with a density equal to 2638 kg/m3, and it corresponds to materials
that are the most often applied in the processing industry of mineral raw materials. Low
transient humidity is also an important feature.
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Figure 2. Scheme of experimental stand [35]. 1—turbo air classifier, 2—upper part of classifier cham-
ber with a rotor, 3—feed inlet, 4—cylindrical part of classifier chamber, 5—conical part of classifier
chamber, 6—piston compressor with expansion tank, 7—pressure reducing valve, 8—manometer,
9—vacuum cleaner, 10—electric motor, 11—cyclone, 12—air-oil separator, 13—compressed air dryer,
14—flowmeter, m1—feed mass, m2—coarse product mass, m3—fine product mass from the cyclone,
m4—fine product mass from the filter,

.
mp—air mass flux.

Samples of the fed material were fed gravitationally from the feed inlet (3) into the
classifier column (4). Working air was entered into the bottom part of the column by four
convergent nozzles from the piston compressor (6). After compression, the air underwent
treatment in the air-oil separator (12) and dehydrator (13). The overpressure and mass flow
of the working air were measured by the elastic pressure gauge (8) and electromagnetic
flowmeter (14). The turbo air classifier with a horizontal cylindrical rotor with radial blades
was placed over the column (4).

The rotational speed of the rotor was regulated by an inverter. Particles smaller
than the cut size entered the cyclone (11) between the rotor blades. To generate negative
pressure in the classifier chamber, a vacuum cleaner (9) was applied. After every test, the
classification products were weighed using electronic laboratory scales. The measurements
of the particle size distributions of the fed material and classification products were carried
out using a KAMIKA Instruments infrared particle sizer. The tested classifier consisted
of two parts: the cylindrical part (4) and the upper part with a horizontal rotor (2). The
first part accounted for the gravitational stage of the classifier, while the second had the
centrifugal stage. Particle distribution is the result of the interaction between these two
stages of classification. Determination of the cut size during the two-stage classification
was performed using the matrix algorithm and experimental data [35].

Two series of experiments were conducted. In the first series of tests, samples of
quartz sand with the Sauter mean diameter of 49.8 µm were used. The influence of the
classifier operation time on the intensity of the classification process was investigated at
different values of compressed air pressure as well as different rotational speeds of the
classifier rotor. During the experiments, the working air pressure was changed in the range
p = 300–700 kPa. The classifier rotor speed was n = 25; 50; 75 1/s, and the duration of a
single classification test was t = 0.5; 1; 3; 6 min. Longer test times were associated with
the risk of grinding the material, which would change the conditions of the classification
process. As the pressure increases, the amount of energy fed into the classification process
rises. When the tests were carried out at pressures greater than or equal to 500 kPa, the
maximum test time was reduced to 3 min in order to prevent the grinding of the classified
particles. In the first series of tests, the mass of the samples of the fed material was
unchanged, m = 0.5 kg.

In the second series, the samples of quartz sand with the Sauter mean diameter of
46.5 µm were tested. The pressure of the working air was changed over the range of
p = 100–600 kPa during the experiments. The classifier rotor speed was n = 0; 7.5; 15; 25 1/s.
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During the tests the static values were the mass of the fed material m = 1 kg and the time of
the classification process t = 3 min. Due to the nature of the experiments, the feed mass was
not related to the duration of the experiment. The test results are presented in Table 1 (first
series) and Table 2 (second series). Four values of the Sauter diameter are not indicated
in Table 2, because for these working parameters all the feed material was directed to the
coarse product. Table 3 shows the results of the experiments that were used to validate the
model. In these tests, samples of quartz sand with the Sauter mean diameter of 49.8 µm
were used and the mass of the fed material was equal to m = 0.5 kg. The rotational speed of
the classifier rotor was equal to n = 37.5 and 50 1/s, the working air pressure was changed
in the range p = 300–700 kPa, and the duration of a single classification test was t = 2; 3;
4 min.

Table 1. Performance values, Sauter mean diameter of fine product and cut size for different test
times, for different rotational speeds of classifier rotor, and for different pressures of working air
(first series).

Working Air
Pressure

Classifier
Rotor Speed

Test
Time Performance

Sauter Mean
Diameter of
Fine Product

Cut Size

p, kPa n, 1/s t, min g, g/min dap, µm X, µm

300 25 0.5 187.00 27.3 26
300 25 1 129.00 34.0 37.5
300 25 3 68.00 35.4 46
300 25 6 43.23 37.0 52
300 50 0.5 130.00 21.0 18
300 50 1 87.50 26.0 26
300 50 3 39.67 28.6 32
300 50 6 24.58 30.2 36
300 75 0.5 61.00 16.0 11
300 75 1 44.00 21.0 17
300 75 3 24.33 22.5 23
300 75 6 16.92 24.0 26
500 25 0.5 290.00 28.5 32
500 25 1 188.00 36.0 40
500 25 3 106.00 37.5 50
500 50 0.5 156.00 23.2 23
500 50 1 102.00 31.2 30
500 50 3 49.33 33.1 34
500 75 0.5 74.00 19.7 15
500 75 1 57.00 27.6 22
500 75 3 25.33 30.1 26
700 25 0.5 418.00 30.1 37
700 25 1 259.00 38.9 47
700 25 3 122.67 40.2 53
700 50 0.5 206.00 25.3 27
700 50 1 125.00 34.6 34
700 50 3 63.33 36.2 37
700 75 0.5 110.00 22.1 19
700 75 1 82.00 29.6 25
700 75 3 48.67 31.1 29.5
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Table 2. Performance values, Sauter mean diameter of fine product and cut size for different rotational
speeds of classifier rotor, and for different pressures of working air (second series).

Working Air
Pressure

Classifier
Rotor Speed

Test
Time Performance

Sauter Mean
Diameter of
Fine Product

Cut Size

p, kPa n, 1/s t, min g, g/min dap, µm X, µm

100 0 203.30 45.3 28
200 0 3 233.30 48.3 33
300 0 3 253.67 54.2 40
400 0 3 286.67 65.1 70
500 0 3 306.67 - 183
600 0 3 323.33 - 183
100 7.5 3 31.67 37.6 25.5
200 7.5 3 96.67 39.5 28
300 7.5 3 166.67 41.7 34
400 7.5 3 200.00 54.4 56
500 7.5 3 273.33 - 81
600 7.5 3 316.67 - 200
100 15 3 0.00 27.9 23
200 15 3 0.00 29.9 25
300 15 3 6.67 32.8 27
400 15 3 106.67 35.3 28
500 15 3 186.67 37.8 33
600 15 3 240.00 39.5 43
100 25 3 0.00 14.5 16
200 25 3 0.00 16.8 18
300 25 3 0.00 18.9 21
400 25 3 10.00 24.9 23
500 25 3 33.33 26.2 24
600 25 3 63.33 27.4 26

Table 3. Performance values, Sauter mean diameter of fine product and cut size for different test
times, for different rotational speeds of classifier rotor, and for different pressures of working air
(validation data).

Working Air
Pressure

Classifier
Rotor Speed

Test
Time Performance

Sauter Mean
Diameter of
Fine Product

Cut Size

p, kPa n, 1/s t, min g, g/min dap, µm X, µm

300 50 2 52.25 27.2 30
300 50 4 32.50 29.7 35
500 37.5 2 81.00 33.4 35
500 37.5 3 73.33 35.1 37
700 37.5 2 124.00 36.8 45

2.2. Modeling of the Classification Process

The fuzzy-logic-based modeling approach belongs to so-called soft-computing meth-
ods [36–41]. The technique was introduced in 1965 by Lofti Zadeh, who defined it as a
precise logic of imprecision and approximate reasoning [34,42–44]. It is now one of the
most popular, knowledge-based artificial intelligence (AI) methods used in cases when
subjective expert knowledge is essential in defining the objective function and decisive
variable [23,24,43–46]. It is an effective way of mapping an input domain into the output
domain. The method is based on fuzzy sets and membership functions, which define how
each input variable is mapped to a membership value between 0 and 1 [23]. Two types
of fuzzy inference systems are used: the Mamdami type, where the membership function
is a fuzzy set, and the Sugeno type (sometimes called the TSK models or Takagi, Sugeno,
and Kang models), where the output is a polynomial function [24]. A fuzzy-logic-based
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model consists of the following main components: a fuzzifier, a fuzzy rule base, an infer-
ence engine, and a defuzzifier covering the fuzzification, inference, and defuzzification
operations. A further detailed description of the fuzzy-logic-based method can be found
elsewhere [23,24,33,47].

The developed FLClass system considers a wide range of input and output variables.
The following five input variables were selected to develop the proposed comprehensive
FLClass material classification system: mass and the Sauter mean diameter of the fed
material (mf and daf, respectively), rotational speed n of the classifier rotor, pressure p of
the working air, and time t of conducting the test. Performance g (the fine product mass
flow), Sauter mean diameter dap, and cut size X of the classification product constitute the
output variables. The inputs and outputs are described in Table 4.

Table 4. Model variables.

Variables Values

Inputs
Mass of fed material, mf, g 500–1000
Sauter mean diameter of fed material, daf, µm 46.5–49.8
Classifier rotor speed, n, s−1 0–75
Working air pressure, p, kPa 100–700
Test conducting time, t, min 0.5–6
Outputs
Performance, g, g/min 0–418
Sauter mean diameter of classification product, dap, µm 14.5–65.1
Cut size of classification product, X, µm 11–183

The QtFuzzyLite fuzzy logic control application, ver. 5.5.1, by the Qt Company Ltd.,
Wellington, New Zealand [48] was used in the presented model research. The five input
features were covered by triangular linguistic variables, according to Figure 3.

The Takagi–Sugeno inference engine is used in the FLClass model. Constant and
polynomial linguistic terms are used to accurately describe the output variables, as depicted
in Figure 4.

The set of fuzzy IF-THEN rules, allowing the model to be expressed, are formulated
and summarized in Table 5.

Table 5. Fuzzy rule base of developed FLClass system.

ID Rule

1 if mf is L * and daf is H and n is EH and p is L and t is VL then g is g16 and dap is d2 and X is X1
2 if mf is L and daf is H and n is EH and p is H and t is VL then g is g20 and dap is d5 and X is X2
3 if mf is H and daf is L and n is H and p is EL and t is H then g is g1 and dap is d1 and X is X3
4 if mf is L and daf is H and n is EH and p is L and t is L then g is g12 and dap is d6 and X is X4
5 if mf is H and daf is L and n is H and p is VL and t is H then g is g1 and dap is d3 and X is X5
6 if mf is L and daf is H and n is VH and p is L and t is VL then g is g31 and dap is d6 and X is X5
7 if mf is L and daf is H and n is EH and p is EH and t is VL then g is g27 and dap is d7 and X is X6
8 if mf is H and daf is L and n is H and p is L and t is H then g is g1 and dap is d4 and X is X7
9 if mf is L and daf is H and n is EH and p is H and t is L then g is g15 and dap is d17 and X is X8

10 if mf is L and daf is H and n is EH and p is L and t is H then g is g5 and dap is d8 and X is X9
11 if mf is L and daf is H and n is VH and p is H and t is VL then g is g32 and dap is d9 and X is X9
12 if mf is H and daf is L and n is H and p is M and t is H then g is g3 and dap is d11 and X is X9
13 if mf is H and daf is L and n is L and p is EL and t is H then g is g1 and dap is d18 and X is X9
14 if mf is H and daf is L and n is H and p is H and t is H then g is g9 and dap is d14 and X is X10
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Table 5. Cont.

ID Rule

15 if mf is L and daf is H and n is EH and p is EH and t is L then g is g21 and dap is d21 and X is X11
16 if mf is H and daf is L and n is L and p is VL and t is H then g is g1 and dap is d22 and X is X11
17 if mf is H and daf is L and n is VL and p is EL and t is H then g is g8 and dap is d37 and X is X12
18 if mf is L and daf is H and n is EH and p is L and t is VH then g is g4 and dap is d10 and X is X13
19 if mf is L and daf is H and n is VH and p is L and t is L then g is g22 and dap is d13 and X is X13
20 if mf is L and daf is H and n is H and p is L and t is VL then g is g35 and dap is d15 and X is X13
21 if mf is H and daf is L and n is H and p is VH and t is H then g is g18 and dap is d16 and X is X13
22 if mf is L and daf is H and n is EH and p is H and t is H then g is g7 and dap is d23 and X is X13
23 if mf is L and daf is H and n is VH and p is EH and t is VL then g is g39 and dap is d12 and X is X14
24 if mf is H and daf is L and n is L and p is L and t is H then g is g2 and dap is d27 and X is X14
25 if mf is H and daf is L and n is L and p is M and t is H then g is g26 and dap is d31 and X is X15
26 if mf is H and daf is L and n is VL and p is VL and t is H then g is g23 and dap is d40 and X is X15
27 if mf is H and daf is L and n is EL and p is EL and t is H then g is g38 and dap is d43 and X is X15
28 if mf is L and daf is H and n is EH and p is EH and t is H then g is g13 and dap is d25 and X is X16
29 if mf is L and daf is H and n is VH and p is H and t is L then g is g24 and dap is d26 and X is X17
30 if mf is L and daf is H and n is H and p is H and t is VL then g is g46 and dap is d19 and X is X18
31 if mf is L and daf is H and n is VH and p is L and t is H then g is g10 and dap is d20 and X is X18
32 if mf is H and daf is L and n is L and p is H and t is H then g is g34 and dap is d38 and X is X19
33 if mf is H and daf is L and n is EL and p is VL and t is H then g is g40 and dap is d44 and X is X19
34 if mf is L and daf is H and n is VH and p is H and t is H then g is g14 and dap is d28 and X is X20
35 if mf is L and daf is H and n is VH and p is EH and t is L then g is g29 and dap is d30 and X is X20
36 if mf is H and daf is L and n is VL and p is L and t is H then g is g33 and dap is d42 and X is X20
37 if mf is L and daf is H and n is VH and p is L and t is VH then g is g6 and dap is d24 and X is X21
38 if mf is L and daf is H and n is H and p is EH and t is VL then g is g50 and dap is d23 and X is X22
39 if mf is L and daf is H and n is VH and p is EH and t is H then g is g17 and dap is d34 and X is X22
40 if mf is L and daf is H and n is H and p is L and t is L then g is g30 and dap is d29 and X is X23
41 if mf is L and daf is H and n is H and p is H and t is L then g is g36 and dap is d33 and X is X24
42 if mf is H and daf is L and n is EL and p is L and t is H then g is g42 and dap is d45 and X is X24
43 if mf is H and daf is L and n is L and p is VH and t is H then g is g41 and dap is d40 and X is X25
44 if mf is L and daf is H and n is H and p is L and t is H then g is g19 and dap is d32 and X is X26
45 if mf is L and daf is H and n is H and p is EH and t is L then g is g43 and dap is d39 and X is X27
46 if mf is L and daf is H and n is H and p is H and t is H then g is g25 and dap is d36 and X is X28
47 if mf is L and daf is H and n is H and p is L and t is VH then g is g11 and dap is d35 and X is X29
48 if mf is L and daf is H and n is H and p is EH and t is H then g is g28 and dap is d41 and X is X30
49 if mf is H and daf is L and n is VL and p is M and t is H then g is g37 and dap is d46 and X is X31
50 if mf is H and daf is L and n is EL and p is M and t is H then g is g45 and dap is d47 and X is X32
51 if mf is H and daf is L and n is VL and p is H and t is H then g is g44 and X is X33
52 if mf is H and daf is L and n is EL and p is H and t is H then g is g47 and X is X34
53 if mf is H and daf is L and n is VL and p is VH and t is H then g is g48 and X is X34
54 if mf is H and daf is L and n is EL and p is VH and t is H then g is g49 and X is X34
55 if mf is any and daf is any and n is any and p is any and t is any then g is fg and dap is fdap and X is fX

* EL—extremely low, VL—very low, L—low, M—medium, H—high, VH—very high, EH—extremely high.

The IF criteria belong to the inputs, while the THEN criteria belong to the output
features [23]. Finally, the weighted average method is employed during the defuzzification
stage. This final operation leads to the generation of crisp outputs as an answer to crisp
inputs [24,33].

Such a developed robust FLClass system allows the air classification process to be
described based on the expertise of human experts. This knowledge-based system provides
an alternative modeling approach, considering the complexity and high costs of the other
methods of data handling [23,49,50].
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to parameter values from Table 4 and values of membership function, respectively).

3. Results and Discussion

The FLClass system was successfully validated against the experimental results unseen
by the model. These data were not previously used in the development process of the
model. The maximum relative errors between the measured and calculated data for g, dap,
and X are lower than 9% (Figure 5).
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Good performance of the developed FLClassSystem was achieved, even for the new
testing data set. The predicted results are located within the range of ±9%, compared to
the experimental data. Such a small relative error forms a solid basis for the possibility of
using the developed model in practice.

The influence of the operating parameters on the performance of the classification
process is shown in Figure 6.
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Figure 6. Influence of operating parameters on performance of classification process for (a) mass of
fed material, mf, (b) Sauter mean diameter of fed material, daf, (c) classifier rotor speed, n, (d) working
air pressure, p, (e) test conducting time, t.

The effects of the input variables on Sauter mean diameter dap of the product and cut
size X are depicted in Figure 7.
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Figure 7. Influence of operating parameters on performance g of classification process and cut size X
of product for (a) mass of fed material, mf, (b) Sauter mean diameter of fed material, daf, (c) classifier
rotor speed, n, (d) working air pressure, p, (e) test conducting time, t.

In the studied range of variability of the classification process parameters and the
particle size distribution of the feed, based on the calculation results the following detailed
conclusions can be formulated:

With the increase in the mass of the feed, mf, the material concentration in the classifi-
cation zone rises, as a result of which classifier performance g decreases (Figure 6a), and cut
size X as well as Sauter mean diameter dap of the classification product decrease (Figure 7a).
A reduction of the classifier performance g with an increase in mf may result from the
two-stage nature of the classification process, and it certainly requires further research.

Classifier performance g (Figure 6b), cut size X as well as Sauter mean diameter of
the product dap (Figure 7b) grow with the increase in the feed particle size (Sauter mean
diameter daf) because the fraction of coarse particles in the classification product increases.

With the increase in rotational speed of the classifier rotor n, classifier performance
g decreases (Figure 6c) due to the fall in cut size X and Sauter mean diameter dap of the
classification product (Figure 7c).

As the working air pressure rises, the air mass flow grows, carrying the coarse particles
to the fine product, which increases classifier performance g (Figure 6d), cut size X, and
Sauter mean diameter dap of the classification product (Figure 7d).

With the increase in time (with the passing of time), the particle concentration in the
classification zone decreases, and classifier performance g declines (Figure 6e). In the initial
phase of classification, first the fine particles are separated, which results in an increase in
the average particle size of the material remaining in the fluidized bed; this material in the
next phase of classification goes to the fine product (Sauter mean diameter of the product
dap and cut size X increase) (Figure 7e).

4. Best Strategy in the Classification Process

Considering the observed trends in the performance behavior, an impression of the
effects of the input parameters on g can be described as shown in Table 6.

As we can see, the performance of the classification process can be enhanced by the
decrease in mass of the fed material, classifier rotor speed, and shortening of the test
duration time. The classification process can achieve further performance improvement
by increasing the working air pressure and the Sauter mean diameter of the feed material.
Therefore, for the considered range of input parameters, the highest performance g can be
attained for the following conditions: mass of the fed material, mf = 500 g, Sauter mean
diameter of the fed material daf = 49.8 µm, classifier rotor speed, n = 0, s−1, working air
pressure p = 700 kPa and test conducting time, t = 0.5 min.



Materials 2022, 15, 45 17 of 19

Table 6. Effect of increase in input parameters on performance g of classification process.

Parameter (Horizontal Axis) g (Vertical Axis)

Mass of fed material, mf, g

Materials 2022, 14, x FOR PEER REVIEW 19 of 21 
 

 

Table 6. Effect of increase in input parameters on performance g of classification process. 

Parameter (Horizontal Axis) g (Vertical Axis) 

Mass of fed material, mf, g  
Sauter mean diameter of fed material, daf, μm 

 
Classifier rotor speed, n, s−1  

Working air pressure, p, kPa 
 

Test conducting time, t, min  

As we can see, the performance of the classification process can be enhanced by the 
decrease in mass of the fed material, classifier rotor speed, and shortening of the test 
duration time. The classification process can achieve further performance improvement 
by increasing the working air pressure and the Sauter mean diameter of the feed material. 
Therefore, for the considered range of input parameters, the highest performance g can be 
attained for the following conditions: mass of the fed material, mf = 500 g, Sauter mean 
diameter of the fed material daf = 49.8 μm, classifier rotor speed, n = 0, s−1, working air 
pressure p = 700 kPa and test conducting time, t = 0.5 min.  

The highest value of g, which can be acquired for the considered range of input 
operational parameters, is equal to 361.67 g/min. 

The model developed in the paper has a universal character as it uses inputs 
independent of the type and size of classifiers and material used. However, since the 
model was performed and validated on the specific conditions described in the paper, 
additional inputs relating to materials properties, such as density or/and particles 
sphericity, may be necessary to separate different combinations of materials and achieve 
reasonable accuracy. 

5. Conclusions 
The paper introduces a novel, knowledge-based classification (FLClass) system of 

bulk materials. The model was successfully validated against experimental data. The 
maximum relative error between the measured and predicted data is lower than 9%. 

The comprehensive system considers a wide range of operating parameters, i.e., 
mean mass of the fed material, the Sauter mean diameter of the fed material, classifier 
rotor speed, working air pressure, and test conducting time.  

The developed model can predict the Sauter mean diameter and the cut size of the 
classification product, as well as the performance of the process. 

The presented fuzzy-logic-based approach allows an optimization study to be 
conducted of the process. 

The highest value of g that can be obtained for the considered range of input 
operational parameters is equal to 361.67 g/min. 

To the best of our knowledge, this paper is the first one available in open literature 
dealing with the use of the fuzzy logic method in the modeling of the air classification 
process of bulk materials. 

Author Contributions: Conceptualization, H.O., J.K., D.U., T.W. and M.S.; methodology, H.O. and 
J.K.; software, J.K.; validation, H.O. and J.K.; formal analysis, H.O.; investigation, H.O., D.U. and 
T.W.; resources, H.O., D.U. and T.W.; data curation, H.O., J.K., D.U., T.W. and M.S.; writing—
original draft preparation, H.O. and J.K.; writing—review and editing, H.O., J.K. and M.S.; 
visualization, J.K.; supervision, H.O. and J.K.; project administration, J.K.; funding acquisition, H.O., 
J.K., T.W. and M.S. All authors have read and agreed to the published version of the manuscript.  

Funding: This research received no external funding. 

Sauter mean diameter of fed material, daf, µm

Materials 2022, 14, x FOR PEER REVIEW 19 of 21 
 

 

Table 6. Effect of increase in input parameters on performance g of classification process. 

Parameter (Horizontal Axis) g (Vertical Axis) 

Mass of fed material, mf, g  
Sauter mean diameter of fed material, daf, μm 

 
Classifier rotor speed, n, s−1  

Working air pressure, p, kPa 
 

Test conducting time, t, min  

As we can see, the performance of the classification process can be enhanced by the 
decrease in mass of the fed material, classifier rotor speed, and shortening of the test 
duration time. The classification process can achieve further performance improvement 
by increasing the working air pressure and the Sauter mean diameter of the feed material. 
Therefore, for the considered range of input parameters, the highest performance g can be 
attained for the following conditions: mass of the fed material, mf = 500 g, Sauter mean 
diameter of the fed material daf = 49.8 μm, classifier rotor speed, n = 0, s−1, working air 
pressure p = 700 kPa and test conducting time, t = 0.5 min.  

The highest value of g, which can be acquired for the considered range of input 
operational parameters, is equal to 361.67 g/min. 

The model developed in the paper has a universal character as it uses inputs 
independent of the type and size of classifiers and material used. However, since the 
model was performed and validated on the specific conditions described in the paper, 
additional inputs relating to materials properties, such as density or/and particles 
sphericity, may be necessary to separate different combinations of materials and achieve 
reasonable accuracy. 

5. Conclusions 
The paper introduces a novel, knowledge-based classification (FLClass) system of 

bulk materials. The model was successfully validated against experimental data. The 
maximum relative error between the measured and predicted data is lower than 9%. 

The comprehensive system considers a wide range of operating parameters, i.e., 
mean mass of the fed material, the Sauter mean diameter of the fed material, classifier 
rotor speed, working air pressure, and test conducting time.  

The developed model can predict the Sauter mean diameter and the cut size of the 
classification product, as well as the performance of the process. 

The presented fuzzy-logic-based approach allows an optimization study to be 
conducted of the process. 

The highest value of g that can be obtained for the considered range of input 
operational parameters is equal to 361.67 g/min. 

To the best of our knowledge, this paper is the first one available in open literature 
dealing with the use of the fuzzy logic method in the modeling of the air classification 
process of bulk materials. 

Author Contributions: Conceptualization, H.O., J.K., D.U., T.W. and M.S.; methodology, H.O. and 
J.K.; software, J.K.; validation, H.O. and J.K.; formal analysis, H.O.; investigation, H.O., D.U. and 
T.W.; resources, H.O., D.U. and T.W.; data curation, H.O., J.K., D.U., T.W. and M.S.; writing—
original draft preparation, H.O. and J.K.; writing—review and editing, H.O., J.K. and M.S.; 
visualization, J.K.; supervision, H.O. and J.K.; project administration, J.K.; funding acquisition, H.O., 
J.K., T.W. and M.S. All authors have read and agreed to the published version of the manuscript.  

Funding: This research received no external funding. 

Classifier rotor speed, n, s−1

Materials 2022, 14, x FOR PEER REVIEW 19 of 21 
 

 

Table 6. Effect of increase in input parameters on performance g of classification process. 

Parameter (Horizontal Axis) g (Vertical Axis) 

Mass of fed material, mf, g  
Sauter mean diameter of fed material, daf, μm 

 
Classifier rotor speed, n, s−1  

Working air pressure, p, kPa 
 

Test conducting time, t, min  

As we can see, the performance of the classification process can be enhanced by the 
decrease in mass of the fed material, classifier rotor speed, and shortening of the test 
duration time. The classification process can achieve further performance improvement 
by increasing the working air pressure and the Sauter mean diameter of the feed material. 
Therefore, for the considered range of input parameters, the highest performance g can be 
attained for the following conditions: mass of the fed material, mf = 500 g, Sauter mean 
diameter of the fed material daf = 49.8 μm, classifier rotor speed, n = 0, s−1, working air 
pressure p = 700 kPa and test conducting time, t = 0.5 min.  

The highest value of g, which can be acquired for the considered range of input 
operational parameters, is equal to 361.67 g/min. 

The model developed in the paper has a universal character as it uses inputs 
independent of the type and size of classifiers and material used. However, since the 
model was performed and validated on the specific conditions described in the paper, 
additional inputs relating to materials properties, such as density or/and particles 
sphericity, may be necessary to separate different combinations of materials and achieve 
reasonable accuracy. 

5. Conclusions 
The paper introduces a novel, knowledge-based classification (FLClass) system of 

bulk materials. The model was successfully validated against experimental data. The 
maximum relative error between the measured and predicted data is lower than 9%. 

The comprehensive system considers a wide range of operating parameters, i.e., 
mean mass of the fed material, the Sauter mean diameter of the fed material, classifier 
rotor speed, working air pressure, and test conducting time.  

The developed model can predict the Sauter mean diameter and the cut size of the 
classification product, as well as the performance of the process. 

The presented fuzzy-logic-based approach allows an optimization study to be 
conducted of the process. 

The highest value of g that can be obtained for the considered range of input 
operational parameters is equal to 361.67 g/min. 

To the best of our knowledge, this paper is the first one available in open literature 
dealing with the use of the fuzzy logic method in the modeling of the air classification 
process of bulk materials. 

Author Contributions: Conceptualization, H.O., J.K., D.U., T.W. and M.S.; methodology, H.O. and 
J.K.; software, J.K.; validation, H.O. and J.K.; formal analysis, H.O.; investigation, H.O., D.U. and 
T.W.; resources, H.O., D.U. and T.W.; data curation, H.O., J.K., D.U., T.W. and M.S.; writing—
original draft preparation, H.O. and J.K.; writing—review and editing, H.O., J.K. and M.S.; 
visualization, J.K.; supervision, H.O. and J.K.; project administration, J.K.; funding acquisition, H.O., 
J.K., T.W. and M.S. All authors have read and agreed to the published version of the manuscript.  

Funding: This research received no external funding. 

Working air pressure, p, kPa

Materials 2022, 14, x FOR PEER REVIEW 19 of 21 
 

 

Table 6. Effect of increase in input parameters on performance g of classification process. 

Parameter (Horizontal Axis) g (Vertical Axis) 

Mass of fed material, mf, g  
Sauter mean diameter of fed material, daf, μm 

 
Classifier rotor speed, n, s−1  

Working air pressure, p, kPa 
 

Test conducting time, t, min  

As we can see, the performance of the classification process can be enhanced by the 
decrease in mass of the fed material, classifier rotor speed, and shortening of the test 
duration time. The classification process can achieve further performance improvement 
by increasing the working air pressure and the Sauter mean diameter of the feed material. 
Therefore, for the considered range of input parameters, the highest performance g can be 
attained for the following conditions: mass of the fed material, mf = 500 g, Sauter mean 
diameter of the fed material daf = 49.8 μm, classifier rotor speed, n = 0, s−1, working air 
pressure p = 700 kPa and test conducting time, t = 0.5 min.  

The highest value of g, which can be acquired for the considered range of input 
operational parameters, is equal to 361.67 g/min. 

The model developed in the paper has a universal character as it uses inputs 
independent of the type and size of classifiers and material used. However, since the 
model was performed and validated on the specific conditions described in the paper, 
additional inputs relating to materials properties, such as density or/and particles 
sphericity, may be necessary to separate different combinations of materials and achieve 
reasonable accuracy. 

5. Conclusions 
The paper introduces a novel, knowledge-based classification (FLClass) system of 

bulk materials. The model was successfully validated against experimental data. The 
maximum relative error between the measured and predicted data is lower than 9%. 

The comprehensive system considers a wide range of operating parameters, i.e., 
mean mass of the fed material, the Sauter mean diameter of the fed material, classifier 
rotor speed, working air pressure, and test conducting time.  

The developed model can predict the Sauter mean diameter and the cut size of the 
classification product, as well as the performance of the process. 

The presented fuzzy-logic-based approach allows an optimization study to be 
conducted of the process. 

The highest value of g that can be obtained for the considered range of input 
operational parameters is equal to 361.67 g/min. 

To the best of our knowledge, this paper is the first one available in open literature 
dealing with the use of the fuzzy logic method in the modeling of the air classification 
process of bulk materials. 

Author Contributions: Conceptualization, H.O., J.K., D.U., T.W. and M.S.; methodology, H.O. and 
J.K.; software, J.K.; validation, H.O. and J.K.; formal analysis, H.O.; investigation, H.O., D.U. and 
T.W.; resources, H.O., D.U. and T.W.; data curation, H.O., J.K., D.U., T.W. and M.S.; writing—
original draft preparation, H.O. and J.K.; writing—review and editing, H.O., J.K. and M.S.; 
visualization, J.K.; supervision, H.O. and J.K.; project administration, J.K.; funding acquisition, H.O., 
J.K., T.W. and M.S. All authors have read and agreed to the published version of the manuscript.  

Funding: This research received no external funding. 

Test conducting time, t, min

Materials 2022, 14, x FOR PEER REVIEW 19 of 21 
 

 

Table 6. Effect of increase in input parameters on performance g of classification process. 

Parameter (Horizontal Axis) g (Vertical Axis) 

Mass of fed material, mf, g  
Sauter mean diameter of fed material, daf, μm 

 
Classifier rotor speed, n, s−1  

Working air pressure, p, kPa 
 

Test conducting time, t, min  

As we can see, the performance of the classification process can be enhanced by the 
decrease in mass of the fed material, classifier rotor speed, and shortening of the test 
duration time. The classification process can achieve further performance improvement 
by increasing the working air pressure and the Sauter mean diameter of the feed material. 
Therefore, for the considered range of input parameters, the highest performance g can be 
attained for the following conditions: mass of the fed material, mf = 500 g, Sauter mean 
diameter of the fed material daf = 49.8 μm, classifier rotor speed, n = 0, s−1, working air 
pressure p = 700 kPa and test conducting time, t = 0.5 min.  

The highest value of g, which can be acquired for the considered range of input 
operational parameters, is equal to 361.67 g/min. 

The model developed in the paper has a universal character as it uses inputs 
independent of the type and size of classifiers and material used. However, since the 
model was performed and validated on the specific conditions described in the paper, 
additional inputs relating to materials properties, such as density or/and particles 
sphericity, may be necessary to separate different combinations of materials and achieve 
reasonable accuracy. 

5. Conclusions 
The paper introduces a novel, knowledge-based classification (FLClass) system of 

bulk materials. The model was successfully validated against experimental data. The 
maximum relative error between the measured and predicted data is lower than 9%. 

The comprehensive system considers a wide range of operating parameters, i.e., 
mean mass of the fed material, the Sauter mean diameter of the fed material, classifier 
rotor speed, working air pressure, and test conducting time.  

The developed model can predict the Sauter mean diameter and the cut size of the 
classification product, as well as the performance of the process. 

The presented fuzzy-logic-based approach allows an optimization study to be 
conducted of the process. 

The highest value of g that can be obtained for the considered range of input 
operational parameters is equal to 361.67 g/min. 

To the best of our knowledge, this paper is the first one available in open literature 
dealing with the use of the fuzzy logic method in the modeling of the air classification 
process of bulk materials. 

Author Contributions: Conceptualization, H.O., J.K., D.U., T.W. and M.S.; methodology, H.O. and 
J.K.; software, J.K.; validation, H.O. and J.K.; formal analysis, H.O.; investigation, H.O., D.U. and 
T.W.; resources, H.O., D.U. and T.W.; data curation, H.O., J.K., D.U., T.W. and M.S.; writing—
original draft preparation, H.O. and J.K.; writing—review and editing, H.O., J.K. and M.S.; 
visualization, J.K.; supervision, H.O. and J.K.; project administration, J.K.; funding acquisition, H.O., 
J.K., T.W. and M.S. All authors have read and agreed to the published version of the manuscript.  

Funding: This research received no external funding. 

The highest value of g, which can be acquired for the considered range of input
operational parameters, is equal to 361.67 g/min.

The model developed in the paper has a universal character as it uses inputs inde-
pendent of the type and size of classifiers and material used. However, since the model
was performed and validated on the specific conditions described in the paper, additional
inputs relating to materials properties, such as density or/and particles sphericity, may be
necessary to separate different combinations of materials and achieve reasonable accuracy.

5. Conclusions

The paper introduces a novel, knowledge-based classification (FLClass) system of bulk
materials. The model was successfully validated against experimental data. The maximum
relative error between the measured and predicted data is lower than 9%.

The comprehensive system considers a wide range of operating parameters, i.e., mean
mass of the fed material, the Sauter mean diameter of the fed material, classifier rotor speed,
working air pressure, and test conducting time.

The developed model can predict the Sauter mean diameter and the cut size of the
classification product, as well as the performance of the process.

The presented fuzzy-logic-based approach allows an optimization study to be con-
ducted of the process.

The highest value of g that can be obtained for the considered range of input opera-
tional parameters is equal to 361.67 g/min.

To the best of our knowledge, this paper is the first one available in open literature
dealing with the use of the fuzzy logic method in the modeling of the air classification
process of bulk materials.

Author Contributions: Conceptualization, H.O., J.K., D.U., T.W. and M.S.; methodology, H.O. and
J.K.; software, J.K.; validation, H.O. and J.K.; formal analysis, H.O.; investigation, H.O., D.U. and
T.W.; resources, H.O., D.U. and T.W.; data curation, H.O., J.K., D.U., T.W. and M.S.; writing—original
draft preparation, H.O. and J.K.; writing—review and editing, H.O., J.K. and M.S.; visualization, J.K.;
supervision, H.O. and J.K.; project administration, J.K.; funding acquisition, H.O., J.K., T.W. and M.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This work was performed within project No. 2018/29/B/ST8/00442, “Research
on sorption process intensification methods in modified construction of adsorbent beds”, supported
by the National Science Center, Poland. The support is gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.



Materials 2022, 15, 45 18 of 19

References
1. Shapiro, M.; Galperin, V. Air classification of solid particles: A review. Chem. Eng. Processing Process Intensif. 2005, 44, 279–285.

[CrossRef]
2. Han, Y.; Liu, L.; Yuan, Z.; Wang, Z.; Zhang, P. Comparison of low-grade hematite product characteristics in a high-pressure

grinding roller and jaw crusher. Min. Metall. Explor. 2012, 29, 75–80. [CrossRef]
3. Jeswiet, J.; Szekeres, A. Energy Consumption in Mining Comminution. Procedia CIRP 2016, 48, 140–145. [CrossRef]
4. Wills, B.A.; Finch, J.A. Wills’ Mineral Processing Technology. An Introduction to the Practical Aspects of Ore Treatment and Mineral

Recovery; Butterworth-Heinemann: Oxford, UK, 2016. [CrossRef]
5. Chamayou, A.; Dodds, J.A. Chapter 8 Air Jet Milling. In Handbook of Powder Technology; Salman, A.D., Ghadiri, M., Hounslow, M.J.,

Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2007; Volume 12, pp. 421–435. [CrossRef]
6. Huang, Q.; Liu, J.; Yu, Y. Turbo air classifier guide vane improvement and inner flow field numerical simulation. Powder Technol.

2012, 226, 10–15. [CrossRef]
7. Guizani, R.; Mokni, I.; Mhiri, H.; Bournot, P. CFD modeling and analysis of the fish-hook effect on the rotor separator’s efficiency.

Powder Technol. 2014, 264, 149–157. [CrossRef]
8. Liu, R.; Liu, J.; Yu, Y. Effects of axial inclined guide vanes on a turbo air classifier. Powder Technol. 2015, 280, 1–9. [CrossRef]
9. Yu, Y.; Liu, J. A parametric cut size prediction model for a turbo air classifier. Mater. Und Werkst. 2018, 49, 1510–1519. [CrossRef]
10. Yu, Y.; Ren, W.; Liu, J. A new volute design method for the turbo air classifier. Powder Technol. 2019, 348, 65–69. [CrossRef]
11. Zeng, Y.; Zhang, S.; Zhou, Y.; Li, M. Numerical Simulation of a Flow Field in a Turbo Air Classifier and Optimization of the

Process Parameters. Processes 2020, 8, 237. [CrossRef]
12. Yu, Y.; Kong, X.; Liu, J. Effect of rotor cage’s outer and inner radii on the inner flow field of the turbo air classifier. Mater. Und

Werkst. 2020, 51, 908–919. [CrossRef]
13. Petit, H.A.; Paulo, C.I.; Cabrera, O.A.; Irassar, E.F. Modelling and optimization of an inclined plane classifier using CFD-DPM and

the Taguchi method. Appl. Math. Model. 2020, 77, 617–634. [CrossRef]
14. Altun, O.; Benzer, H. Selection and mathematical modelling of high efficiency air classifiers. Powder Technol. 2014, 264, 1–8.

[CrossRef]
15. Altun, O.; Toprak, A.; Benzer, H.; Darilmaz, O. Multi component modelling of an air classifier. Miner. Eng. 2016, 93, 50–56.

[CrossRef]
16. Li, H.; He, Y.; Yang, J.; Zhu, X.; Peng, Z.; Xie, W. Impact of particle density on the classification efficiency of the static air classifier

in Vertical Spindle Mill. Physicochem. Probl. Miner. Processing 2019, 55, 2. [CrossRef]
17. Özer, C.; Whiten, W.J.; Shi, F.N.; Dixon, T. Investigation of the Classification Operation in a Coal Pulverising Vertical Spindle Mill;

Australasian Institute of Mining and Metallurgy: Carlton, VIC, Australia, 2010.
18. Özer, C.E.; Whiten, W.J.; Lynch, A.J. A multi-component model for the vertical spindle mill. Int. J. Miner. Processing 2016, 148,

155–165. [CrossRef]
19. Wei, H.; He, Y.; Shi, F.; Zhou, N.; Wang, S.; Ge, L. Breakage and separation mechanism of ZGM coal mill based on parameters

optimization model. Int. J. Min. Sci. Technol. 2014, 24, 285–289. [CrossRef]
20. Shi, F.; Kojovic, T.; Brennan, M. Modelling of vertical spindle mills. Part 1: Sub-models for comminution and classification. Fuel

2015, 143, 595–601. [CrossRef]
21. Kojovic, T.; Shi, F.; Brennan, M. Modelling of vertical spindle mills. Part 2: Integrated models for E-mill, MPS and CKP mills. Fuel

2015, 143, 602–611. [CrossRef]
22. Li, H.; He, Y.; Yang, J.; Zhu, X.; Peng, Z.; Yu, J. Segregation of coal particles in air classifier: Effect of particle size and density.

Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 1332–1341. [CrossRef]
23. Mohd Adnan, M.R.H.; Sarkheyli, A.; Mohd Zain, A.; Haron, H. Fuzzy logic for modeling machining process: A review. Artif

Intell. Rev. 2015, 43, 345–379. [CrossRef]
24. Ross, T.J. Fuzzy Logic with Engineering Applications, 3rd ed.; John Wiley: Chichester, UK, 2010.
25. Krzywanski, J. A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods. Energies

2019, 12, 4441. [CrossRef]
26. Krzywanski, J.; Blaszczuk, A.; Czakiert, T.; Rajczyk, R.; Nowak, W. Artificial intelligence treatment of NOX emissions from CFBC

in air and oxy-fuel conditions, CFB-11. In Proceedings of the 11th International Conference on Fluidized Bed Technology, Beijing,
China, 14–17 May 2014; pp. 619–624.

27. Yu, J.; Yang, Y.; Huang, Y. Fuzzy-prediction control for overflow density in milling-classifier operation system. In Proceedings of
the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527), Shanghai, China, 10–14 June 2002; Volume 3,
pp. 1911–1914. [CrossRef]

28. Costea, C.R.; Silaghi, H.M.; Zmaranda, D.; Silaghi, M.A. Control System Architecture for a Cement Mill Based on Fuzzy Logic.
Int. J. Comput. Commun. Control. 2015, 10, 165–173. [CrossRef]

29. Retnam, S.; Pratheesh, H.; Aswin, R.B. Development of Fuzzy Logic Controller for Cement Mill. Int. J. Eng. Res. Technol. 2016, 5.
[CrossRef]

30. Zhang, Y.; Chen, Z.; Li, J. An Intelligent Control System for Complex Grinding Processes. Int. J. Simul. Syst. Sci. Technol. 2016.
[CrossRef]

http://doi.org/10.1016/j.cep.2004.02.022
http://doi.org/10.1007/BF03402397
http://doi.org/10.1016/j.procir.2016.03.250
http://doi.org/10.1016/C2010-0-65478-2
http://doi.org/10.1016/S0167-3785(07)12011-X
http://doi.org/10.1016/j.powtec.2012.03.026
http://doi.org/10.1016/j.powtec.2014.05.020
http://doi.org/10.1016/j.powtec.2015.04.034
http://doi.org/10.1002/mawe.201700071
http://doi.org/10.1016/j.powtec.2019.03.015
http://doi.org/10.3390/pr8020237
http://doi.org/10.1002/mawe.201900145
http://doi.org/10.1016/j.apm.2019.07.059
http://doi.org/10.1016/j.powtec.2014.05.013
http://doi.org/10.1016/j.mineng.2016.04.014
http://doi.org/10.5277/ppmp18160
http://doi.org/10.1016/j.minpro.2016.01.024
http://doi.org/10.1016/j.ijmst.2014.01.023
http://doi.org/10.1016/j.fuel.2014.10.085
http://doi.org/10.1016/j.fuel.2014.11.015
http://doi.org/10.1080/15567036.2018.1475521
http://doi.org/10.1007/s10462-012-9381-8
http://doi.org/10.3390/en12234441
http://doi.org/10.1109/WCICA.2002.1021416
http://doi.org/10.15837/ijccc.2015.2.1750
http://doi.org/10.17577/IJERTV5IS070001
http://doi.org/10.5013/IJSSST.a.17.18.18


Materials 2022, 15, 45 19 of 19

31. Yu, Y.; Liu, J. Classification performance comprehensive evaluation of an air classifier based on fuzzy analytic hierarchy process.
Mater. Und Werkst. 2013, 44, 897–902. [CrossRef]

32. Khoshdast, H.; Soflaeian, A.; Shojaei, V. Coupled fuzzy logic and experimental design application for simulation of a coal classifier
in an industrial environment. Physicochem. Probl. Miner. Processing 2019, 55, 2. [CrossRef]

33. Krzywanski, J.; Urbaniak, D.; Otwinowski, H.; Wylecial, T.; Sosnowski, M. Fluidized Bed Jet Milling Process Optimized for Mass
and Particle Size with a Fuzzy Logic Approach. Materials 2020, 13, 3303. [CrossRef]

34. Zadeh, L.A. Is there a need for fuzzy logic? Inf. Sci. 2008, 178, 2751–2779. [CrossRef]
35. Otwinowski, H. Cut Size Determination of Centrifugal Classifier with Fluidized Bed. Arch. Min. Sci. 2013, 58, 823–841. [CrossRef]
36. Yang, X.; Zou, L.; Deng, W. Fatigue life prediction for welding components based on hybrid intelligent technique. Mater. Sci. Eng.

A 2015, 642, 253–261. [CrossRef]
37. Yang, X.; Deng, W.; Zou, L.; Zhao, H.; Liu, J. Fatigue behaviors prediction method of welded joints based on soft computing

methods. Mater. Sci. Eng. A 2013, 559, 574–582. [CrossRef]
38. Pandiyan, V.; Shevchik, S.; Wasmer, K.; Castagne, S.; Tjahjowidodo, T. Modelling and monitoring of abrasive finishing processes

using artificial intelligence techniques: A review. J. Manuf. Processes 2020, 57, 114–135. [CrossRef]
39. Heidarzadeh, A.; Testik, Ö.M.; Güleryüz, G.; Barenji, R.V. Development of a fuzzy logic based model to elucidate the effect of FSW

parameters on the ultimate tensile strength and elongation of pure copper joints. J. Manuf. Processes 2020, 53, 250–259. [CrossRef]
40. Ponticelli, G.S.; Giannini, O.; Guarino, S.; Horn, M. An optimal fuzzy decision-making approach for laser powder bed fusion of

AlSi10Mg alloy. J. Manuf. Processes 2020, 58, 712–723. [CrossRef]
41. Lv, L.; Deng, Z.; Liu, T.; Li, Z.; Liu, W. Intelligent technology in grinding process driven by data: A review. J. Manuf. Processes

2020, 58, 1039–1051. [CrossRef]
42. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [CrossRef]
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