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Abstract: The object of this research is concrete-filled steel tubes (CFST). The article aimed to develop
a prediction Multiphysics model for the circular CFST column by using the Artificial Neural Network
(ANN), the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Gene Expression Program
(GEP). The database for this study contains 1667 datapoints in which 702 are short CFST columns
and 965 are long CFST columns. The input parameters are the geometric dimensions of the structural
elements of the column and the mechanical properties of materials. The target parameters are the
bearing capacity of columns, which determines their life cycle. A Multiphysics model was developed,
and various statistical checks were applied using the three artificial intelligence techniques mentioned
above. Parametric and sensitivity analyses were also performed on both short and long GEP models.
The overall performance of the GEP model was better than the ANN and ANFIS models, and the
prediction values of the GEP model were near actual values. The PI of the predicted Nst by GEP,
ANN and ANFIS for training are 0.0416, 0.1423, and 0.1016, respectively, and for Nlg these values
are 0.1169, 0.2990 and 0.1542, respectively. Corresponding OF values are 0.2300, 0.1200, and 0.090
for Nst, and 0.1000, 0.2700, and 0.1500 for Nlg. The superiority of the GEP method to the other
techniques can be seen from the fact that the GEP technique provides suitable connections based
on practical experimental work and does not rely on prior solutions. It is concluded that the GEP
model can be used to predict the bearing capacity of circular CFST columns to avoid any laborious
and time-consuming experimental work. It is also recommended that further research should be
performed on the data to develop a prediction equation using other techniques such as Random
Forest Regression and Multi Expression Program.

Keywords: concrete filled steel tube; artificial neural network; multi-physics model; Random For-
est Regression; Adaptive Neuro-Fuzzy Inference System; gene expression programming; bearing
capacity of columns

1. Introduction
1.1. Concrete Filled Steel Tube Artificial Modelling

Concrete filled steel tube (CFST) is a composite construction element. CFST columns
are advantageous due to greater seismic resistance and load bearing capacity, lesser size
utilization, good aesthetics, and high fire resistance [1]. The composite action of steel tube
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and infilled concrete improves the overall strength and ductility of CFST columns. CFST
construction does not require concrete casting formwork, which helps in faster construction
with lesser cost [2]. Different types of CFST cross-sections are used in the building industry,
such as elliptical, square, rectangular, polygonal, and circular sections. However, this
research is concerned with the circular CFST stub and long columns. Generally, the
structural performance of circular CFST columns is better than that of polygonal CFST
columns [3]. Circular CFST columns have higher ultimate capacities as compared to other
cross-sectional shapes. The strength index value for the circular column is higher than 1,
which shows the positive confinement effect of the circular CFST column. The rectangular
CFST column has less confinement effect, and thus it can be seen from the strength index
that the theoretical capacity is greater than the actual capacity [4].

Numerous researchers have conducted experimental studies to check the effect of
different parameters on the axial capacity of circular short and long CFST columns [5].
These parameters include concrete compressive strength, diameter, height of the column,
yield strength of steel tube, thickness of steel tube, and eccentricity. Furthermore, the
experimental research is costly and needs expensive precise equipment. The accuracy of
the experimental study relies on skilled labor, type of equipment, condition for casting and
testing of specimens and appropriate instrumentation, while in numerical or analytical
modelling high computational skills are necessary and need experimental tests merely to
validate the model. Thus, developing an accurate, precise, and reliable empirical expression
is essential to encompass all the important parameters. The short columns are described
as those with L/D ≤ 4 (for circular columns) or L/B ≤ 4 (for rectangular columns), where
L is the length of the specimens, and D and B represent the outer diameter of the circular
section the width of the rectangular sections respectively, slender columns having L/B > 4
or L/D > 4 [6].

CFST columns have been used for operation in extreme conditions under high axial
loads. High loads require greater dimensions of the CFST cross-section, high strength steel
tube and concrete. The dimensions and strength of the material are limited in practice,
and these empirically determined limitations are included in building codes. Each code
differently interprets the effect of confinement on the overall bearing capacity of CFST
columns. Chinese code [7] and Japanese code [8] use allowable concrete strength (fc′) of
67 MPa and 90 MPa and steel tube yield stress (fy) of 420 MPa and 440 MPa, respectively.
The recently released AISC 360-16 [9] and AS/NZS 2327 [10] is applicable to fc′ of 69 MPa
and 100 MPa and fy is limited to 525 MPa and 690 MPa, respectively. The Eurocode [11]
permits fc′ and fy up to 50 MPa and 460 MPa, respectively. In comparison, Liew and
Xiong [12] extended these limits to 90 MPa and 460 MPa, respectively. The use of high
strength material is valuable for reduction of the size of CFST columns which eventually
leads to the savage of floor space and lesser construction cost. The high strength steel
tube enhances the elastic behavior and thus improves the confinement effect towards the
concrete core. Use of concrete in CFST helps in the functional optimization of both materials.
Advancements in the construction industry permit high strength materials to be practically
utilized. In addition, the equations available in the mentioned standard codes do not agree
with each other. Moreover, these codes are based on the pre-assumed stress–strain curve of
CFST, which makes the validity of the presented equations suspicious. To tackle this issue,
many researchers have conducted experimental studies on the utilization of high strength
materials in CFST columns. Khan et al. [13] use fc′ and fy up to 113 MPa and 762 MPa,
respectively, in CFST columns. Mursi and Uy [14] and Sakino et al. use normal strength
concrete in CFST columns with fy up to 761 MPa and 853 MPa, respectively.

Different studies recommended various methods for the estimation of the bearing
capacity of CFST columns [15]. Researchers have found nonlinear and linear regression
methods to be highly effective in the civil engineering field [16]. However, the development
of these models is based on pre-assumed equations, which makes them impracticable and
unrealistic in terms of estimation perspective [17,18]. To tackle this problem, recently
various artificial intelligence (AI) techniques, specifically machine learning methods, have
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been extensively used in the field of civil engineering) [19–21]. Researchers have used
Artificial neural network (ANN) [22], Support vector machine (SVM), [23] random forest
regression (RFR) [24,25], adaptive neuro-fuzzy interface system (ANFIS) [26], feed-forward
neural network (FNN) [27], particle swarm optimization (PSO) [28], genetic programming
(GP) [29], gene expression programming (GEP) [30], etc. For the estimation of mechanical
properties of different types of civil engineering materials and structures. Nguyen et al. [31]
estimated the axial capacity of rectangular CFST via the FNN algorithm. Researchers
also projected the relationship between load deformation and fire resistance of CFST stub
columns using the ANN technique [32].

Other studies [33] proposed an ANN model to estimate the ultimate capacity of rectan-
gular CFST beam-columns and circular CFST beams. It was concluded that the predictive
model performed better than EC4 and AISC projected equations in both cases. Likewise,
the authors focused on an alternative technique to estimate the ultimate axial capacity
of stub CFST columns and confinement performance of infilled concrete ANFIS [34,35].
They stated that the ANFIS model performs significantly better and is more accurate
than multiple linear regression (MLR) and multiple non-linear regression (NLMR). The
researchers also formulated the punching shear strength of concrete slabs using ANN and
GP algorithms [36]. The GEP empirical model for predicting the axial capacity of short
circular CFST columns performed better than other formulae available in different design
codes [37]. Similarly, researchers use gene expression programming (GEP) to deliver an
empirical equation for the estimation of the axial capacity of concrete filled double skin tube
(CFDST) columns [38] and short CFST columns [39]. They testified that GEP predictive
models yield better performance than available equations, giving lesser error values with a
higher correlation coefficient.

Furthermore, the soft computing algorithms solve problems by training the available
data set to obtain results, which are then validated via validation set data [40]. However,
ANN and ANFIS algorithm-based prediction needs many improvements to provide a
practical equation for future use. Therefore they are black boxes [41]. Numerous hidden
neurons collapse ANN and ANFIS algorithms to provide a practicable empirical equa-
tion between the explanatory variables and the response, and can be adopted to predict
correlation purposes [41]. The complex structure of these models obstructs wide-scale
adoption [41]. However, they can be effectively utilized as a predictor and to judge the
accuracy of the GEP based model [41].

In addition, experimental research is costly and requires abundant resources and time
to carry out an accurate strength analysis. A slight mistake in computing the quantities
and casting process may cause a malicious impact on the strength. Besides, the machine
learning algorithm only requires an initial data set to efficiently predict the desired property.
In this research, an effort has been made to address the limitation of the provision of the
standard code by developing a GEP based empirical equation for short and slender CFST
beam columns considering several input variables, i.e., D: diameter of the tube, t: thickness
of the tube, L: length of the tube, L/D: length to diameter ratio, et: eccentricity at the top
face or loading face, eb: eccentricity at the bottom face, fy: yield strength of the tube and
fc: compressive strength of the infilled concrete. The schematic layout showing the input
variables used to predict the capacity of CFST columns has been provided in Figure 1. The
GEP algorithm delivers a simplistic empirical hand-based expression that can be used for
future unseen data. The ANN and ANFIS algorithms are also used as a predictor to confirm
the validity of the equation. A detailed and comprehensive database has been developed
from peer-reviewed internationally published articles. This widespread database ensures
the applicability of the model for new data. Statistical error checks are employed to verify
the performance of the established models. In the end, a permutation feature analysis and
a parametric study were also conducted to arrive at an accurate, reliable model.
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Figure 1. Schematic layout of circular concrete filled steel tube (CFST) column.

1.2. Detailed Description of Machine Learning Algorithms (ANN, ANFIS, GEP)

Artificial Neural Networks (ANNs) are computer algorithms that anticipate and
classify the issues concerned with the effective processing of data [42]. As its name indicates,
ANNs are based on mathematical models based on the human brain’s neuron system [43].
ANN’s have various layers of processing elements or nodes. Figure 2 shows the three layers
with arranged nodes, i.e., input layer/s, output layer/s and hidden layer/s. The input
layers have independent variables, output layers’ target results, and hidden layers have
concealed neurons/variables [44]. For each output (Nst/Nlg), eight inputs were selected,
while in the hidden layer the input parameters (D, t, L, L/D, et, eb, fy and fc) were multiplied
by a suitable weight factor for connection. A threshold value at every node (θj) is added
to the weighted input values after their summation. The resultant input (Ij) is passed
through the linear transfer function, which is called the transfer phase. The various
activation transfer function (AFs) usually used in ANNs are the linear sigmoid, the stepped
hyperbolic tangent and the logistic, among others [45]. An activation function is the key
feature of a neural network which plays an important role in the artificial neural network
model. It can be observed that these activated functions assist in appointing nonlinearity
to the neural networks, due to which the selection of the appropriate activated function
becomes very important [46]. Activated functions which have been used in the past include
tangent hyperbolic and logistic sigmoid activated functions [47], the transcendental type
parametric algebraic activated function [48], swish activated functions [49], and Multistate
AF’s to improve the DNN models [50] etc.
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Figure 2. Schematic layout of feed-forward neural networks with eight explanatory variables.

In this research, the transfer functions used for the modelling of ANN models are
TRANSIG and PURELIN. On the one hand, these transfer functions are capable of ef-
fectively increasing neurons in each layer and in each transfer function to improve the
statistical indices of the training dataset. However, on the other hand, they also decrease
the accuracy of the testing and validation datasets [51,52]. Dorofki et al. [53] observed
that among various statistical functions, the performance of the Log-sigmoid transfer
function was best, because these are differentiable, bounded and continuous. At the same
time, Purelin TF gives much improved results. As a result, PE (Nst j or Nlg j) is obtained
as the resulting output, and the input of a PE is basically the output of the previous PE.
For the hidden and output layer, every neuron utilizes the Logistic function (Equation
(1)) as an activated function [54]. Moreover, the complete process can be observed from
Equations (1)–(3).

fh(z) =
1

1 + e−z (1)

Ij =
{(

wj D ∗ D + wj t ∗ t + wj L ∗ L . . . wj f y ∗ fy

)}
+ θj; Summation (2)

Nst j or Nlg j = f
(

Ij
)
; Transfer (3)

To achieve an output with the least minimum error, the best combination of weights is
achieved by adjusting the weight to the set rules at the time when the information from
the input layer is passed by the ANN in the training stage. Another training set is used
to validate the trained model. The method and implementation of ANN modeling is
discussed in greater depth elsewhere and is beyond the scope of this review [55–57].

An attractive computation intelligence modelling tool, adaptive neuro-fuzzy inference
scheme (ANFIS), blends the learning capabilities of ANNs with the reasoning capability
of fuzzy logic. ANFIS has a better prediction potential and is a better alternative for
computing nonlinear complex problems with greater precision [58]. With similar learning
capability as ANN, ANFIS learns from training data containing a multiplex model and
then gives the solutions in a fuzzy interface system (FIS) [43]. In MATLAB R2020b there
is a tool called ANFIS that can train the input and output entities for the best connection
between both the parameters. A basic FIS consists of several stages. First are feeding inputs
to aid in the fuzzification of fuzzy sets according to the activation of linguistic rules. Then
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basic laws are formulated by experts. These laws can also be derived from numerical
results. Inference is the next step, which involves fuzzy mapping sets according to fixed
laws. Finally, the fuzzy sets are defuzzied, which results in the final performance values.

The ANFIS technique is divided into five steps:

(a) data collection,
(b) ANFIS growth,
(c) variables selection,
(d) training and testing,
(e) results

to express values in another way. In addition, the schematic layout of the ANFIS
model for eight input variables (D, t, L, L/D, et, eb, fy and fc) is shown in Figure 3. The circle
denotes the set nodes, while the square denotes the adaptive nodes. The two statements
used for the presentation of the architecture of the ANFIS are IF-THEN statements are as
follows.

Figure 3. Sugeno ANFIS model schematic layout with eight explanatory variables.

Statement 1: IF (D is A1) and (t is B1) THEN,

{ f1 = p1(D) + q1(t) + r1} (4)

Statement 2: IF (D is A2) and (t is B2) THEN,

{ f2 = p2(D) + q2(t) + r2} (5)

where fn denotes the fuzzy outputs (Nst, Nlg) for the fuzzy inputs (D, t, L, L/D, et, eb, fy
and fc), according to the fuzzy statement, Ai and Bi denote the fuzzy sets, and pi, qi, and ri
denote the arrangement elements determined in the training cycle.

An ANFIS model is made up of five layers [58], explained in detail below.

1.2.1. Layer 1

This layer is also called the fuzzification layer. The adaptive Pes provide outputs in
Equations (6) and (7), which describe the fuzzy membership functions of the input model
parameters and the original fuzzy rule foundation.

O1
k = µAk(D), k = 1, 2 (6)
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O1
k = µBk−2(t), k = 3, 4 (7)

where µ indicates the weight obtained by connecting the fuzzy membership function, and
µAk(D) and µBk-2(t) differentiate the method of applying any fuzzy membership function.
Equation (8) gives the µAk(D) for a bell-shaped membership function

µAk(D) =
1

1 +
{(

D−ck
ak

)}bk
(8)

where ak, bk and ck are the factors affecting this membership function.

1.2.2. Layer 2

This layer’s output is the preset rules’ firing power for a given input pattern. The
nodes in the second layer are constant and perform simple multiplication, with the output’s
parameters mentioned below (Equation (9)),

O2
k = wk = µAk(D).µBk(t), k = 1, 2 (9)

1.2.3. Layer 3

Following the pattern of the second layer, the third layer also has fixed nodes for
normalizing the firing strength of the previous layer. Equation (10) represents the output:

O3
k = wk =

wk
w1 + w2

, k = 1, 2 (10)

1.2.4. Layer 4

In this layer, considering the first order Sugeno model, nodes are adaptive. Their out-
puts are represented as products of normalized firing intensity and first-order polynomial,
with the first order Sugeno model taken into consideration. As a result, the output is given
by (Equation (11)):

O3
k = wk fk = wk{pk(D) + qk(t) + ri} (11)

1.2.5. Layer 5

In this layer, a fixed node summits the weighted magnitude of rules achieved from
the prior layer, yielding Equation (12) as the model’s output.

O5 =
2

∑
k=1

wk fk =
∑2

k=1 wk fk

w1 + w2
(12)

It is worth noting that only the first and fourth layers of the ANFIS architecture are
adaptive. In the first layer, the three adaptable parameters ak, bk, and ck, also known
as premise parameters, are linked to input membership functions. Similarly, the three
adaptable parameters pk, qk, and rk, also known as consequent parameters, are analogous
to first-order polynomials and are found in the fourth sheet [59].

The gene expression programming approach, which is founded on Darwin’s evolution
theory and Mendel’s genetic theory, is the most intellectually appealing computational
knowledge algorithm [60,61] There are two languages in GEP: (a) the gene’s language, and
(b) the expression tree’s (Ets) language, and understanding one requires knowledge of the
other’s sequence or structure [62]. The following are the fundamental steps involved in
traditional GEP modelling. A typical gene or chromosome contains two parts i-e:

(a) Head consisting of function or terminal symbols
(b) Tail containing only the terminal symbols.

The complexity of each parameter is represented by head size and the number of
genes that control the number of sub-Ets.
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Figure 4 shows how the chromosomes have set lengths that can be easily converted
into an algebraic expression [63]. Every GEP gene has a series of words that are adapted
from the function set; for example, arithmetic operations (+, −, ×, ÷), Boolean logic
functions (AND, OR, NOT, etc.), trigonometric functions (cos, sin, ln), conditional functions
(IF, THEN, ELSE), etc. [64].

Figure 4. Illustration of a mathematical equation and its equivalent expression tree (ET).

The chromosomes are then expressed by Ets that come in a range of shapes and sizes.
Then, in line with their percentages, the principal genetic operators of crossover, mutation,
transposition, and recombination (1-point, 2-point, and gene recombination) are performed
on the chromosomes [65]. Figure 4 illustrates a common expression tree (ET) and describes
the crossover and mutation processes. Equation (13) also shows how the ET is expressed
using Karva notation or a K-expression [36].

ETGEP = log(i− 3
j
) (13)

When the stopping condition (the maximum number of generations or a satisfactory
solution) is reached, the whole process is finished [66]. If the termination conditions for
achieving the optimum iteration or the favorite fitness value are not satisfied, then the
Roulette wheel procedure is used, which chooses the viable chromosomes of the first
generation and moves them on to the next generation [67]. This method will be repeated
for a certain number of generations or before the right solution is found [68].

1.3. The Aim of the Research

It follows from the above review that the variety of existing models does not allow
rational predicting of the ultimate axial capacity of uniaxially loaded CFST columns. The
article aimed to develop a prediction Multiphysics model for the circular CFST column by
using Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS)
and Gene Expression Program (GEP).
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2. Methods
2.1. Description and Division of Collected Data

A robust database is needed to successfully apply the machine learning algorithms
(ANN, ANFIS, GEP). Thai et al. [6] collected the most recent experimental data of CFST
columns and combined it with the existing database [69]. The Thai et al. [6] database is
comprised of more than 3100 tests performed on CFST columns of different classes. A total
of 1667 experimental results were extracted from the existing database, which comprised
two different classes: circular short (702) and long (965) CFST columns loaded concentrically
and eccentrically. The geometric features include physical dimensions such as length (L),
tube thickness (t) and tube diameter (D), and eccentricities at end supports (et, eb). The
material properties of steel and concrete include the yield stress (fy) and compressive
strength (fc) of concrete. The concrete compressive strength obtained from the experimental
tests collected from the literature was based on both available cylinder and cube specimens.
Cube strength was converted to cylinder strength through related conversion factors.
Furthermore, cylinder strength was used in the design equations [70] to avoid errors.
Other material properties, such as steel and concrete moduli and steel ultimate stress, were
considered of minor significance. In the case of concrete, the compressive strength for all
the specimens is given, and the modulus is directly affected by this compressive strength,
so there is no need to establish any relation between compressive strength and modulus of
concrete, and only strength was incorporated in the model as a significant factor. A similar
strategy was used to eliminate the need for steel’s ultimate stress, while in the case of steel
modulus, for example, 200 Gpa are probable, and this value is normal for all steel grades
used in all columns.

For each class, descriptive statistics like distribution shape (kurtosis and skewness),
central tendency (mean and median), dispersion of data (Standard deviations) and data
extremities (maximum and minimum) for different geometric and material characteristics
are provided in Table 1. For instance, the diameter ranges from 44.5 mm to 1020 mm for
both classes, and the thickness ranges from 0.5 mm to 16.5 mm and 0.5 mm to 13.3 mm for
long and short CFST columns, respectively. Similarly, the compressive strength range in
filled concrete for both classes is from 7.7 MPa to 193.3 MPa, while that for yield strength
of steel tube for long and short CFST columns is from 178.3 MPa to 853 MPa and from
185.7 MPa to 853 MPa, respectively. The range of L/D ratio is witness to the difference
between short and long CFST columns. The reader is advised to note that these ranges
surpass the design codes currently in use. As a result, this database can be used to build
an ANN, ANFIS and GEP model with enhanced prediction capabilities that are more
inclusive than codal provisions. It should be remembered that the magnitude eccentricity
is a part of the affecting parameters in both classes. Therefore, the developed models can be
confidently used for both axial and moment capacity of circular CFST columns. Skewness
and kurtosis are related to the distribution of data. If the larger portion of the data for
a particular variable is to the left of the mean, then this shows positive skewness (right
tailed). Furthermore, if most of the data is to the right of mean value, then this shows
negative skew (left tailed), and skewness is zero for perfectly symmetrical distribution
(normal distribution). At the same time, the kurtosis indicates the heaviness of the tail
related to the normal distribution. The leptokurtic or positive kurtosis dictates that the data
is higher than the normal distribution, whereas the platykurtic or negative kurtosis reveals
that the data is flatter than the normal distribution. The values of kurtosis and skewness
for each input and output is also provided in Table 1. After constructing a reliable database,
the available datapoints are divided into two sets, i.e., training and testing set [71].
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Table 1. Descriptive statistical analysis of explanatory variables and response.

Category Parameters Mean Median Max Min S.D. Kurtosis Skewness

Long

Inputs

D (mm) 147.2 121.0 1020.0 44.5 89.9 31.78 4.38
t (mm) 4.4 4.0 16.5 0.5 2.4 5.12 1.79
L (mm) 1438.3 1040.0 5560.0 152.3 1094.5 1.12 1.23

L/D 11.2 8.6 51.5 0.8 8.9 1.88 1.35
et (mm) 13.0 0.0 300.0 0.0 28.1 25.87 4.08
eb (mm) 11.2 0.0 300.0 0.0 27.5 29.50 4.38
fy (MPa) 332.1 322.0 853.0 178.3 81.7 7.83 1.98
fc (MPa) 46.6 40.1 193.3 7.7 26.8 7.75 2.36

Output

Nexp (kN) 1616 848.5 46,000 45.2 3181.1 73.86 7.53

Short

Inputs

D (mm) 169.2 133.1 1020.0 48.0 112.5 23.19 4.17
t (mm) 4.2 4.0 13.3 0.5 2.3 1.56 1.15
L (mm) 498.7 399.5 3060.0 152.3 334.0 24.32 4.16

L/D 3.0 3.0 4.0 0.8 0.6 0.19 −0.55
et (mm) 2.8 0.0 105.0 0.0 10.9 30.38 5.03
eb (mm) 2.8 0.0 105.0 0.0 10.9 30.38 5.03
fy (MPa) 336.8 322.7 853.0 185.7 97.5 10.53 2.52
fc (MPa) 58.8 46.6 193.3 7.7 35.9 2.60 1.54

Output

Nexp (kN) 2782.5 1678.1 46,000 199.9 4304.5 39.20 5.39

Min. Minimum; Max. Maximum; S.D. standard deviation.

2.2. Structure of ANN, ANFIS and GEP Models

The specification of the significantly affecting input parameters is the first step in
designing the appropriate model. The Nst and Nlg were found to be dependent on the
following factors (Equation (14)):

Nst or Nlg (kN) = f (D, t, L,
L
D

, et, eb, f y, and f c) (14)

Here, D is the diameter of the tube, t is the thickness of the tube, L is the length of the
tube, L/D is the ratio between length and diameter of the tube, et and eb is eccentricity at
top and bottom face, fy is the yield strength of tube, and fc is the compressive strength of
the tube.

Both ANN and ANFIS simulations were performed in the MATLAB R2020b environ-
ment using the neural network and fuzzy logic toolbox, respectively. The 702 experimental
records of short CFST columns were randomly divided into 70% training (495 datapoints)
and 30% testing (207 datapoints), and similarly for second class, i.e., long CFST columns,
out of a total of 965 experimental records, 70% (676 datapoints) and 30% (289 datapoints)
were accumulated in the training and testing set, respectively [36]. The training accuracy
and time taken to train the model are essential [72] for comparison of the performance of
each model. The input layer in this analysis had eight input nodes, one for each of the
model inputs (D, t, L, L/D, et, eb, fy, fc), and the output layer had Nst and Nlg for ANN.
After using the Levenberg-Marquardt algorithm and choosing random data division, the
number of hidden neurons was set to ten. In addition, the network form was chosen as
feed-forward back-propagation. To achieve a better output at the required number of
hidden layers, trial and error methods should be used [54]. Table 2 lists the statistical
parameters of modelling for ANNs in this research.
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Table 2. The setting of different parameters of ANN, ANFIS, and GEP model used in current research.

Parameters
Class and Value

Nlg Nst

Training dataset (70%) 676 495
Testing dataset (30%) 289 207

ANN

Network type Feed-forward back-propagation
Data division Random (un-biased)

No. of hidden layer 8
No. of hidden neurons 10

Training algorithm Levenberg-Marquardt
Hidden layer’s Transfer function TANSIG
Output layer’s Transfer function PURELIN

No. of non-linear parameters 16
No. of epochs 40
Learning rate 0.01

ANFIS

No. of linear parameters 72 65
No. of nonlinear parameters 140 120

Total No. of parameters 176 154
No. of fuzzy rules 5 8

No. of MFs 5 8
No. of nodes 20 45

No. of Training epoch 30 30
Training error goal 0 0

Membership Function type Trimf
Fuzzy structure Sugeno

Type of FIS Sub clustering
Method of Optimization Back propagation and least square

Output function Linear

GEP

Parameters
General

Number of chromosomes 100
Number of Genes 3

Head size 8
Linking function Addition

Function set +, −, ×, ÷
Numerical constants

Constant per gene 10
Type of data Floating number

Maximum complexity 8
Ephemeral random constant [−10,10]

Genetic operators
Rate of mutation 0.00138

Inversion rate
0.00546IS transposition rate

RIS transposition rate
One-point recombination rate

0.00277
Two-point recombination rate

Gene recombination rate
Gene transposition rate

ANFIS provides only a single output; unlike ANNs, the outputs were handled sep-
arately using the same set of input parameters in both ANN and ANFIS models. The
sub-cluster FIS was first generated because the database contained a huge number of
data points, in which subtractive clustering with a hybrid optimization technique (least
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square and back-propagation technique) was used to train the FIS by building a triangular
membership function (trimf) [73]. Furthermore, Venkatesh and Bind [42] also recommend
using the grid portioning approach in which the maximum number of input parameter is
taken as six. The various setting parameters for the training phase are presented in Table 2.

GeneXproTools version 5.0 was used to implement the GEP algorithm [74,75]. From
data loading to code generation, GeneXproTools is a versatile data processor that supports
categorical variables and missing values, greatly enhancing the performance and accuracy
of the modelling process [76]. It can generate multiple models from large heterogeneous
data and locate code in programming languages such as MATLAB, C++, and Visual
Basic [54]. The parameters in the GEP algorithm were finalized based on previous literature
guidelines and several initial runs [41,77]. The initial optimum combination of GEP
parameters was calculated using the trial-and-error method. The effect of a single GEP
parameter on prediction accuracy was then investigated using the optimum combination
of parameters. Finally, the proposed model was formulated using the finalized optimum
combination of GEP parameters for obtaining basic mathematical expressions to predict
the bearing capacity of CFST columns. The model’s complexity increases as the number of
chromosomes, head size, and genes increase, and hence the length of the running program
is determined.

Furthermore, multiple evolved models are strongly influenced by head size and
genes. The error in the formulated model is reduced by the higher values of these setting
parameters, which results in a higher value of the coefficient of regression. Table 2 shows
the unique values for the parameters in the GEP algorithm for both classes of CFST columns
considered in this study.

2.3. Evaluation of Models through Statistical Measures

Statistical performance for the Nst and Nlg prediction (ANN, ANFIS and GEP models)
were measured using five standard statistical metrics, including correlation coefficient (R),
determination coefficient (R2), root mean square error (RMSE), mean absolute error (MAE),
relative squared error (RSE), mean absolute percent error (MAPE) and relative root mean
square error (RRMSE) in the training testing sets [77–79]. In addition, for all the proposed
models, a performance index (PI) has been calculated as another metric, ruled primarily by
RRMSE and R [36]. Equation (15) to Equation (21) define these performance measures:

MAE =
∑n

i=1|pi − qi|
n

(15)

RMSE =

√
∑n

i=1(pi − qi)
2

n
(16)

RSE =
∑n

i=1(pi − qi)
2

∑n
i=1(pi − pi)

2 (17)

RRMSE =
1
|e|

√
∑n

i=1(pi − qi)
2

n
(18)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ qi − pi
qi

∣∣∣∣× 100 (19)

R =
∑n

i=1(pi − pi)(qi − qi)√
∑n

i=1(pi − pi)
2 ∑n

i=1(qi − qi)
2

(20)

PI =
RRMSE
1 + R

(21)

Here, pi and qi are the ith predicted and expected outcomes, respectively, pi and qi are
the average of predicted and expected outcomes, and n is the total number of experiments.



Materials 2022, 15, 39 13 of 27

To determine the relative correlation between models and experimental outputs (pi and
qi), the performance of R is used. When R > 0.8, the predicted and expected values are
highly correlated [80]. However, R is insensitive to the division and multiplication of
outcomes [77]. Thus, R2 was used because of its impartial assessment and comparatively
better performance. R2 values equal to 1 and closer to each other demonstrate that much
of the model’s variation between input parameters was used [81]. In addition, RMSE is a
common metric since significant errors in comparison to smaller errors are resolved very
effectively. RMSE closer to 0 indicates that the prediction error is negligible [58]. It does not,
however, ensure optimum efficiency in any conditions. MAE was also calculated and is
enormously advantageous in the presence of smooth and continuous data [82]. To sum up,
a greater value of R and smaller values for RMSE, MAE, RSE, and RRMSE provides a better
standard calibration for model performance. In addition, Gandomi et al. [83] proposed that
PI ranges from 0 to infinity and closer to zero indicate a good model performance.

In a range of machine learning techniques, due to unnecessary data training, the
models appear to overfit [84] and lead to lower training error values and greater testing
error values. In order to choose the best predictive model that can solve overfitting, a
minimized objective function (OF) is used, as shown in Equation (22) [36,85]:

OF =

(
nT − nv

n

)
PIT + 2

(nv

n

)
PIv (22)

Here T and V (subscripts) correspond to training and testing set points, and n repre-
sents the total number of records. The better-predicted formula must have a lower OBF
value (nearly equals to 0), as the consequence of R, RRMSE and proportional percentage
of dataset records are considered. Eight different suitable parameter combinations were
executed, and the least OF was chosen in this study.

3. Results and Discussion
3.1. Regression Analysis of ANN, ANFIS and GEP Model

The regression plots between actual and predicted bearing capacities for short and
long CFST columns of ANN, ANFIS and GEP models are clearly presented in Figure 5.
The equation for the slope of the regression lines between actual and predicted bearing
capacity for both training data and testing data has been shown in all plots. The closeness
of the datapoints near the regression line drawn at 45◦ indicates the better performance
of the established models [58]. The slope should be closer to 1 for an ideal fit [77,86] and
for a strong correlation. For all three proposed models, a strong correlation can be seen
as depicted from the slope of the regression lines. The values of slope for both stages,
i.e., training and testing set, are quite similar in all the proposed models showing that the
models are efficiently trained and hold a high generalization capacity. The spread of the
datapoints in the training and testing set also shows that the issue of overfitting has been
diminished.

Moreover, the coefficient of determination (R2) for all the proposed models is greater
than 90% in both training and testing stages following the trend: R2(ANN) > R2(GEP) >
R2(ANFIS), reflecting the shortcoming of neural and fuzzy arrangement in the projected
ANFIS model. The mean correlation coefficient (R) in the projected models for Nst is also
maximum for ANN (0.9986) tracked by GEP (0.9922) and ANFIS (0.9874). For a stronger
correlation, the R-value will be higher (i.e., R > 0.8) for an acceptable model [77,87,88]. In
the case of Nst, the R2 for ANN model is highest, i.e., 99.73% and 99.72% for training and
testing data, respectively, and 98.20% and 98.74% for the GEP model, respectively.



Materials 2022, 15, 39 14 of 27

Figure 5. Regression plot between actual and predicted bearing capacity of (a) ANN model for short
CFST columns (b) ANN model for long CFST columns (c) ANFIS model for short CFST columns (d)
ANFIS model for long CFST columns (e) GEP model for short CFST columns and (f) GEP model for
long CFST columns.

3.2. GEP Based Formulation of Bearing Capacity of CFST Columns

The two GEP based empirical formulae for future prediction of bearing capacity of
short and long circular CFST columns are derived using the GEP algorithm. The sub-ETs’
links to these formulae for Nst and Nlg use four basic mathematical operations, i.e., +,
−, × and ÷, as presented in Figure 6. The ETs in Figure 6a,b corresponding to three
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different numbers of genes with addition used as a linking function, are decoded to derive
a respective mathematical equation for Nst and Nlg as shown in Equations (23) and (24).
Based on the total number of records, the projected formulae are in close agreement
with standard limits for an ideal model and can be confidently and reliably used for the
prediction of bearing capacity of short and long circular CFST columns [64,89,90].

Nst(kN) =
((
−18.9L+11525.98

fc
× L

D

)
− 1711.5 + fy − D + (18.94× D)

)
+
(

fc ×
(

D+L
−0.38× fc

+ −45.67+D
5.42

)
− et

)
+
(

t×
(

L +
fy

5.48 − (3.07× eb)−
(

L
D × 88.45

))) (23)

Nlg = (( fc + D + 9.55 + (7.1× fc)) + (t× 225.8)) +
((

fy−L
fc
− eb − L

D − 11.82 + D
)
× t
)

+

((
t + t

et
4.03+0.54+ L/D

fc

)
× D

) (24)

Figure 6. Representation of expression trees (a) Short circular CFST (b) Long circular CFST.

3.3. Performance Evaluation of Proposed Models Using Statistical Indicators

The reliability and accurateness of the models greatly depend on the number of data
points [77]. In this research, a maximum number of records, i.e., for short CFST columns
495 training and 207 testing records and for long CFST columns 676 Training and 289 testing
records, are used for the development of models and, hence, better accuracy has been
achieved. It is suggested in the literature that, for a reliable model, the ratio between several
records and input variables in both training and testing should be at least 5 [91]. In the
training and testing stage of this study, the specified ratio is far beyond the limit, i.e., equal
to 61.88 and 25.88, respectively, for Nst and 84.5 and 36.13, respectively, for Nlg,

The studies suggested that R or R2, enumerates the linear dependency of response
and explanatory variables. An acceptable value of R greater than 0.8 shows a strong
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correlation between actual and predicted values [92]. Thus, the evaluation of the proposed
models based on the slope of the regression line and regression or correlation coefficient
is insufficient [92]. Therefore, the developed models are also assessed using different
statistical metrics for evaluating their robustness.

3.3.1. ANN Model

It can be seen from Figure 7, that for short CFST columns, the R exceeds 0.90 and is
nearly equal to 1, which shows that the ANN model has a better prediction capability for
training and testing data sets that is perfectly equal to 0.9986 for training and testing both
sets, which witnessed the outburst performance of the ANN model. Similarly, in the case
of long CFST columns, these are 0.9929 and 0.9959 for the respective datasets. To interpret
the statistics of MAPE, the absolute percent error plot and the error histogram of percent
error are shown in Figure 7c,d. The percent error histograms indicate 58% and 36% ANN
predicted values for Nst and Nlg, respectively, have an error less than 10% As reflected in
Figure 7a,b, the error values are scattered near zero, showing the outburst performance of
the developed multi-physics-based ANN model. Furthermore, both the MAE and RMSE in
Table 3, enumerate the magnitude of average error values and have their own importance.
The RMSE squared the error before average and gave more weightage to larger error
values [93]. At the same time, MAE gives low weightage to larger error values and is
always lower than RMSE [80,93]. For the ANN model for Nst, testingMAEtesting (145.96) is
lower than RMSEtesting (193.20), satisfying the stated condition. Similarly, these values for
Nlg are (196.22) and (325.12), respectively. The RSEtesting of ANN models for Nst and Nlg is
also minimal and nearly equals zero, i.e., (0.00274) and (0.0086), respectively. The details of
the statistical analysis of all the proposed models for Nst and Nlg in both stages (training
and testing), are provided in Table 3.

Figure 7. Variation of mean absolute error and error histograms of bearing capacity established using
ANN algorithm (a,c) short CFST (b,d) long CFST columns.
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Table 3. Statistical indicators for ANN, ANFIS and GEP models developed for bearing capacity of
short and long circular CFST columns.

Model Statistical
Metrics

ANN ANFIS GEP

Training Testing Training Testing Training Testing

Long

MAE 214.98 196.22 556.86 500.30 306.34 290.36

MAPE 27.59 25.28 36.29 42.91 40.50 39.74
RSE 0.0148 0.0086 0.0931 0.0635 0.0256 0.0195

RMSE 369.15 325.12 925.33 882.60 485.46 489.06
R 0.9929 0.9959 0.9534 0.9678 0.9871 0.9906

RRMSE 0.2330 0.1922 0.5841 0.5219 0.3064 0.2892
PI 0.1169 0.0963 0.2990 0.2652 0.1542 0.1452
OF 0.1000 0.2700 0.1500

Short

MAE 155.29 145.96 360.05 328.73 350.56 387.93

MAPE 8.79 9.17 24.55 27.20 22.39 20.15
RSE 0.00270 0.00274 0.0345 0.0197 0.0179 0.0126

RMSE 235.77 193.20 750.68 681.67 552.17 527.47
R 0.9986 0.9986 0.9842 0.9907 0.9909 0.9936

RRMSE 0.0833 0.0273 0.2824 0.2213 0.2023 0.1812
PI 0.0416 0.361 0.1423 0.1111 0.1016 0.0908
OF 0.2300 0.1200 0.090

3.3.2. ANFIS

The ANFIS model also delivers a good result based on performance criteria. Along
with high values of R exceeding 0.90, lower error statistics were recorded. Unlike ANN and
GEP, the magnitude of errors (MAE, RMSE and RSE) is higher. The percent error histogram
and distribution of MAPE is shown in Figure 8, indicating that 46% and 27.3% ANFIS
predicted values for Nst and Nlg, respectively, have percent error less than 10%.

In comparison with ANN models, it gives more high-error values. However, as
presented in Figure 8, the absolute percent error runs near the axis showing that the overall
performance is satisfactory. As stated in Table 3, the MAEtesting and RMSEtesting of ANFIS
models is (55.6)% and (71.7)% greater than that of ANN models in the case of Nst and
(60.8)% and (63.2)% greater in the case of Nlg, respectively. Like the ANN model, the
RSEtesting for ANFIS models is also near to 0. Thus, based on the above facts, the prediction
of bearing capacity of short and long CFST columns can also be obtained through these
reliable and accurate models.

3.3.3. GEP Model

The GEP model provides better results than the ANFIS model but is worse than the
ANN model based on R or R2 and the magnitude of error statistics. However, as shown in
Figure 9, around 42% and 27% (nearly equal to the results deduced for the ANFIS model)
of the GEP predicted values for Nst and Nlg have percent error below 10%, which are less
than the ANFIS model. In the GEP model, the RMSE and RSE values for the testing set are
lower than the ANFIS model by 22.6% and 36% for Nst, respectively, and 44.6% and 69.3%
lower for Nlg, respectively.

3.4. Comparison of Models Using External Testing Criteria

The literature recommended an RRMSE of between 0 and 0.1 for an excellent model,
and for a good model between 0.1 and 0.2. As shown in Table 3, following RRMSE, the
performance of the three proposed models for both classes can be categorized as ANN
followed by GEP and ANFIS. Gandomi and Roke [36] also classified the machine learning
models as Good, if the PI and OF are less than 0.2 (OF nearly equal to 0 denotes an ideal
model). The PI and OF values of GEP models for the Nst and Nlg fall within the prescribed
limit and show an outstanding performance. However, the PI in the training and testing
stage of the ANFIS model for Nlg are equal to 0.2990 and 0.2652. Its OF value is also equal to
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0.2700. In the ANN model for Nst, the PI in the testing stage is 0.361, which is considerably
higher than the prescribed limit. Consequently, the OF for the model is 0.2300. Thus,
the performance of the ANN and ANFIS model based on PI and OF is ambiguous and
marked as satisfactory, although the ANFIS model for short and ANN model for long CFST
columns perform well. Lewis [94] suggested that the model can be categorized as either
excellent prediction (MAPE ≤ 10%), good prediction (10% < MAPE ≤ 20%), acceptable
prediction (20% < MAPE ≤ 50%) and inaccurate prediction (50% < MAPE) [79,95]. In
accordance with the mentioned criteria of model categorization based on MAPE, the ANN
provides excellent forecasting results for Nst, while all other models including Nlg-ANN
falls in the “acceptable prediction” category.

Figure 8. Variation of mean absolute error and error histograms of bearing capacity established using
ANFIS algorithm (a,c) short CFST (b,d) long CFST columns.

The GEP suggested models for forecasting bearing capacity surpasses the other two mod-
els since this method provides simplified expressions, presented as Equations (23) and (24).
With these formulas, the overall time needed for both the Nst and Nlg tests utilizing the
corresponding GEP models is significantly quicker considering the time needed by the tra-
ditional test technique [41]. Thus, the suggested mathematical formulas provide a feasible
fast method for finding Nst and Nlg.

Furthermore, several other external testing criteria for the GEP model were suggested
in the literature and are presented in Table 4. Mollahasani, Alavi [96] stated that at least
one of the regression slopes lines (k’/k) moving through the origin must reach one. The
results of performance indicators (m and n) must not be above 0.1. The criterion of third
external testing presented in this research was given by [97], which implies an Rm > 0.5
and in this research, this is fulfilled by both GEP models. Likewise, the square correlation
coefficient amongst predicted and actual data (R0

2), and amongst experimental and actual
data (R0

′2) must be nearer to 1 [76]. It can be observed in Table 4 that the suggested GEP
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models satisfy all the necessary criteria, thus indicating the better level of accurateness of
both the models.

Figure 9. Variation of mean absolute error and error histograms of bearing capacity established using
GEP algorithm (a,c) short CFST (b,d) long CFST columns.

Table 4. Assessment of GEP model using external testing criterion suggested in the literature.

Equation Condition
GEP Model

Long Short

k = ∑n
i=1

(qi×pi)
qi

2 0.85 < k < 1.15 0.989 1.00

k′ = ∑n
i=1

(qi×pi)
pi

2 0.85 < k′ < 1.15 0.995 0.974

Rm = R2 (1−
√
|R2 − R02| 0.5 < Rm 0.847 0.877

R0
2 = 1− ∑n

i=1(pi−qi
0)

2

∑n
i=1(pi−pi

0)2
R0

2 ∼= 1 0.999 0.999

R′02 = 1− ∑n
i=1(qi−pi

0)
2

∑n
i=1(qi−qi

0)2
R′02 ∼= 1 0.979 0.958

qi
0 = k× pi

pi
0 = k× qi

3.5. Sensitivity and Parametric Study of GEP Models

Sensitivity analysis shows how an output of a proposed model is sensitive to a certain
change in its input parameters. It ranks parameters by capturing the behavior of the model
in response to the changes in a particular parameter and indicates the effectiveness of
each parameter [54,72,98]. The comparative impact of the input variables included in this
research on the short and long circular CFST columns is evaluated by executing sensitivity
analysis (SA) on the GEP models utilizing Equations (24) and (25):

Ni = fmax(yi)− fmin(yi), (25)
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SA (%) =
Ni

∑
j=1
n Nj

∗ 100. (26)

Here, fmax(yi) is the maximum Model projected output for the ith input parameter
and fmin(yi) is the minimum model projected output for the ith input parameter, while
the rest of the input parameters are kept as 1. The relative importance of input variables
on the bearing capacity of short and long circular CFST columns is graphically displayed
in Figure 10, which shows that the diameter, thickness, and length are the most sensitive
parameters in short columns with a value of relative contribution of 55.7%, 20.45% and
17.1%, respectively, while in the case of slender columns, only diameter and thickness are
sensitive parameters with a value of relative contribution of 59.8% and 33.7%, respectively.
The sensitivity analysis also reveals that the influence of strength of steel (fy), and eccen-
tricity at bottom (eb) parameters is negligible for both models with relative contribution of
0.09%, 0.03%, 0.3% for short and 0.03%, 0.3%, 0.5% for long CFST columns, respectively.
The impact of length (L) in long columns and eccentricity at the top (et) in short columns is
also less, with a relative contribution of 0.44% and 0.41%, respectively. According to [99],
the bearing capacity of CFST columns is mainly governed by the diameter and thickness of
the steel tube.

Figure 10. Relative importance of input variables on the bearing capacity of short and long circular
CFST columns.

Secondly, parametric analysis is performed to verify the efficiency of input variables
and the strength of the GEP model. This is accomplished by changing one parameter
with a particular increment while keeping all other parameters constant at their mean
values. The main characteristics of the input parameters of CFST columns are material
and geometric properties. Figure 11 indicates the prediction ability of GEP models for
simulation of Nst and Nlg with varying input variables, i.e., D, t, L, L/D, et, eb, fy, and fc. It is
well understood that D and t are important factors controlling the bearing capacity of CFST
columns. The capacity of both short and long columns follows a degree polynomial curve
with variation diameter and thickness of the tube. Similar trends were also noticed for
the compressive strength and yield strength of the steel tube. Increasing the compressive
strength of concrete will divert the failure control mode to the yield strength of the steel tube
and vice versa. The strength of the concrete inside the CFST is responsible for the stiffness
of the CFST columns [100]. Stiffness rises along with concrete compressive strength, yet
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columns fracture owing to concrete crushing and brittle behavior when filled with high
strength concrete. However, regardless of the length to diameter ratio, an increase in
concrete core strength enhances the strength of filled columns to a greater extent. Linear
decreasing pattern was observed for variation in the length or length to diameter ratio of
the steel tubes with the prescribed limits. The effect of the eccentricity at the top or bottom
face of the column also adversely affecting the capacity of CFST columns. Compared to
zero eccentricity, in the case of eccentric loading the contact stresses will not be distributed
non-uniformly, causing outward buckling [101]. Moreover, changes in the diameter and
thickness of the steel tube greatly influence the bearing capacity of CFST columns for Nlg
and Nst, as observed and stated by many researchers in the past [6].

Hence the results of the current study are similar to those found in past research
studies accumulated in the database [6]. The parametric analysis also effectively captures
the input parameters for the prediction of Nlg and Nst.
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Figure 11. Summarized parametric study for formulation of bearing capacity of short and long circular CFST columns 
using Gene expression programming (GEP) in reference to the input variables (D: diameter of tube, t: thickness of tube, L: 
length of tube, L/D: length to diameter ratio, et and eb: eccentricity at top and bottom surface, fy: yield strength of tube, fc: 
compressive strength of concrete). 
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Figure 11. Summarized parametric study for formulation of bearing capacity of short and long
circular CFST columns using Gene expression programming (GEP) in reference to the input variables
(D: diameter of tube, t: thickness of tube, L: length of tube, L/D: length to diameter ratio, et and eb:
eccentricity at top and bottom surface, fy: yield strength of tube, fc: compressive strength of concrete).

4. Conclusions

In this study, prediction models for the bearing capacity of circular CFST short (Nst)
and long columns (Nlg) were developed through ANN and ANFIS and GEP. Two databases
were extracted from the literature by collecting 702 datasets of short and 965 datapoints of
long circular CFST columns. The conclusion is drawn below.

1. The GEP model can efficiently predict Nst and Nlg with high accuracy and best
performance. Moreover, the bearing capacity prediction model from GEP is better
than the ANFIS and ANN models. The diversity of the GEP technique can be seen
from the simplified formulation, with higher accuracy and correlation among the
experimental and predicted data with the consideration of linear and non-linear data.

2. The statistical indicators used to evaluate the performance of the model were mean
absolute error (MAE), root square error (RSE), root means square error (RMSE),
correlation coefficient (R), relative root mean square error (RRMSE), performance
index (PI) and objective function (OF). The PI of the predicted Nst by GEP, ANN
and ANFIS for training are 0.0416, 0.1423, and 0.1016, respectively, and for Nlg these
values are 0.1169, 0.2990 and 0.1542, respectively. Corresponding OF values are 0.2300,
0.1200, and 0.090 for Nst, and 0.1000, 0.2700, and 0.1500 for Nlg. The superiority of the
GEP method to the other techniques can be seen from the fact that the GEP technique
provides suitable connections based on the practical experimental work and does
not undertake prior solutions. In reference to MAPE indicator, the ANN provides
excellent forecasting results for Nst, while all other models including Nlg-ANN fall in
the “acceptable prediction” category.

3. Sensitivity analysis was performed and the following input importance with increas-
ing pattern was observed for Nst: D (55.45) > T (20.45) > L (17.109) > fc (5.526) > et
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(0.41) > L/D (0.34) > eb (0.32) > fy (0.096); whereas, in the case of Nlg, it followed the
order: D (59.83) > T (33.73) > et (3.844) > fc (1.302) > L/D (0.541) > L (0.443) > eb (0.282)
> fy (0.033). Parametric analysis showed a trend similar to the findings in previous
literature. The effect of input parameters on the bearing capacity of circular short
(Nst) and long (Nlg) CFST columns was studied. Thus, it can be concluded from
this research that artificial intelligence techniques can be effectively employed to
solve various complex engineering problems, especially in structural and material
engineering. A simple, reliable, and accurate model can be developed which can
perform better on unseen data.

4. The overall comparison shows that the most reliable and accurate technique for
developing prediction models is GEP. The prediction models developed through the
GEP technique are simpler than ANN and ANFIS models. It is, therefore, suggested
that the developed GEP equations (Equations (22) and (23)) are used in routine design
for circular short (Nst) and long (Nlg) CFST columns with eccentric loading using
simple geometric and material properties. These models can replace tedious, time
consuming and costly experimental work for finding the bearing capacity of CFST
columns.

It is recommended to study tother AI techniques such as Random Forest Regression
(RFR) and Multi-Expression Programming (MEP), etc., on the same data, and the models
should be compared for accuracy, reliability, and ability to correlate the predicted data with
the experimental data.
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