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Abstract: Geopolymers, or also known as alkali-activated binders, have recently emerged as a viable
alternative to conventional binders (cement) for soil stabilization. Geopolymers employ alkaline
activation of industrial waste to create cementitious products inside treated soils, increasing the
clayey soils’ mechanical and physical qualities. This paper aims to review the utilization of fly ash and
ground granulated blast furnace slag (GGBFS)-based geopolymers for soil stabilization by enhancing
strength. Previous research only used one type of precursor: fly ash or GGBFS, but the strength value
obtained did not meet the ASTM D 4609 (<0.8 Mpa) standard required for soil-stabilizing criteria
of road construction applications. This current research focused on the combination of two types
of precursors, which are fly ash and GGBFS. The findings of an unconfined compressive strength
(UCS) test on stabilized soil samples were discussed. Finally, the paper concludes that GGBFS and
fly-ash-based geo-polymers for soil stabilization techniques can be successfully used as a binder for
soil stabilization. However, additional research is required to meet the requirement of ASTM D 4609
standard in road construction applications, particularly in subgrade layers.

Keywords: geopolymer; fly ash; GGBFS; compressive strength; soil stabilization

1. Introduction

Low-strength soil layers are frequently encountered in road construction, and they
have a significant impact on various phases of construction design [1–3]. Another issue in
civil engineering is clayey soil [4,5]. Clayey soil is a global issue, causing several difficulties
for civil engineers, building enterprises, and property owners [6–8]. Clayey soils are seen
as a potential natural hazard capable of wreaking havoc on engineering buildings [9,10].
Additionally, structures constructed on clayey soils have incurred significant damage as a
result of the clayey soil’s undesirable and unpredictable characteristics [11–13].

According to ASTM D 2487 [14], the soil is commonly considered to have clay ten-
dencies (the soil as to be classified as clay soil with high plasticity) when its liquid limit
is greater than 50% and plasticity index is higher than 17%. Clays or soft soils primarily
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belong to the fine-grained group of soils and are classified as “clays” having the ability to
change in volume when they come in contact with water [14]. Generally, the soil shrinks
as the water content decreases and expands as the water content increases, due to the fact
that the primary clay minerals have the potential to interact and absorb water [13–15]. This
results in a high liquid limit and plasticity index [9,10,13,15]. Thus, clayey soil exhibits high
swelling, shrinkage, and plasticity characteristics [14,15]. However, fine-grained soils were
considered suitable applicants for stabilization [13–15].

In order to stabilize soil, the most common or usual approach was by removing the
soft soil first [3,16–18]. More substantial materials, such as crushed rock, will replace soft
soil [4,19]. Various researchers found another method to encounter this problem since the
cost involved in replacing the materials was relatively high [18,20,21]. The mechanical
and chemical stabilization alteration of one or more soil properties has been termed as soil
stabilization [21,22]. Most researchers studied to improve the engineering properties by
increasing the compressive strength of the soil [6,8,12,16,17,23] according to the ASTM D
4609 standard [24] (>0.8 Mpa). Soil stabilization can be described as a collective term for any
physical, chemical, or combination of those approaches used to enhance certain features of
natural soil in order for it to meet the engineering requirements [3,4,9–11,15,21,24].

Mechanical stabilization involves a physical process in altering the soil’s physical
nature [25,26]. It entails compacting the soil in order to change its resistance, compressibil-
ity, permeability, and porosity [27,28]. Mechanical stabilization of a material is typically
accomplished by adding another substance, which is fly ash or GGBFS, that enhances the
grading or reduces the plasticity of the original material [28–30]. The original material’s
physical qualities will be altered, but no chemical reaction will occur [26,31]. This method
could increase the density of soil due to the elimination of maximum air. The material was
not affected due to the particle size distribution [25,30,32]. However, the redistribution
of the particles changes the structure [27,31]. Mechanical stabilization is frequently the
most cost-effective method of enhancing the quality of low-grade materials (problematic
soil) [26,27,29,33]. The stiffness and strength of the material will typically be less than those
obtained through chemical stabilization and will frequently be unsuitable for heavy traffic
pavements [33–35]. Additionally, a stabilizing agent may be required to improve the final
qualities of the blended substance [30,34].

Other than mechanical soil stabilization, chemical soil stabilization is the most popular
technique for remediation of poor ground conditions [19,36–38]. It is possible to alter the
compressive strength, swelling potential, and volume change properties of soil through
chemical stabilization processes such as mixing with ground granulated blast furnace slag
(GGBFS) and fly ash by-products, as well as mixes of any of these materials [39–43]. The
chemical substances work as compaction aids, binders, and water repellents and modify the
soil behavior [44,45]. Stabilization of soils using chemical additives displays the usefulness
of this technique, in engineering, such as road constructions and foundation substructure
development [34–36,38,46].

The manufacturing of conventional soil stabilizers such as cement and lime results
in considerable CO2 and energy emissions [47–49]. Therefore, civil engineering firms are
continuously on the search for the new soil stabilizer, a low-carbon, sustainable substance,
to be employed to replace cement as a soil stabilizer [47,50–55]. Geopolymerization is
the process of polymerizing inorganic natural materials to form geopolymers [43,56,57].
Geopolymers have recently been shown to be a viable alternative to Portland cement for
reinforcing degraded soils [52–55]. Geopolymers have outstanding engineering properties,
such as increased strength and improved soil adhesion [36,40,56]. Materials containing high
proportion of alumina (Al) and silica (Si) are required to manufacture this geopolymer ma-
terial [47,48,57]. The Si and Al minerals found in industrial by-products such as fly ash from
coal combustion and GGBFS from iron combustion are employed in geopolymer processes
for soil stabilization [57–60]. In order to produce geopolymer, the sources of alumina and
silica (fly ash and GGBFS) act as precursors that are easily dissolved in alkaline solutions
resulted from alkaline activation, making geopolymerization possible [47,49,57,58,60–68].
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In this paper, the usage of a GGBFS and fly ash Class-C-based geopolymer for soil
stabilization by means of an unconfined compressive strength (UCS) test is reviewed
and discussed.

2. Soil Stabilization by Conventional Method
2.1. Soil Stabilization Using Fly Ash

Fly ash is a material that is increasingly being used as a cement alternative in concrete
mixtures and for soil stabilization [25,27,29,36,38,40,42,54]. The addition of fly ash is one of
the methods to stabilize soil because fly ash is a pozzolan, in which it can bind to minerals
in soil and make the soil stable, so as to reduce the swell shrinkage of the soil and improve
soil strength [41,42,44,46,54,69–73]. The morphology of fly ash can be seen in Figure 1.
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2.2. Soil Stabilization Using Ground Granulated Blast Furnace Slag (GGBFS)

Ground granulated blast furnace slag (GGBFS) is a by-product the manufacture
of iron [27,35,36,40–43,47,54,64]. It is composed primarily of lime, alumina, and sili-
cate [48,54,65–67]. GGBFS material is also used as a substitute for cement in concrete
mixtures and as a material for soil stabilization [42,48,54,59,65,66]. Mixing GGBFS with soil
improves compressive strength, permeability, and durability [39,54,65–69]. The morphol-
ogy of GGBFS can be seen in Figure 2.
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2.3. Strength of Soils after Stabilization with Fly Ash and Ground Granulated Blast Furnace
Slag (GGBFS)

The strength of soil is a measure of its ability to absorb forces without collaps-
ing [6,7]. A soil’s ability to bear normal and shear pressures can be used to determine its
strength [65,71,72]. Apart from the primary reaction products generated, additional factors
may impact the rate of rising in soil strength [51,73]. The presence of soil-borne accelerating
or retarding chemical components may result in an increase in soil strength [65,66,68,74,75].
The summary of previous studies on soil stabilization application is presented in Table 1.

Research by Simatupang et al. [68] investigated the stability of soil with the addition
of fly ash. Fly ash percentages range from 5–25% by dry weight of soil. By increasing the
fly ash content in the samples and the curing time, the compressive strength value for fly
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ash increased. However, a long curing time is required to reach the optimum strength. To
shorten the curing period, adding other materials such as GGBFS may be necessary.

Another study in 2016 by Dayalan et al. [65] investigated soil stabilization with ground
granulated blast furnace slag (GGBFS). Different percentages of GGBFS 5–25% by dry
weight of soil were used to stabilize the clayey soil. Based on the strength performance
test, the optimum amount of GGBFS was determined to be 20%. Moreover, the result
indicates that the inclusion of GGBFS increases the strength of clayey soils but the acquired
properties do not meet the ASTM D 4609 soil-stabilizing criteria for road construction
applications [76].

Another study in the same year by Mandal et al. [54] investigated soil stabilization
using ground granulated blast furnace slag (GGBFS) and fly ash. Different samples were
prepared with different proportions of soil, GGBFS, and fly ash. Based on the result, the
best compressive strength values were obtained in a 10% GGBFS and 10% fly ash mixture.
This provides proof that the addition of GGBFS and fly ash can improve the clayey soil’s
mechanical properties. However, the soil strength value still does not comply the ASTM
D 4609 standard [76], which requires a value greater than 0.8 MPa. To comply with the
requirement, increasing the percentage of fly ash and GGBFS mixture proportions may
be required.

Research performed in 2019 by Neeladharan et al. [39] investigated the possibility of
stabilizing expansive soils through the use of a binder comprising of fly ash and ground
granulated blast furnace slag (GGBFS).The clayey soil was mixed with different percentages
fly ash of 5–25% and GGBFS of 2.5–10% by dry weight of soil. According to the results
of the unconfined compressive strength test, a binder percentage of 20% is recommended
as the optimal. However, the unconfined compressive strength value did not fulfill the
ASTM D 4609 standard [76], which must be greater than 0.8 MPa. To fulfill the standard,
increasing the percentage of fly ash mixture proportions and adding other ingredients such
as GGBFS may be required.

Another study in 2014 by Oormila et al. [66] investigated the potential of using GGBFS
as a stabilizer for the clay/soft soil. The soft soil was mixed with GGBFS at different
percentages (15–25% by dry weight of soil) with curing times of 7, 14, and 21 days. The
result indicates that the use of GGBFS increased the strength characteristics of the soil.
Based on compressive strength, the optimum amount of GGBFS was 20%, as it increased
the strength by about 73.79% of clayey soil. This provides proof that the GGBFS can
improve the strength of the clayey soil. However, a long curing time is required to reach
optimum strength. To reduce the curing time and increase strength, it may be essential to
combine two types of precursors (fly ash and GGBFS) and increase the percentage of fly
ash mixture proportions.

Research performed by Sharma et al. [67] investigated the possibility of utilizing
a binder composed of fly ash and powdered granulated blast furnace slag to stabilize
expansive soils (GGBFS). The expansive soil was mixed at different percentages of fly ash
70% and GGBFS 30% with curing times of 7, 14, and 28 days. Based on the strength result,
the strongest soil was achieved after 28 days of curing time, with a compressive strength
value of 0.45 MPa. However, the unconfined compressive strength value does not fulfill the
ASTM D 4609 standard [76], which must be more than 0.8 MPa. Furthermore, a long curing
time is required to reach optimum strength. To shorten the curing period and increase
compressive strength, increasing the percentage of fly ash and GGBFS mixture proportions
may be required.
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Table 1. The summary of previous studies on soil stabilization application.

No Author Testing Raw
Materials

Percentage of Blended Mix
Proportion (%) Curing Condition Finding

1. Simatupang et al. [68] • Unconfined compressive
strength (ASTM D 2166) [77] • Fly ash Fly ash:

5%, 10%, 15%, 20%, and 25%
7, 14, 28, and 56 days curing

at room temperature
• By increasing the fly ash quantity in the specimen

and curing period, the strength of fly ash increased.

2. Dayalan J et al. [65] • Unconfined compressive
strength (ASTM D 2166) [77]

• GGBFS
• Fly ash

Fly ash:
5%, 10%, 15%, 20%, and 25%

GGBFS:
5%, 10%, 15%, 20%, and 25%

1 day curing • The optimum compressive strength value for fly
ash is 15% and GGBFS is 20%, respectively.

3. Neeladharan et al. [39] • Unconfined compressive
strength (ASTM D 2166) [77]

• GGBFS
• Fly ash

Fly ash:
5%, 10%, 15%, and 20%,

GGBFS:
2.5%, 5%, 7.5%, and 10%,

1 day curing
• The strength value increases with an increase in

amount of fly ash and GGBFS, which attained
maximum value at 15% and 10%, respectively.

4. Oormila et al. [66] • Unconfined compressive
strength (ASTM D 2166) [77]

• GGBFS
• Fly ash

Fly ash:
5%, 10%, 15%, and 20%,

GGBFS:
15%,20%, and 25%,

7, 14, and 21 days curing at
room temperature

• The optimum compressive value for fly ash is 10%
and GGBFS is 20%, respectively.

5. Sharma et al. [67] • Unconfined compressive
strength (ASTM D 2166) [77]

• Fly ash
• GGBFS

Fly ash:
70%

GGBFS:
30%

7, 14, and 28 days curing at
room temperature • The optimum soil strength value is 0.45 MPa.

6. Mandal et al. [54] • Unconfined compressive
strength (ASTM D 2166) [77]

• GGBFS
• Fly ash

Fly ash:
5%, 10%, 15%, 20%, and 25%

GGBFS:
10%

1 day curing
• The maximum value was found at 10% GGBFS and

10% fly ash, which is 4.51 kg/cm2

7. Tyagi et al. [69] • Unconfined compressive
strength (ASTM D 2166) [77]

• GGBFS
• Fly ash

Fly ash:
0%, 3%, 6%, 9%, 12%, 15%, and 18%,

GGBFS:
0%, 5%, 10%, 15%,20%, 25%, and 30%

7 and 14 day curing
• The strength value increases with increases in

amount of fly ash and GGBFS, which attained
maximum value at 18% and 30%, respectively.

8. Mujtaba et al. [70] • Unconfined compressive
strength (ASTM D 2166) [77] • GGBFS GGBFS:

5%, 10%, 15%, 20%, 30%, 40%, 50%, and 55%
0, 3, 7, 14, and 28 days curing

at room temperature
• The optimum compressive strength value for

GGBFS is 30%.
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Another study by Tyagi et al. [69] investigated soil stabilization with GGBFS and fly
ash. Fly ash and GGBFS were utilized in amounts of 0%, 5%, 10%, 15%, 20%, 25%, and 30%,
respectively, by weight of the soil sample. The strength value increases as the amounts of
fly ash and GGBFS reach their maximum values of 18% and 30%, respectively. However,
the unconfined compressive strength value does not fulfill the ASTM D 4609 standard [76],
which must be greater than 0.8 MPa. To reduce the curing time and increase strength, it
may be essential to combine two types of precursors (fly ash and GGBFS) and increase the
percentage of fly ash mixture proportions.

Research performed by Mujtajab et al. [70] investigated the enhancement of expansive
soils’ engineering qualities with the addition of GGBFS. The impact of GGBFS in stabilizing
these expansive soils was examined by applying various amounts of GGBFS between
0% and 55% to these soil samples. The strength of a remolded sample after 28 days
was increased by approximately 35% with the addition of 30% GGBFS. Although, the
compressive strength of the soil fulfils the ASTM D 4609 [76] standard, it requires a long
curing time to get the optimum strength value. To reduce the curing time and increase
strength, adding other materials such as fly ash may be necessary.

Therefore, additional research is necessary to determine the possibility of employing
GGBFS and fly ash as soil stabilizers in increasing soil compression strength and shortening
the curing time in order to maximize soil power. Geopolymers have recently been shown
to be an effective replacement to Portland cement for reinforcing degraded soils; hence,
geopolymers can be pushed for their suitability for use as a concrete substitute [52–55].

3. Geopolymer

Geopolymers can usually be synthesized from many materials with high concentration
of aluminosilicates. Geopolymer precursors that are high in silica (Si) and alumina (Al)
minerals, such as fly ash and GGBFS, are highly suggested for geopolymerization in soil
stabilization applications [48,51,54,66]. All the aluminosilicate materials must be activated
by a second raw material known as alkali activator solution [56].

Geopolymerization is an integrated process for synthesizing geopolymers, which
involves leaching, diffusion, reorientation, polymerization, and condensation [56]. Three
stages of polymerization occur: (1) dissolution of oxide minerals from source materials
(typically silica and alumina) under extreme alkaline conditions; (2) orientation of dissolved
oxide minerals followed by gelation; and (3) polycondensation to form a three-dimensional
network of silico-aluminates structures [56]. Duxson et al. [56], proposed a polymerization
that process involves several steps proposed in the conceptual model. A general mechanism
of geopolymerization is shown in Figure 3.

This model assumes that geopolymerization starts with the dissolution of the source
materials by the alkali solution, which causes the breaking of the aluminosilicate bond
and releases silica and alumina, mainly in the source materials [78,79]. The aluminosilicate
chain’s negative charge is balanced by alkali cations such as potassium, sodium, or calcium.
Thus, the silica and alumina content in the source material has a significant effect that
governs geopolymer performance [73].

Furthermore, the dissolution rate increases as the solution alkalinity increases. This
rate controls the time required to reach saturation, after which a supersaturated alumi-
nosilicate solution is reached. Then, the main condensation process begins, and the alu-
minosilicate gel in the form of oligomers precipitates to produce larger and more stable
networks [56].

The first polymer (Gel 1) is formed when the solution contains a higher Si and Al
concentration. As the reaction continues, more Si enters the solution, resulting in gels
containing higher amounts of Si (Gel 2). The initial setting starts when the condensation
rate of the aluminosilicate species exceeds the dissolution rate. Finally, polycondensation
and rearrangement processes continue to produce more connected 3D networks, forming
the final geopolymer matrix [56].
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3.1. Source of Raw Materials

The most common source material to produce geopolymers is fly ash [51,72,80–85].
High-strength geopolymers generally could be obtained from Class F fly ash (low calcium
mineral) [48,54,66,86,87]. However, Class C fly ash (high calcium) has shown that it can
also be used to produce geopolymer [11,50,87–90]. The fly ash from different sources
could affect the final properties since they have different levels of reactivity under specific
geopolymer synthesis conditions [48,51,76]. The chemical content, quantity of fly ash,
and activator solution will influence fly-ash-based geopolymer properties in the fresh and
hardened state [51,72,73].

In 1957, the first method to utilize a slag-based geopolymer as a binder in building was
created [91]. Ground granulated blast furnace slag (GGBFS) is a granular glass composed
primarily of calcium oxide (CaO), silicon dioxide (SiO2), aluminium oxide (Al2O3), and
magnesium oxide (MgO) [76–79]. It is an amorphous by-product of the production of pig
iron from iron ore, coke combustion residue, and fluxes such as limestone [48,54,75]. The
existence of calcium (CaO) content in GGBFS contributed to the shortened setting time
and development of the compressive strength of the clay soil [48,54,66,73,82,83,85,88]. The
reaction between GGBFS and alkali activator solution forms a calcium–aluminate–silicate–
hydrate (C–A–S–H) gel-forming within the geopolymer matrix. These hydration products,
along with aluminosilicate structure in the GGBFS samples, contributed to significantly
gaining high strength [78].

3.2. Alkali Activator

The most common alkali solution used in geopolymerization is a mixture of sodium
silicate (Na2SiO3), and sodium hydroxide (NaOH) [48,51,72,82]. The sodium hydrox-
ide (NaOH) solution concentration has a significant effect on the physical and mechanical
properties of soil-stabilization-based geopolymer [48,51,72,75,82]. This solution contains hy-
droxide ions (OH-) and sodium ions (Na+), which initiate the reaction between the internal
silicate (Si) and aluminate (Al) components, initiating the dissolving process [48,51,75,82].
Using a mixture of both sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) as an
alkali activator will give better strength than using a sodium hydroxide (NaOH) solution
only [51,74,80,83]. The reaction of sodium silicate (Na2SiO3) to process polymerization is
crucial in dissolving Si, and the mixing ratio of sodium hydroxide (NaOH) concentration is
also crucial in producing good strength of the product from geopolymer [48,51,75,82].
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Generally, higher strength could be obtained by using higher contents of NaOH
and sodium silicate [48,75]. However, there will be an adverse effect on strength if there
was too much alkali in the composition [51,82,83]. In order to control the compressive
strength, various alkali activator compositions were usually used [48,51,72,82]. The use
of a higher molar concentration of alkali ions could accelerate the reactants in the chain
reaction [48,51,72,75,82]. Nevertheless, it might lead to the rapid loss inconsistency during
the mixing process due to the faster reaction of the polymer [51,81,82]. Then, to pro-
vide the maximum mechanical properties, there should be an optimum alkali activator
content [51,81,84].

3.3. Strength of Soil after Stabilization with Fly Ash and Ground Granulated Blast Furnace Slag
(GGBFS) Geopolymer

Numerous investigations on geopolymers have been undertaken, which are used
to make ceramics, earth bricks, mortar, and concrete. Stabilizing soil with geopolymer
binders is a relatively recent concept. The use of ground granulated blast furnace slag and
fly-ash-based geopolymers to stabilise clayey soil showed promising results. The summary
of previous studies on soil stabilization with fly ash and GGBFS-based geopolymer is
presented in Table 2.

Research by Anne et al. [72] investigated the use of fly ash in the synthesis of geopoly-
mer for soil stabilization. Fly ash was used in proportions of 15% and 25% and ratio of
alkali activator Sodium Silicate: Sodium Hydroxide:Sodium Aluminate of 50:50:0, 33:33:33,
50:20:30. According to the findings, strength increased as the amount of fly ash increased.
However, the strength value still does not comply with the ASTM D 4609 standard [76],
which requires a value greater than 0.8 MPa. Furthermore, a longer curing time is required
to reach the optimum strength. To shorten the curing period and increase compressive
strength, adding other materials such as GGBFS may be necessary.

In 2017, Abdullahet al. [51] investigated the effect of the alkaline activator/fly ash
ratio on the stability of geopolymer-stabilized soil. A variety of mix designs were made
and cured for 7 and 28 days at varied fly ash/alkaline activator ratios and Na2SiO3/NaOH
ratios. The molecular weight of the geopolymer and the proportion of geopolymer in the
soil were set to 10 molar and 8%, respectively. The maximum strength was attained with
a fly ash/alkaline activator ratio of 2.5 and a Na2SiO3/NaOH ratio of 2.0 after 28 days
of curing period. Additionally, the mixture of fly ash geopolymers contributed to filling
the large surface area of the voids between the clay particles and controlling the moisture
content of the clay. This can cause the clay to become stable and compact and increase the
compressive strength of the clay. However, the results are not in accordance with the ASTM
D 4609 [76] soil stabilization criteria for road construction applications. The strength of
the soil should be greater than 0.8 MPa [76,91]. To comply with the standard, additional
chemicals such as GGBFS may be required, as well as an increase in the percentage of fly
ash mixture proportions.

In 2018, Parhi et al. [75] investigated the stabilization of soil with the use of an alkali-
activated fly-ash-based geopolymer. The fly ash is activated using concentrations of sodium
hydroxide of 10, 12.5, and 15 molars. The various percentages of fly ash (20–40%) relative
to the expanding soil’s total solids are employed. The ratios of activator to ash (liquid to
solid mass ratio) were maintained between 1 and 2.5. The 10 molal samples have a greater
three- and seven-day strength than the 12.5 and 15 molar samples, which make them more
cost effective than the 12.5 and 15 molal samples. However, the strength results do not
adhere to the ASTM D 4609 [76] standard soil stabilization criteria for road construction
applications. To comply with the requirement, increasing the percentage of fly ash mixture
proportions and adding other ingredients such as GGBFS may be required.
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Table 2. The summary of previous studies on soil stabilization with fly ash andground granulated blast furnace slag (GGBFS)-based geopolymer.

No Author Testing Raw
Materials

Activator
Chemical

Molarity NaOH
(M)

Percentage of Blended
Mix Proportion (%) Curing Condition Finding

1. Anne et al. [72]

• Unconfined
compressive
strength (ASTM
D 2166) [77]

• Fly ash

• Sodium silicate
(Na2SiO3)

• Sodium hydroxide
(NaOH)

Na/Al:
2.05

Si/Al:
2.64

Na/Si:
0.78

Fly ash:
15% and 25%

7, 14, and 28 days of
curing at room

temperature

• Adding more fly ash increased
compressive strength.

2. Thomas et al. et al. [73]

• Unconfined
compressive
strength (ASTM
D 2166) [77]

• GGBFS

• Sodium silicate
(Na2SiO3)

• Sodium hydroxide
(NaOH)

1 M
GGBFS:

6%, 9%, 12%, 15%, 20%,
and 30%

7 and 28 days of curing
at room temperature

• The optimal dose for GGBFS is
20%.

3. Abdullah et al. [51]

• Unconfined
compressive
strength (ASTM
D 2166) [77]

• Fly ash

• Sodium silicate
(Na2SiO3)

• Sodium hydroxide
(NaOH)

10 M Fly ash:
8%

7 and 28 days of curing
at room temperature

• The optimum strength obtained
at the fly ash/alkaline activator
ratio 2.5 and Na2SiO3/NaOH
ratio 2.0 at 28 days of the curing
period.

4. Parhi et al. [75]

• Unconfined
compressive
strength (ASTM
D 2166) [77]

• Fly ash

• Sodium silicate
(Na2SiO3)

• Sodium hydroxide
(NaOH)

10 M, 12.5 M and 15 M Fly ash:
20%, 30%, and 40%

3 and 7 days of curing
at room temperature

• 10 molal samples provide greater
3 and 7 strength than 12.5 and 15
molal samples.

5. Phummiphan et al. [88]

• Unconfined
compressive
strength (ASTM
D 2166) [77]

• Fly ash
• GGBFS

• Sodium silicate
(Na2SiO3)

• Sodium hydroxide
(NaOH)

5 M

Fly ash:
30%

GGBFS:
10%, 20%, and 30%,

7, 28, and 60 days of
curing

• The optimal dosage is 20% for
GGBFS and 30% for fly ash.

6. Leong et al. [81]

• Unconfined
compressive
strength (ASTM
D 2166) [77]

• Fly ash

• Sodium silicate
(Na2SiO3)

• Sodium hydroxide
(NaOH)

8 M Ratio Fly ash/Soil:
0.3, 0.6, 0.8, and 0.9

1 day of curing at 100
◦C temperature

• The compressive strength
improves as fly ash/soil ratio
increases.

7. Shihab et al. [80]

• Unconfined
compressive
strength (ASTM
D 2166) [77]

• Fly ash

• Sodium silicate
(Na2SiO3)

• Sodium hydroxide
(NaOH)

10 M, 12M, and 14M Fly ash:
8%, 10%, 12%, and 14%

1 day of curing at 70 ◦C
temperature

• The optimum molar
concentration is 12 M.



Materials 2022, 15, 375 10 of 16

In the same year, Leong et al. [81] investigated the strength improvement of soil
stabilization with fly-ash-based geopolymer: an appraisal of soil, fly ash, alkali activators,
and water. Molarity was fixed at 8 molars and the ratios of fly ash/soil were 0.3, 0.6, 0.8,
and 0.9. According to the results, strength increases as the fly ash/soil ratio increases.
Although the compressive strength of the soil fulfils the ASTM D 4609 [76] standard, it
required a long curing time to obtain the optimum strength value. To shorten the curing
period, increasing the percentage of fly ash mixture proportions and molarity and adding
other materials such as GGBFS may be necessary.

In another study, Shihab et al. [80] investigated the influence of NaOH molar con-
centration on the mechanical strength of a soft clayey soil stabilized with a fly-ash-based
geopolymer after initial heating. The fly ash was activated with 8, 10, 12 and 14 molars.
Dosages of fly ash were selected as 8%, 10%, 12%, and 14% of dry weight of soil. Based on
the result, the optimum molar concentration is 12 M. Although the compressive strength
of the soil fulfils the ASTM D 4609 [76] standard, it requires a high molarity to obtain the
optimum compressive strength value.

Another study conducted by Thomas et al. [73] investigated the stabilization of soils
through the use of alkali-activated GGBFS. The GGBFS doses of 6%, 9%, 12%, 15%, and
20% of dry weight of soil were chosen. The optimal dosage for GGBFS can be set as 20%
based on the strength. However, the strength results do not fulfill the ASTM D 4609 [76]
standard soil stabilization criteria for road construction applications. To comply with the
requirement, increasing the molarity and adding other ingredients such as fly ash may be
required.

Another research performed by Phummiphan et al. [88] examined the use of geopoly-
mer stabilized soil, fly ash, and GGBFS blends as a pavement base material. Molarity was
fixed at 5 molars. Dosages of fly ash were selected as 30% and GGBFS of 10%, 20%, and
30%. The soil sample was prepared by mixing it with fly ash and GGBFS and curing it for
7, 28, and 60 days. Based on unconfined compressive strength (UCS) result, the optimum
dosage can be selected as 20% for GGBFS and 30% for fly ash. However, the compressive
strength value still did not comply with the ASTM D 4609 standard [76], which requires a
value greater than 0.8 MPa. Furthermore, a long curing time is required to reach optimum
strength. To shorten the curing period and increase compressive strength, increasing the
percentage of fly ash mixture proportions and molarity may be necessary. Additionally, the
existence of calcium (CaO) content in GGBFS contributed to the shortened setting time and
development of the compressive strength of the clay soil. This finding was supported by a
previous study by Aziz et al. [78] where the reaction between GGBFS and alkali activator
solution formed a calcium–aluminate–silicate–hydrate (C–A–S–H) and calcite (CaCO3)
within the geopolymer matrix. These hydration products, along with aluminosilicate
structure in the GGBFS samples, contributed significantly to high strength gain.

In addition, a few crucial factors influencing the properties of geopolymer so as to
contribute to achieving a good mix of design and formulation of geopolymer include solid-
to-liquid (S/L) ratio, sodium hydroxide molarity, and sodium silicate (Na2SiO3)/sodium
hydroxide (NaOH) ratio, which will be explained in the next section.

4. Factors Affecting the Geopolymer Properties

Commonly, in soil stabilization-based geopolymer, fly ash Class C and GGBFS are used
as the primary source material containing mostly high content in silica (Si) and alumina
(Al) that dissolve in alkali solution for geopolymerization in soil stabilization applica-
tion [51,65,72–74]. A few crucial factors influencing the properties of geopolymer so as to
contribute to achieving a good mix of design and formulation of geopolymer include solid-
to-liquid (S/L) ratio, sodium hydroxide molarity, and sodium silicate (Na2SiO3)/sodium
hydroxide (NaOH) ratio [51,74,92–94].
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4.1. Effect of Solid to Liquid Ratio on Geopolymer

The solid-to-liquid (S/L) ratio corresponds to the aluminosilicate source to activator
solution ratio [72,73,88,92,95,96]. The aluminosilicate source’s alkali activator is a blend of
solid and liquid. The liquid is extremely alkaline, and the solid contains an appropriate
amount of highly reactive silicate aluminate [40,48,50,51,57,78]. Based on a previous study
by Alonso et al. [97], it is said that the initial solid content highly influences the rate of
geopolymer formation; it was evident that a large number of precipitates was observed with
an increasing solid-to-liquid ratio. This is said to be due to high dissolved reactant species.

As the solid-to-liquid ratio rose, the geopolymers sample became less homogeneous
due to the limited amount of alkali activator [48,51,72,74,78,93,94,98]. At this solid-to-
liquid (S/L) ratio, the liquid content was negligible in comparison to the solid con-
tent [51,74]. Thus, it resulted in a soil-based geopolymer with low compressive strength.
Abdullah et al. [51] also analyzed the influence of solid-to-liquid (2.0, 2.5, and 3.0) ratio
to soil stabilization using fly-ash-based geopolymer, observing a lower extent of binder
formation, which resulted in a soil and fly-ash-based geopolymer sample with a solid-
to-liquid ratio higher than 2.5. This is due to the high degree of supersaturation of the
aluminosilicate phase, so as to produce a less connected geopolymer structure [51,74].

4.2. Effect of Sodium Hydroxide Molarity on Geopolymer

The concentration of sodium hydroxide (NaOH) solution is a critical parameter that in-
fluences the geopolymer’s properties. This solution is one of the alkali activators used in the
production of geopolymer [9,40,48,50,51,57,74,78,99]. It contains and provides hydroxide
ion (OH-) and sodium ion (Na+), mainly responsible for the dissolution of aluminosilicate
source materials and the polymerization process of geopolymer [74,78,82,83,99–101]. The
molarity of NaOH solution is reported to significantly affect the workability, geopolymer-
ization reaction, and strength development of the final product [74,87,102,103]. The obstacle
of using NaOH solution in the geopolymer synthesis is the low strength development if
the molarity used is too high or too low [71,72,74,80,92,94].

There were a few studies on the effect of NaOH molarity on the geopolymer [72,74,75,80,104].
According to Malkawi et al. [105], a strong alkali is needed due to the alkali activator’s func-
tion, which is required to partially or entirely dissolve the silica and alumina available in the
source materials as explained in details in the polymerization mechanism [74,78,101,106].
The researcher found that 10 M NaOH solution is suitable for Class F and Class C fly-ash-
based geopolymer, respectively [51,74,101,107,108].

4.3. Effect of Sodium Silicate to Sodium Hydroxide Ratio on Geopolymer

Previous research has employed the merger of sodium hydroxide and sodium sil-
icate as an alkali activator [48,51,74,83,88,106–110]. As reported by Tempest et al. [111],
the degree of reactivity of raw geopolymer material decreases when the sodium silicate
(Na2SiO3)/sodium hydroxide (NaOH) ratio is too high. This is because sodium hydroxide
solution plays an essential role in dissolving the raw materials [111]. However, higher
sodium silicate (Na2SiO3)/sodium hydroxide (NaOH) ratios are encouraged to be studied
for geopolymer systems due to commercial and marketing interest, lowering the workabil-
ity and strength of the mixture [51,74,78,102,103,109,110]. This is supported by multiple
another study, which also found that sodium silicate (Na2SiO3)/sodium hydroxide (NaOH)
ratio at 2.0 in soil stabilization using fly-ash-based geopolymer process shows the best
performance [51,74].

Much attention has been given to the utilization of stabilization materials for soil
stabilization, but only a few scholars investigated the use of geopolymer for soil stabiliza-
tion application. Instead of focusing on stabilizing soil with fly ash and GGBFS-based
geopolymer, this paper investigated the soil stabilization using fly ash and GGBFS via the
geopolymerization process, where the soil stabilization was performed by mixing the soil,
fly ash, and GGBFS directly with alkali solutions. In other words, the soil, fly ash, and
GGBFS act as the source materials for polymerization, producing soil-based geopolymers.
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5. Summary and Future Works

This paper presents the clayey soil or problematic soil that can be stabilized and
the strength improved by using a fly ash Class C and GGBFS-based geopolymerization
process. The experimental results indicate that stabilization using stabilizers chemically and
mechanically alters the majority of clayey soils, resulting in a significant increase (>0.8 Mpa)
in unconfined compressive strength (UCS). Geopolymerization process is a relatively new
approach for soil stabilization that has the potential to outperform previous treatments
(conventional method).

Additionally, this paper discusses the factor that determines the geopolymer’s proper-
ties. Two factors have been shown to have a major effect on the geopolymer’s properties:
the S/L ratio and the Ca concentration of the geopolymer. The S/L ratios vary according to
the materials utilized. The majority of assessments of fly ash Class C and GGBFS utilized
an S/L ratio between 1 and 3. Thus, analyzing prior research will aid in determining
the optimum S/L ratio to be applied in future studies. On the other hand, the calcium
concentration of a geopolymer can be connected to the materials employed. For instance,
increasing the amount of fly ash Class C and GGBFS used will improve the calcium content.

While a wealth of literature is available on using fly ash Class C and GGBFS-based
geopolymers, they nearly always refer to their use in building materials. Several researchers
reported on the use of geopolymers for soil stabilization but did not discuss their appli-
cability in road construction, particularly in the subgrade layer. Additionally, if the soil
stabilization only uses geopolymers, it does not produce CO2. Hence, it is impossible to
evaluate and discuss the CO2 emission reduction ratio of soil-based geopolymers. However,
if soil stabilization involves the use of materials such as cement, it is possible to evaluate
and discuss the CO2 emission because one ton of cement is manufactured, accounting
for approximately one ton of greenhouse gas CO2 released into the atmosphere as a re-
sult of lime decarbonization in the kiln during cement manufacture. Moreover, the swell
behavior, flexural strength, or abrasion resistance of soil stabilization-based geopolymer
using GGBFS and fly ash Class C in road construction, particularly in the subgrade layer of
the soil, have not been investigated. Thus, this article only discusses the performance of
using geopolymer technology in soil stabilization based on compressive strength in road
construction applications, especially in subgrade layers. In addition, the potential applica-
tions of GGBFS-FA geo-polymer are seen in soil stabilization operation with deep injection
techniques, slope stabilization techniques, and in situ stabilization techniques. Based on
the identified gaps, several future works are proposed in this study as listed below:

i. Previous research has demonstrated that soil stabilization based on geopolymers
using fly ash Class C and GGBFS as raw materials can increase the compressive
strength of clayey soil. Thus, it is advised that future works concentrate on using fly
ash Class C and GGBFS geopolymers as soil-stabilizing materials.

ii. The mix design of soil stabilization-based geopolymer is critical in defining the me-
chanical and physical properties of soil stabilization-based geopolymer. Thus, the
optimal solid-to-liquid ratio, sodium hydroxide to sodium silicate ratio, and sodium
hydroxide molarity must be further researched in relation to soil-stabilizing require-
ments such as unconfined compressive strength and Atterberg limits test.

iii. The effects of various curing temperature on soil-based geopolymer need to be further
investigated.
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