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Abstract: Numerical modelling and simulation can be useful tools in qualification of additive
manufactured parts for use in demanding structural applications. The use of these tools in predicting
the mechanical properties and field performance of additive manufactured parts can be of great
advantage. Modelling and simulation of non-linear material behaviour requires development and
implementation of constitutive models in finite element analysis software. This paper documents the
implementation and verification process of a microstructure-variable based model for DMLS Ti6Al4V
(ELI) in two separate ABAQUS/Explicit subroutines, VUMAT and VUHARD, available for defining
the yield surface and plastic deformation of materials. The verification process of the implemented
subroutines was conducted for single and multiple element tests with varying prescribed loading
conditions. The simulation results obtained were then compared with the analytical solutions at the
same conditions of strain rates and temperatures. This comparison showed that both developed
subroutines were accurate in predicting the flow stress of various forms of DMLS Ti6Al4V (ELI)
under different conditions of strain rates and temperatures.

Keywords: additive manufacturing; DMLS; Ti6Al4V (ELI); modelling and simulations; VUMAT;
VUHARD

1. Introduction

Additive manufacturing (AM) technologies make it possible to design and fabricate
lightweight metallic structural parts in real time. This is plausible, as components from 3D
CAD models can be printed or produced directly using an electron beam source for electron
beam melting (EBM) [1] or a laser source for selective laser melting (SLM)/direct metal
laser sintering (DMLS) [1] on a powder bed table. Structural parts with simple to complex
geometry in 3D CAD models can be fabricated via AM, since the technology offers great
flexibility in design and manufacturing. Complex components with hollows and undercuts,
such as turbine blades with internal cooling channels, are now being produced by AM [2].
Other complex components produced by this technology are patient-specific bio-implants
such as dental prostheses and orthopaedic implants [3]. Therefore, the AM-produced
components possess increased applications in the biomedical and aerospace industries.

As AM revolutionises manufacturing of functional components, much attention has
focussed not only on accumulating exhaustive knowledge on the process itself, but also
on resultant microstructures and mechanical properties of the manufactured parts. Steel,
as the most common engineering structural material, is manifestly of high interest for
AM. The grades of steel presently being produced by EBM and DMLS processes include
maraging steel (18Ni300), stainless steels (17-4 PH, 15-5 PH, 321, 347, SAE 316L), and AISI
4340 steel [4]. The number of aluminium alloys produced by AM is still limited. The
possible reason for this is that it is easy to machine aluminium, and furthermore the cost
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of aluminium parts is comparably low [5]. Therefore, the use of AM in the production of
aluminium parts is often deemed as of low commercial benefit [5,6]. Aluminium alloys are
also regarded as challenging when it comes to processing by AM. For instance, aluminium
powder has been shown to have lower absorptivity of the laser, conventionally used in
SLM/DMLS [7]. More details on challenges associated with AM of aluminium alloys can
be found in [8]. The aluminium alloys that have shown promising results in terms of
processability by SLM are generally AlSi10Mg, which has received the most attention, and
hypo-eutectic AlSi12 [7,8].

Titanium alloys parts are produced widely by the AM process. This is mainly because
of their broad industrial applications in high performance structural parts. Usually, these
parts have high machining costs and a long lead time when produced by traditional
manufacturing routes [6]. Titanium alloys are also very expensive; thus, AM offers a
unique opportunity of reducing the cost by reducing the requirements for raw materials as
well as the extent of required post-machining operations. Therefore, many business cases
in the aerospace and biomedical industry exist for AM of titanium alloys due to attendant
substantial cost benefits. The Ti6Al4V parts produced by AM have been investigated
widely by material scientists and engineers, and many components of AM are produced
for commercial purposes worldwide [9].

A fine-grained microstructure, commonly referred to as acicular (α’) martensitic
microstructure, is usually obtained for DMLS Ti6Al4V (ELI) [10,11]. This is normally
due to the thermal cycle experienced by the alloy during the building process [12]. This
thermal cycle involves rapid heating above the melting temperature by an electron or
laser beam. Rapid solidification of the molten material after the heat source has moved
on then follows. The melted and solidified layers then experience numerous rapid re-
heating and re-cooling processes when the material volume element in the top current
layer is exposed to heat [6,12]. Thus, the DMLS process leads to the formation of meta-
stable microstructures with non-equilibrium composition of resulting phases such as
the acicular (α’) martensitic microstructure in the case of Ti6Al4V (ELI). This type of
microstructure is characterised by high strength and low ductility [13]. However, improved
ductility with reduction in strength is realised for DMLS Ti6Al4V (ELI) following successive
heat treatments involving the transformation of the non-equilibrium α’-phase into an
equilibrium mixture of (α + β) phases.

Numerous studies have applied one stage and two-stage heat treatment cycles at
different temperatures on the as-built parts with the aim of optimising the mechanical
properties of AM alloys to satisfy industrial requirements [10,11,13–15]. Different heat
treatment cycles yield different mechanical properties of strength, ductility, and toughness,
based on the resulting microstructure. The most critical aspects of the microstructure
that influence the properties of alloys are the grain morphology and size, crystallographic
texture, and defects which are largely dislocations [16]. Other external factors, such as
the prevailing level of strain rate and temperature, affect the yield stress and deformation
properties of metals and alloys. All these factors must be considered in the development of
energy-efficient structural components. Conventionally, many experiments are required to
study the effect of these factors on the mechanical performance of materials. Production
and post processing of AM test samples and experimental tests to study the mechanical
properties for a wide range of external state variables are costly and time consuming.
Modelling and simulations are alternative powerful methods that can be used to this end.

Large parts of most modern industries throughout the production chain are supported
by modelling and numerical simulation [17]. A manufacturing chain simulation can be
used to compute the progressive effects of different processes along the production line. By
pursuing the material state throughout the entire production chain from the initial state
of the material, the mechanical properties of the final product can be predicted realisti-
cally [18]. The numerical modelling of the metal AM processes, resulting microstructures,
and subsequent mechanical properties can be used to support experimental studies in
the quest for achieving optimally produced parts with tailored mechanical properties.
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Numerical modelling and simulation can be useful to predict mechanical properties of
materials, such as yield stresses and flow stresses, in those circumstances where actual
experiments are too costly or even difficult to perform [18,19].

Various researchers have attempted to model and simulate the AM process and
resulting microstructures. The finite element modelling (FEM) of an AM process to optimise
the process parameters and therefore minimise residual stresses and distortion was reported
in [20]. In this research work, the FEM software ABAQUS was employed to simulate an
AM process, as it provides an interface allowing the user to define input data, such as
element and heat input, that are a function of both position and time to achieve the
process simulation of 3D parts. Marques et al. [21] used numerical analysis of the SLM
process to assess the effects of laser scanning strategies on the residual stresses generated
in the fabrication of Ti6Al4V parts. Chen et al. [22] used a 3D finite element model to
simulate thermal behaviour in the SLM process and further investigated the effects of
laser beam power and laser scanning speed on the thermal behaviour and solidification
of SLM-produced high strength tool steel. Using the cellular automation (CA) method
to describe grain growth, Zinoviev et al. [23] developed a two-dimensional numerical
model to simulate the evolution of grain structure observed during the laser additive
manufacturing process. Yang et al. [24] used a cellular automation model to simulate
microstructural solidification and solid-state phase transformation of the Ti6Al4V alloy
under various spatially variable thermal cycles of the SLM process. In their work, the
morphology and size of β-grains and martensite simulated by the model agreed well with
experimental results. Artificial neutral network (ANN) models have also been utilised
to optimise AM process parameters and predict the mechanical behaviour of 3D-printed
parts [25,26]. These types of models depend on huge amounts of experimental data
for model-training purposes, and constitutive mathematical expressions describing the
material properties are not required. This last bit makes it difficult to use ANN models to
develop numerical models for predicting the mechanical properties of AM parts.

This study focuses on developing a numerical model based on the dominant mech-
anisms of deformation of microstructures of AM Ti6Al4V (ELI), over a broad-spectrum
of temperatures and strain rates. To carry out modelling and simulation of a non-linear
analysis considering large displacements and elastoplastic material behaviour, user-defined
material models are required. This is so in the present case where in-built models in finite
element analysis (FEA) packages are inadequate. The commercial package of ABAQUS
provides user interfaces via a FORTRAN compiler linking to the main program to allow
the user to formulate and incorporate user-defined material models [27].

Therefore, the developed, calibrated, and validated microstructure- and dislocation-
based analytical constitutive model reported in the authors’ previous work in [28,29]
is implemented in this study as a user material subroutine in ABAQUS using VUMAT
and VUHARD subroutines. The VUHARD subroutine is used to describe the plastic
deformation of a material, while the VUMAT subroutine describes the complete (elastic-
plastic) behaviour of a material. Both subroutines use an explicit integration scheme
(forward Euler method), which calculates the state of the variables from the model at the
current time [27]. Implementation of the VUHARD subroutine is easy and straightforward
and requires only the constitutive model and its derivatives. Implementation of the
VUMAT subroutine, on the other hand, is involved and requires a clear understanding of
the von Mises yield criterion and the radial return algorithm method used to evaluate the
increment of state variables. A summary of the von Mises yield criterion and the radial
return algorithm used in most FEA programs is presented in Appendix A.

The codes developed in the present work for each of the two ABAQUS user subrou-
tines are presented here as Supplementary Material. The implemented subroutines were
verified using single and multiple element tests with varying prescribed loading. The sim-
ulation results obtained were then compared with the analytical solutions developed and
reported elsewhere by the author [28] and showed good accuracy for both the developed
VUMAT and VUHARD subroutines applied to high-strain-rate numerical simulations.
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2. A Microstructure and Dislocation-Based Model for DMLS Ti6Al4V (ELI)

This section presents an analytical model that uses the critical microstructural pa-
rameters of various forms of DMLS Ti6Al4V (ELI) to predict the mechanical properties
of the alloy over a wide range of strain rate and temperature. Details on formulation
of the model were presented in the authors’ previous work published in [29]. The total
flow stress of a given microstructure of DMLS Ti6Al4V (ELI) is dependent on internal and
external state variables. The internal state variables include the average grain size and
the density of dislocations, while the external state variables are field variables of strain,
strain rate, and temperature. The incorporation of mechanical threshold stress (MTS), the
Hall–Petch relationship, the Taylor strain hardening law, and viscous drag effects at a high
strain rate were used in [29] to describe the yielding and flow stress of DMLS Ti6Al4V (ELI)
microstructures and a wide range of field variables. The total flow stress developed this
way is of the following form:

σ = ( µ(T)
µ0

)σo(1− (( kbT
g0iµ(T)b3 )ln

.
εo.
ε
)1/q)1/p + ζ.(1− exp(−χ .

.
εp)) +

KH−P√
t

+αµ(T)bM( h
k2

(1− exp(−k2εp )) + ρo exp(−k2εp))
1
2

(1)

The first part of the foregoing expression accounts for the MTS where the symbol
σo is the mechanical threshold stress or the value of the thermal stress at 0 K, µ is the
shear modulus dependent on temperature T, and µo is the shear modulus at absolute
zero temperature (0 K). The symbols kb, b, goi,

.
εo, and

.
ε are the Boltzmann’s constant,

the Burgers vector, the material constant, the reference strain rate, and the testing strain
rate, respectively. The constants p and q are model fitting parameters. The second part of
Equation (1) describes the upsurge of flow stress as the plastic strain rate (

.
εp) increases

because of viscous drag effects, and the symbols ζ and χ in it are viscous drag stress
calibration parameters. The third part of this equation represents the inverse relationship
between the average thickness of α-laths, t, and the yield stress of a material, where KH−P
is the Hall–Petch constant. The fourth and last part of this equation is the integrated
Taylor hardening law which represents the accumulation of dislocations with increase in
plastic strain. In this part of the equation, the symbol α is a dimensionless parameter of
magnitude ranging from 0.2 to 0.4 for different materials. The parameter M is the Taylor
factor which relates the shear flow stress τ of a single crystal to the uniaxial flow stress σ of
a polycrystal. The constants h and k2 stand for the coefficient of dislocation accumulation
and annihilation, respectively, while ρ0 is the total initial dislocation density in a particular
material’s microstructure.

3. Materials and Methods
3.1. Materials

The calibration and validation of the flow stress model in Equation (1) were reported
in [29] and required material properties obtained from analysis of microstructures and
experimental tests. Cylindrical rods with a height of 80 mm and diameter 6 mm were
produced from Ti6Al4V (ELI) (grade 23) powder by the DMLS process using an EOS M280
machine. The chemical composition (in wt.%) of this powder as provided by the suppliers,
TLS Technik GmbH (Bitterfeld-Wolfen, Germany), is Al: 6.34, V: 3.944, Fe: 0.25, O: 0.082,
C: 0.006, N: 0.006, H: 0.00, and the balance Ti.

These rods were first stress relieved at a temperature of 650 ◦C for 3 h and then furnace
cooled to room temperature. The stress relieved rods were then subdivided into three
groups designated hereinafter as samples C, D, and E for different heat treatment processes.
The samples designated C were heat-treated at 800 ◦C for 2.5 h and then furnace-cooled
to room temperature. The samples designated D were duplex-annealed at 940 ◦C for 2 h
and then furnace-cooled, followed by heat treatment at 750 ◦C for 2 h and then finally
furnace-cooled. The samples designated E were heat treated above the β-transformation
temperature at 1020 ◦C for 2.5 h and then furnace-cooled to room temperature. The optical
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images and secondary electron images of the microstructures obtained after these different
heat treatment strategies are shown in Figure 1a–f.
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Figure 1. (a,c,e) Optical images and (b,d,f) secondary electron images of (a,b) samples C, (c,d)
samples D, and (e,f) samples E, respectively.

The detailed description of these microstructures can be found in [10,28,30]. The
average α-grain size in each of these microstructures was determined by the line intercept
method and results presented in [10]. The total initial dislocation density in these heat-
treated samples was also determined by X-ray diffraction peak broadening analysis and
the results reported in [30]. As seen in Equation (1), the average grain size and the initial
dislocation density are the two critical internal state variables in any given microstructure
of DMLS Ti6Al4V (ELI) required to describe the flow stress. These important numerical
model input parameters for different forms of DMLS Ti6Al4V (ELI) are shown in Table 1.
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Table 1. Numerical model input parameters obtained from the DMLS Ti6Al4V (ELI) microstructures.

Sample Type Average Grain Size (µm) Average Initial Dislocation Density (m−2)

C 2.5 5.73 × 1014
D 6.0 5.09 × 1014
E 9.0 7.00 × 1014

3.2. Experimental Tests

The flow stress curves of samples C, D, and E over a wide range of strain rates and
temperatures were obtained using the Kolsky bar commonly known as the split-Hopkinson
pressure bar (SHPB). The tests were conducted at strain rates of 750, 1500, and 2450 s−1

and the tests at each strain rate carried out at the three different temperatures of 25, 200,
and 500 ◦C. The results obtained in these tests were reported in [28], while the calibration
and validation of the microstructural sensitive model presented in Section 2 using flow
curves in [28] were reported in [29]. A summary of the model-calibrated fitting parameters
obtained from this analytical modelling and other physical constants used and obtained
from literature is presented in Table 2.

Table 2. The prescribed and fitting parameters of the model.

Prescribed Parameters Value and Units Fitted Parameters Values and Units

Boltzmann constant (kb ) 1.38 × 10−23 m2kgs−2 k−1 σo 1063.2 MPa
Shear modulus (µ) 49.02− 5.821/

(
e

181
T − 1

)
(GPa) g0i 0.25

Burgers vector (b) 2.95× 10−10 m h 8.3 × 1015 m−2

Reference strain rate
( .
εo) 107 s−1 k2 10

Hall–Petch constant (KH−P) 0.328 MPa·m1/2 ζ (MPa)

P 1 Samples C 207
Q 2 Samples D 210

Taylor factor (M) 3 Samples E 210

α 0.2 χ

Samples C 0.00032
Samples D 0.00030
Samples E 0.00020

4. Implementation of Subroutines
4.1. Implementation of the Microstructure-Based Constitutive Flow Stress Model as a
VUHARD Subroutine

Implementation of the VUHARD user subroutine for the microstructure-based con-
stitutive formulation of flow stress was done by first obtaining the derivatives of this
constitutive model with respect to appropriate variables. In this constitutive model, pre-
sented here as Equation (1), the total flow stress is seen to be dependent on three external
state variables (εp,

.
εp, and T), whilst the internal state variables can be obtained from the

microstructure. The temperature-dependence of the constitutive model was taken care of
by the decrease in shear modulus (µ) with an increase in temperature using the equation
for shear modulus shown in Table 2.

Therefore, in this study, implementation of the VUHARD subroutine for the constitutive
model required only two analytical derivatives of

(
D 1 = ∂σ/∂ εp

)
and

(
D 2 = ∂σ/∂

.
εp
)
,

which were then evaluated numerically to allow quadratic convergence. These derivatives
represented the change in the calculated total flow stress for the inputs of equivalent plastic
strain rate and equivalent plastic strain. The term “equivalent” is used here to denote
the scalar quantity of strain and strain rate obtained from the transformation of the strain
tensor using the von Mises criterion (presented and discussed in Appendix A), which is the
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common criterion used in ABAQUS. The partial derivative ∂σn+1/∂εn+1
p was determined

numerically from the following equation:
∂σn+1

∂εn+1
p

= αµ(T)bM
2

(
h
k2

(
1− exp

(
−k2εn+1

p

))
+ ρo exp

(
−k2εn+1

p

))−1/2
.(h exp

(
−k2εn+1

p

)
−ρok2exp

(
−k2εn+1

p

)) (2)

Similarly, the other derivative, with respect to plastic strain rate,
.
ε

n+1
p , was evaluated

from the following equation:

∂σn+1

∂
.
ε

n+1
p

(
µ(T)

µ0

)
. σokbTn+1

pq
.
ε

n+1
p Gn+1b3

1−
(

kbTn+1

g0iGn+1b3 ln

(
.
εo

.
ε

n+1
p

)) 1
q


1−p
p

.

(
kbTn+1

g0iGn+1b3 ln

(
.
εo

.
ε

n+1
p

)) 1−q
q

+αexp
(
−χ.

.
ε

n+1
p

) (3)

The VUHARD user subroutine written in this work is included in this paper as Supple-
mentary Material in S1. The coding for this subroutine was generated using FORTRAN 90
and saved in a .for file, formatted to be compatible with ABAQUS 2020. The first algorithm
for the subroutine was used to generate the user material properties described as user
material constants. A total of 17 user material constants, derived from Equation (1) and
listed in Table 3, were generated.

Table 3. The VUHARD and VUMAT subroutine and the ABAQUS material property definitions.

Variables VUHARD ABAQUS VUMAT ABAQUS

Elastic modulus - - e Props (1)
Poisson’s ratio - - xnu Props (2)

K/b3 Kb3 Props (1) Kb3 Props (3)
goi Goi Props (2) goi Props (4)
.
εo ddeqps0 Props (3) ddeqps0 Props (5)
σo Theta Props (4) theta Props (6)
p P Props (5) p Props (7)
q Q Props (6) q Props (8)
ρo e0 Props (7) e0 Props (9)
h H Props (8) h Props (10)
k2 k2 Props (9) k2 Props (11)

α × b ×M Abm Props (10) abm Props (12)
KH−p Khp Props (11) Khp Props (13)

α1 Alpha Props (12) alpha Props (14)
ζ Ala Props (13) ala Props (15)
t T Props (14) t Props (16)

U0 U0 Props (15) U0 Props (17)
D D Props (16) D Props (18)
T0 T0 Props (17) T0 Props (19)

These excluded the material density, elastic modulus, and Poisson’s ratio that were
provided separately in ABAQUS/CAE. The flow stress component that is dependent on
the average thickness of α-laths (t) was computed based on the Hall–Petch relationship
and was input into the subroutine as an average variable of α-lath thickness (a variable
that depends on the form of the alloy).

The previous and current values of equivalent plastic strain in a step were defined
as old and new solution-dependent variables (SDV1), respectively. Thus, the increment
of plastic strain was obtained as the difference between these two states. The equivalent
plastic strain rate component of Equations (1) and (3) was expressed from the increment in
equivalent plastic strain (∆εp) for a time increment size (∆t) as follows:

.
εp =

∆εp

∆t
(4)

Equations (1)–(3) were evaluated at given material points and arrays containing values
of equivalent yield stress, plastic strain, and strain rate, generated at related material points.
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4.2. Implementation of the Microstructure-Based Constitutive Flow Stress Model as a VUMAT
Subroutine

To make it easier to implement the microstructure- and dislocation-based constitutive
model as a VUMAT user material subroutine, the implementation algorithm was written
following the logic of the flow chart shown in Figure 2. Coding for this subroutine was
based on the theory of plasticity and radial return mapping presented in Appendix A.
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Similar to VUHARD, the coding for VUMAT was generated in FORTRAN 90 and
saved as a .for file for execution in ABAQUS 2020. The codes written are presented in S2 in
the Supplementary File. The second block in the algorithm was used to obtain the model
constants of the material. Both elastic and plastic properties are required in this subroutine’s
main program, which is different from VUHARD where only the plastic properties are
provided in the main program and the elastic properties are provided in ABAQUS/CAE.
Thus, the 17 material constants from Equation (1) in addition to the material’s elastic
modulus (E) and Poisson’s ratio (ν) were used for this subroutine. These material constants
are presented in Table 3. The two Lamé’s constants (µ and λ) were computed from the
elastic modulus (E) and Poisson’s ratio (ν) using the following two expressions for isotropic
hardening:

µ =
E

2(1 + ν)
and λ =

νE
(1− 2ν)(1 + ν)

(5)

The principal components of the stress tensor were first obtained at the reference time
t + ∆t = 0 from the following trace of principal strain increments:

trace(∆ε) = ∆ε11 + ∆ε22 + ∆ε33 (6)

At time (t + ∆t > 0), the VUMAT algorithm was split in three parts. In the first part,
the values of equivalent plastic strain (εn

p), equivalent plastic strain rate (
.
ε

n
p), and yield

stress σn
y (given by the constitutive model at εn

p and
.
ε

n
p and at a prescribed test temperature

(T)) at the beginning of the increments at each integration point were defined as SDV1,
SDV2, and SDV3, respectively. The values of shear modulus used in the constitutive model
to define the flow stress were computed at prescribed test temperatures before obtaining
the value of flow stress in this part.

In the second part, the theory of plasticity presented in Appendix A was used to
compute equivalent von Mises trial stresses q. The third part aimed at comparing the
values of equivalent von Mises trial stresses obtained with the values of yield stress (from
the constitutive model given by Equation (1)) obtained at the beginning of each increment
such that:

� If q < σn
y , then the state response was elastic, and the radial return algorithm that

is inherent in the subroutine to correct the plastic response was skipped. The stress
tensor and related deviatoric stress remain unchanged at any value of q. Therefore,
the last step of the algorithm to compute internal energy and dissipation of inelastic
energy was initiated. It is important to note that internal energy, abbreviated as
ALLIE in ABAQUS, is the sum of the recoverable elastic strain energy and the energy
dissipated through plastic deformation [27]. Since there was no plastic deformation,
the inelastic energy remained zero, and the internal energy only included the elastic
strain energy component.

� If q ≥ σn
y , then the stress state was outside the yield surface and was plastic. Thus, the

radial return mapping previously described in Appendix A was initiated to compute
the equivalent plastic strain and therefore return the predicted stress back to the
expanded yield surface of the material. At this stage, strain hardening was expected
since the loading was beyond the elastic limit.

The final part of this algorithm updated the SDVs and computed the new internal
energy and inelastic dissipated energy. The updated SDV1, SDV2, and SDV3 at each stage
of computation, which were now the new values of equivalent plastic strain εn+1

p , the new

equivalent plastic strain rate
.
ε

n+1
p , and the new yield stress σn+1

y , were stored and then
used in the next increment as current values. For linear isotropic materials undergoing
small strains, the strain energy is of the following form [27]:

U =
1
2 ∑3

i,j=1 σijεij (7)
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From Equation (7), the total new specific internal energy (inter.Enew) and specific
inelastic dissipation energy (inel.Enew) were expressed as

inter.Enew = inter.Eold +
1

2ρ

(
σij

old + σnew
ij

)
.∆εij (8)

inel.Enew = inel.Eold +
1

2ρ

(
σn+1

y + σn
y

)
∆ε

p
e (9)

5. Results and Discussions

The microstructure- and dislocation-based constitutive model implemented as VUHARD
and VUMAT subroutines was verified by determining the closeness of the results of simu-
lation using ABAQUS to the analytical solutions based on Equation (1). The user material
constants in this equation were those that were used to fit the equation to experimental
results for samples C, D, and E, which have been presented in Tables 1 and 2. Various
benchmark tests were used here ranging from single element tests to multiple element tests.

5.1. The Single Element Tests

The verification process adopted in the present research was to first test the material
model developed in ABAQUS using single eight-node linear brick element tests. This is
an easy and practical technique to examine the sensitivity and accuracy of an element to
external loading. Here, the single eight-node linear brick element tests were performed
using the prescribed velocity loading conditions both in compression and tension, as shown
in Figure 3a,b, respectively.
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Figure 3. (a,b) A single element model with boundary conditions and (c) the 8-node linear
brick element.

The roller support condition to restrain the surface in a direction parallel to the loading
direction was applied to the four nodes of the surface opposite to the surface onto which
load was applied. The dimensions of the cube were arbitrarily taken as (10 × 10 × 10)
mm and the cube meshed using the eight-node linear brick C3D8R element shown in
Figure 3c, with reduced integration and hourglass control settings. This type of mesh is
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simple and appropriate for the cubic element models of components with regular straight-
edged shapes.

The reduced integration elements normally have a single integration point located
at the element’s centroid rather than full integrated element types and hence give rise to
reduced computation time. However, reduced integration elements tend to be too flexible,
since they suffer from their own numerical problem called hourglassing. Hourglassing
arises where elements are unable to resist bending and hence cannot store strain energy for
bending deformation. In ABAQUS hourglass control, a small amount of artificial stiffness
is introduced in elements to limit the propagation of the hourglass phenomenon [27].

Three different prescribed instantaneous velocities of 0.1 m/s, 1 m/s, and 4 m/s were
then applied onto the cube in both compression and tension. These different velocities
were used to generate high equivalent plastic strain rates of approximately 10 s−1, 123 s−1,
and 350 s−1. A typical deformed eight-node linear brick element at 4 m/s is shown in
Figures 4 and 5. The shapes plotted in these figures are for superimposed undeformed
and deformed shapes of the element under compressive and tensile load. The values of
equivalent plastic strain are normally expressed as PEEQ (this abbreviation stands for von
Mises equivalent plastic strain in ABAQUS) in VUHARD, as shown in Figure 4a,c, while
in VUMAT, they are allocated space as the solution-dependent variable, SDV1, seen in
Figure 5a,c.
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Figure 5. A typical VUMAT deformed 8-node linear brick element at a temperature of 298 K and
velocity of 4 m/s in (a,b) compression and (c,d) tension for sample type C. The arrows show the
loading direction, while the red dots are the roller supports.

The equivalent plastic strain and equivalent von Mises stresses were obtained at the
integration/Gauss point shown in Figure 3c. Lateral expansion of the cube is realised in
the case of a compression test from the surface where load was applied to the surface under
the constraints, as shown in Figure 4a,b and Figure 5a,b. To the contrary and as expected,
the deformed tensile element is characterised by lateral reduction in the cross-sectional
area, as shown in Figure 4c,d and Figure 5c,d. The values of equivalent von Mises stress
and equivalent plastic strain shown in the keys of Figures 4 and 5 were obtained from the
field output.

With dynamic explicit integration of instantaneous imposed velocities, step times are
important since long step times could cause excessive deformation of elements. In some
instances, the opposite faces may cross over each other (in compression) causing the job to
exit with an error, whilst for very small step times, the elements may not reach the plastic
deformation state. For single element tests, the dynamic explicit integration option with
total step times (t) of 0.03 s, 0.003 s, and 0.001 s for velocities of 0.1 m/s, 1 m/s, and 4 m/s,
respectively, were found to give sufficient deformation without excessive distortion of the
element. For velocities beyond 4 m/s for this kind of numerical model, the simulation
aborted even for very small step times due to excessive deformation of the model. Figure 6
shows the change in the values of equivalent von Mises stresses, plastic strains, and plastic
strain rates for samples C with increasing simulation time in VUHARD and VUMAT
for a velocity of 4 m/s. In both subroutines, the plastic strain is initially zero (during
elastic deformation) before increasing uniformly to a maximum value, and therefore the
rate of deformation (plastic strain rate) is constant during this period, as seen in Figure 6.
Both VUMAT and VUHARD show fairly similar values of average plastic strain rate of



Materials 2022, 15, 372 13 of 32

approximately 350 s−1 in the figure. The equivalent plastic strain and flow stress curves
generated from the two subroutines also coincide for the entire and a large part of the
simulation step time, respectively.
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Figure 6. The equivalent von Mises stress, plastic strain, and strain rate against simulation time
history generated in VUMAT and VUHARD subroutines developed here for a test velocity of 4 m/s
and a temperature of 298 K.

As discussed in the authors’ previous work reported in [29], there are four critical
parameters of the constitutive model implemented in the subroutines in this research that
influence the shape of the flow stress curve, namely h, k2, ρo, and T. The sensitivity of these
critical parameters in the numerical models for samples C developed here was investigated
at a velocity of 4 m/s, and the results were compared with those of the analytical solutions
at the same conditions for both cases. These results are presented in Figures 7 and 8.

As seen in these figures, the results from the numerical models derived in VUMAT
and VUHARD, and those from the analytical solutions developed here, coincide for a large
part of the flow curves. The opposing effect of parameters h and k2 is well articulated in the
numerical model where the flow stress increases with decreasing values of the parameter k2,
whereas it increases with increasing values of the parameter h, as seen in Figure 7. Similar
observations were reported in [29]. Figure 8 shows the effects of initial dislocation density
and temperature on the numerical solutions obtained from the VUMAT and VUHARD
subroutines developed here and the analytical solutions, all at the same strain rate of 350
s−1. It is clear from Figure 8a that for very high initial dislocation densities, the flow stress
curve is characterised by high initial peak stresses followed by a decrease in flow stress.
For very low initial dislocation densities, the peak stresses are lower, and the material
experiences strain hardening. Similar observations were noted in [29], and the theory
behind this phenomenon was presented.

The effects of simulation temperatures on the flow stress curve are very conspicuous in
Figure 8b, where the values of flow stress are seen to decrease with increase in temperature.
This is also consistent with observations made in [29]. The preceding discussion and the
observations made from Figures 8 and 9 show good sensitivity of the numerical models
developed here in VUMAT and VUHARD subroutines to the critical parameters that dictate
the shape of the flow stress curve in the DMLS Ti6Al4V (ELI) alloy. The close coincidence
of the curves for the numerical models with those for the analytical models is also noted.
This creates confidence in the use of these models in the simulation of flow stresses for
sample types C, D, and E at various imposed velocities.
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Figure 7. The effects of model parameters (a) k2 and (b) h on the numerical solutions derived from
VUMAT and VUHARD subroutines and compared with the analytical solution at the same conditions
of 350 s−1 and 298 K.

The values obtained from numerical simulation here were plotted and compared
with those obtained from the analytical solutions based on Equation (1) at the same test
conditions. The collective results for samples of type C, D, and E eight-node linear brick
elements are shown in Figures 9–11.
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Figure 8. The effects of (a) initial dislocation density (ρo) and (b) temperature on the numerical
solutions derived from VUMAT and VUHARD subroutines, compared with the analytical solutions
at the same average strain rate of 350 s−1.

As seen in these three figures, the scaling down and upturn of flow stress at high
temperature and with an increase in strain rate, respectively, is well articulated. For the
two cases of strain rate and temperature, the results from the numerical models based on
the VUMAT and VUHARD subroutines and those derived from the analytical solution
developed here are nearly overlapping over most of the equivalent plastic strain range.
This confirms that the two subroutines work well in the loading conditions applied.
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Figure 9. Comparison between the analytical and numerical solutions in VUMAT and VUHARD at
three different test velocities and temperatures of (a,c) 298 K and (b,d) 773 K for an 8-node linear
brick element in (a,b) compression and (c,d) tension for samples C.

Both the compression and tensile test simulations showed the same values of flow
stress at all strain rates and temperatures, which is anticipated considering the criterion
for isotropic yielding used to develop and implement the constitutive models. Even
though this was the case, for the same simulation time, there was a significant difference in
the maximum equivalent plastic strains attained in the two load conditions, with values
of about 0.35 in compression and about 0.25 in tension. The elastic moduli in tension
and compression for metals and alloys are normally taken to be the same. Additionally,
failure due to the formation of adiabatic shear bands (ASBs) occurs in both high-strain-rate
compression and tension. Failure due to monotonic tensile stress occurs first through the
formation of pores and cracks and their horizontal spread in the initial brittle fracture
and, thereafter, necking before final tearing along the ASBs. Compressive stresses, on the
other hand, cause materials to reduce in length and increase in cross section, and failure in
most cases is because of the initiation of ASBs. These distinct deformation mechanisms
in compression and tension suggest different values of plastic strain for the same applied
load, as seen in Figures 9 and 11.
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Figure 10. Comparison between the analytical and numerical solutions in VUMAT and VUHARD
at three different test velocities and temperatures of (a,c) 298 K and (b,d) 773 K for an 8-node linear
brick element in (a,b) compression and (c,d) tension for samples D.

The necking failure mechanism in tension can be studied better using multiple ele-
ments, since multiple element models consist of several integration points, and therefore
results from various sections of the model can be obtained. A specific geometry of the
model can also be used to allow early necking.

5.2. Multiple Elements Tests

The necking of a circular bar test is an example commonly used in finite element anal-
ysis to investigate the necking and softening of a tensile bar [31]. The test was used in the
present research to investigate the performance of the VUHARD and VUMAT subroutines
developed here under the conditions of necking in tensile loading. The numerical model
used was that of the asymmetrical cylinder shown in Figure 12a, with large and small
diameters (on the fixed end and at the surface of application of load) of 10 mm and 8 mm,
respectively, and a height of 10 mm. The roller boundary condition with y-axis rotational
symmetry was applied on the side of the model with a large diameter to constrain the
displacement only in the y-direction and to allow rotation only about the y-axis. Tensile
loading of the cylinder was realised through imposed instantaneous velocities of 0.1 m/s,
1 m/s, and 4 m/s along the y-axis (the axial direction of the cylinder), shown in Figure 12b,
each at a time.
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brick element in (a,b) compression and (c,d) tension for samples E.
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Figure 12. (a) A three-dimensional (3D) numerical model for the necking of a circular bar with
(b) imposed loading and boundary conditions, (c) 2 mm mesh size (475 elements), (d) 1 mm mesh size
(3550 elements), (e) 0.5 mm mesh size (28320 elements), and (f) 0.25 mm mesh size (126038 elements).
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These four different sizes of meshes yielded 475, 3550, 28,320, and 126,038 linear
hexahedral elements of C3D8R type, in order from the largest mesh size to the smallest.
Figures 13–16 show the distribution of equivalent von Mises stresses and plastic strains
obtained using the VUHARD and VUMAT subroutines developed here, for the four
different mesh sizes.
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Figure 13. Numerical estimation of (a,c) equivalent plastic strain and (b,d) equivalent von Mises
stress distribution in (a,b) VUHARD and (c,d) VUMAT subroutines developed here, using 2 mm
mesh size, at a test velocity of 4 m/s and temperature of 298 K.
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Figure 14. Numerical estimation of (a,c) equivalent plastic strain and (b,d) equivalent von Mises
stress distribution in (a,b) VUHARD and (c,d) VUMAT subroutines developed here, using 1 mm
mesh size, at a test velocity of 4 m/s and temperature of 298 K.
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Figure 15. Numerical estimation of (a,c) equivalent plastic strain and (b,d) equivalent von Mises
stress distribution in (a,b) VUHARD and (c,d) VUMAT subroutines developed here, using 0.5 mm
mesh size, at a test velocity of 4 m/s and temperature of 298 K.
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A summary of computation times for simulation of the necking bar in this set of
simulations is shown in Table 4. The VUMAT subroutine is seen in this table to have
more computation time and increments in comparison to VUHARD. The difference in
computation time and increments between these two subroutines is possibly due to that
fact that they use different integration schemes (discussed later in this section) to update
the state variables that could influence the stable time increment. The computation time
is also seen to increase with mesh density. For all four sizes of mesh, the VUHARD and
VUMAT subroutines display similar distributions of equivalent plastic strain (εp) and von
Mises stress (σp).

Table 4. Computation time and number of increments for different mesh densities.

Subroutine VUHARD VUMAT

Mesh Size (mm) Time (s) Increments Time (s) Increments

2 6.3 92 9.2 96
1 59.3 200 63.2 219

0.5 177.2 447 396.6 629
0.25 1676 900 1876 1037

From the legends in (a) and (c) of Figure 13 to Figure 16, all four numerical models are
seen to experience plastic deformation. The maximum values of equivalent plastic strain
and equivalent von Mises stress are located at the tip labelled y2 and decline gradually
towards y1 where they are minimum, as seen in the contours in these figures.

It should be noted that the shape of the undeformed model shown in Figure 12 is
that of a truncated cone with the cross-section areas that decrease linearly towards the top
surface. Thus, for a given load that is applied at the top surface of the model, the values of
equivalent von Mises stress and strain will decline as the cross section increases towards
the bottom surface of the original cone.

To better understand the distribution of these two variables for different mesh den-
sities, their values were obtained from elements along the surface from y1 to y2 at the
end of each simulation. These values were then plotted against the normalised length
of the deformed model. The resulting curves for different mesh densities are shown in
Figure 17, while the results of mesh convergence studies on various sections of the model
are presented in Figure 18.
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lengths of 0.2, 0.7, and 1 and (b) von Mises stress at normalised lengths of the models of 0.03, 0.3, and
0.7 for the VUMAT and VUHARD subroutines.

Both the equivalent plastic strains (εp) and von Mises stresses (σp) show distinct
profiles for the three different mesh densities of the model in Figure 17a,b. The εp profiles
exhibit three typical zones, as shown in Figure 17a, which differ in range for different
mesh sizes. The first zone shows a slow increase in εp at increasing rates and its ranges
from normalised lengths of 0–0.26, 0–0.47, 0–0.60, and 0–0.60 for models with 2 mm, 1 mm,
0.5 mm, and 0.25 mm mesh sizes, respectively. The slow increase of equivalent strain in
this zone is attributed to the large cross-section areas of the model and, therefore, low
equivalent von Mises stress acting on elements in the region. The second zone shows
a higher increase in εp with points of inflexion. It ranges from normalised lengths of
0.26 –0.63, 0.47–0.70, 0.60–0.73, and 0.60–0.73 in order of decreasing mesh size. This is the
zone that precedes necking. A rapid decrease in the cross-sectional area around this zone
resulted in a rapid increase in equivalent von Mises stress and strain. This stage forms the
shoulder of the “neck”. The third zone is the necking section of the model and shows an
increase in εp at constant rates, and it ranges from normalised lengths of 0.47–1, 0.70–1,
0.73–1, and 0.73–1 in order of increasing mesh density.

The mesh convergence analysis shown in Figure 18a for the values of equivalent
plastic strain obtained at various sections of the model gives rise to several observations.
There is convergence of the values of equivalent plastic strain as the mesh density increases
in the second and third zones. Lower and higher values of equivalent plastic strain from
the VUHARD subroutine in the second and third zones, respectively, are also noted. There
is insignificant variation of equivalent plastic strain as the mesh density increases in the
first zone, and the results from the VUHARD and VUMAT subroutines are perfectly
superimposed in this zone.

From Figure 17b, the influence of mesh density on the distribution of equivalent von
Mises stresses is seen to be significant between the normalised lengths of 0 and 0.14. The
values of equivalent von Mises stresses are seen to increase with increasing mesh size in this
range for both the results obtained using the VUMAT and VUHARD subroutines. However,
with 0.5 mm and 0.25 mm mesh sizes, the results from the two subroutines overlap. In
the zone between normalised lengths of 0.14 and 0.57, there is a small spread of results
obtained for different mesh densities. The variation between the values of equivalent von
Mises stresses obtained with coarse and refined mesh models in this region is less than
0.1% of the former. Similar to the preceding zone, the 0.5 mm and 0.25 mm mesh sizes in
this zone give results that are indistinguishable. The results obtained in the final zone for
normalised lengths of 0.57 to 1 are seen in Figure 17b to be superimposed on top of one
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another. It is important to note here that for large values of equivalent plastic strain, the
flow stress given by the constitutive model developed in this study saturates (no strain
hardening), which elucidates the convergence of all these curves in the final zone. This is
clearly shown in Figure 18b at a normalised length of the model of 0.7.

The values of equivalent von Mises stresses obtained from the VUHARD subroutine
are higher and lower than those from the VUMAT subroutine in the first and second zones
at lower mesh densities, respectively. The reverse is true for higher mesh densities, with
cross-over points at mesh densities of about 0.85 and 1.2 for the two zones, respectively,
while in the last zone, the results from the two subroutines are indistinguishable. Although
the results from these two subroutines are very close to one another, the small differences
seen in the preceding two figures could be a result of the different integration schemes
employed by these two subroutines. The VUHARD subroutine uses an explicit central
difference time integration rule built into ABAQUS to generate plastic strain at Gauss
points [32], while the VUMAT subroutine uses the radial return method, which belongs to
backward or forward integration algorithm methods, in which equivalent plastic strains
are evaluated at Gauss points. The difference in their time integration schemes suggests
variations in the results obtained due to inherent integration errors associated with each
integration scheme. It is important to note that the Euler and central difference methods of
solving differential equations are more accurate if the step time is small. The error in the
forward and backward integration algorithms is proportional to the size of the time step,
while for the central difference method, the error is equal to the square of the size of the
time step. Thus, for small time steps (<1 s), the central difference time integration scheme
is more accurate than the forward and backward integration methods.

The plots of equivalent plastic strains against equivalent von Mises stresses obtained
from the two subroutines are shown in Figure 19 for four different mesh sizes. As seen in
this figure, the curves are nearly overlapping for the better part of the flow stress curves.
The significant effects of mesh size are revealed at the initial values of equivalent plastic
strain (circled in Figure 19), with the 2 mm mesh size giving a much higher value of about
0.083 equivalent plastic strain in comparison to the 0.25 mesh size, which has a value of
about 0.02. However, the curves for 0.25 mm and 0.5 mm mesh sizes are indistinguishable at
all values of strain, which is consistent with the observations made from Figures 17 and 18.
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Figure 19. The numerical equivalent von Mises stresses against equivalent plastic strains at a
temperature of 298 K and imposed velocity of 4 m/s for different mesh densities obtained from the
VUMAT and VUHARD subroutines developed here.
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It is not surprising to see the flow stress saturating at the equivalent plastic strain of
0.4 and onward for the VUMAT and VUHARD subroutines, since the implemented model
was not developed to take care of unloading conditions or even evolution of damage.
During the initial stage of plastic deformation, materials experience work-hardening
where flow stress increases with increasing strain. Work-hardening normally occurs due
to generation and accumulation of dislocations with increasing plastic strain. However, as
previously reported in the authors’ previous work in [28], materials loaded at a high strain
rate experience “thermal softening”. Thermal softening causes dynamic recovery where
dislocations begin to annihilate. If the rate of annihilation of dislocations equals the rate of
generation of dislocations by strain hardening, then the flow stress saturates. However, if
the rate of annihilation of dislocations exceeds the rate at which dislocations are generated,
materials experience decreasing flow stress with increasing plastic strain, a phenomenon
commonly referred to as “strain softening”. The threshold value of the accumulation
of dislocations for the three forms of DMLS Ti6Al4V (ELI) samples was calibrated as
8.3 × 1015 m−2 in [29]. The formation of ASBs is the precursor to material failure due
to the formation and growth of microvoids and cracks along them [28]. The failure
processes at high strain rates that lead to instabilities can be reflected in the numerical
models through extension of the analytical model to predict the evolution of such damage.
However, this was not within the scope of the present research, and future research is
expected to focus on integrating the evolution of damage into the constitutive numerical
model developed here.

The foregoing graphs and related discussions suggest that mesh density does influence
the strain and stress distribution in a numerical model. However, this does not appear to
significantly affect the VUMAT and VUHARD subroutines differently. This is evident from
the fact that for the four different mesh densities used here, the VUMAT and VUHARD
subroutines’ equivalent von Mises stress–strain curves are nearly superimposed on top of
one another for most of the flow stress curves. Furthermore, the flow stress curves and the
distribution of equivalent strain and von Mises stress given by the models with 0.25 mm
and 0.5 mm mesh sizes are indistinguishable. The values of equivalent plastic strain and
von Mises stress at various sections of the model were also noted to correspond for these
two mesh sizes. Given that more computation resources (space and time) are required
as mesh density increases, the mesh of size of 0.5 mm was selected for simulation of the
necking of a cylindrical numerical model at different strain rates and temperatures of 298 K
and 773 K.

The results obtained from the last elements near the point y2 (shown in Figure 16) were
compared with the analytical solutions obtained from Equation (1) at different strain rates.
The flow stress curves obtained from numerical simulation and the analytical constitutive
model for sample types C, D, and E, in this case, are summarized in Figure 20.

Similar to the result from the single element test reported earlier on, the curves for
the analytical solution and those from the VUMAT and VUHARD subroutines are nearly
superimposed on top of one another at temperatures of 298 K and 773 K and respective
strain rates, as seen in Figure 20. That the curves in this figure are nearly overlapping
indicates that both subroutines are accurate in modelling a multiple element cylinder.

The foregoing discussion suggests that both subroutines implemented in this study
can reliably be used to simulate the mechanical properties of various microstructures of
additively manufactured Ti6Al4V parts. However, it has also been noted that the VUMAT
subroutine is slower and requires more computational resources compared to the VUHARD
subroutine. This is a clear indication that the different integration schemes employed by
these subroutines influence the stable time increment.
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6. Conclusions

The implementation and verification processes of the VUMAT and VUHARD subrou-
tines for numerical simulations of plastic deformation of various forms of DMLS Ti6Al4V
(ELI) were presented and discussed in this article. The following conclusions are deduced
from the research:

• Using single element numerical models and at a test velocity of 4 m/s, both VUMAT
and VUHARD subroutines showed fairly similar values of average plastic strain rate
of approximately 350 s−1.

• The equivalent plastic strain and von Mises stress generated from the two subrou-
tines for the single element numerical model also coincide for a large part of the
simulation time.

• The single element numerical models developed in this study and simulated using
the developed VUMAT and VUHARD subroutines were shown to be sensitive to the
critical model parameters of initial dislocation density (ρo), test temperature (T), and
strain hardening and the dynamic recovery parameters h and k2, respectively.

• The results of simulation of samples C, D, and E using single element numerical
models based on the VUMAT and VUHARD subroutines and those derived from the
analytical solutions at the same conditions of strain rate and temperature were nearly
overlapping over most of plastic strain range.

• For the same simulation time, the single element numerical models showed a signif-
icant difference in the maximum equivalent plastic strain attained in the two load
conditions of compression and tension, with values of about 0.35 in compression and
about 0.25 in tension.

• For multiple element models with different mesh sizes, both the VUMAT and VUHARD
subroutines displayed similar distributions of equivalent plastic strain and von
Mises stress.

• The equivalent plastic strain and von Mises stress profiles for multiple element nu-
merical models exhibited three typical zones which varied in range for different
mesh sizes.

• The values of equivalent von Mises stress obtained in VUHARD and VUMAT subrou-
tines varied in the first and second zones for different mesh sizes. The small variations
seen in these results were attributed to the different integration schemes employed by
these subroutines.

• The results obtained from both subroutines for the models with 0.25 mm and 0.5 mm
mesh sizes were indistinguishable.

• Comparisons between the results obtained for the multiple element numerical mod-
elling of samples C, D, and E and the curves obtained from analytical solutions at the
same conditions of temperature and strain rate were nearly superimposed.

It is recommended that future research aims at carrying out complex dynamic simula-
tions of experimental tests, such as split-Hopkinson bar pressure tests, the Taylor impact
test, and blast loading of plates using the developed VUMAT and VUHARD subroutines.
The microstructure-sensitive model implemented as a material subroutine in this study
should be extended to include some form of failure criterion or damage model.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma15010372/s1, S1: The developed code for VUHARD subroutine, S2: The developed code
for VUMAT subroutine.
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Appendix A. The von Mises Yield Criterion (J2) and Radial Return Algorithm

Appendix A.1. J2 Plasticity

A stress tensor (σij) consisting of nine components is used in continuum mechanics
to define the state of stress at a point/element inside a material under application of
load [33,34]. The mean stress (σm), which is also known as hydrostatic or equivalent stress,
is expressed as

σm =
1
3
(
σxx + σyy + σzz

)
(A1)

where σxx, σyy, and σzz are principal stresses. The deviatoric stress tensor (Sij) is given by
the difference between the stress tensor (σij) and the hydrostatic stress (σmδij) expressed as

Sij = σij − σmδij (A2)

In a similar manner to the deviatoric stress tensor, the deviatoric strain tensor (eij) is
given by the difference between the strain tensor (εij) and the mean strain (εmδij):

eij = εij −
1
3

εkkδij = εij − εmδij (A3)

where εm = 1
3
(
εxx + εyy + εxx

)
is the mean strain, and εkk is the volumetric strain or

dilatation. The elastic stress tensor for homogenous and isotropic materials is defined
by two Lamé constants which are material dependent quantities denoted by the symbols
λ (lambda) and µ (shear modulus) that arise in stress–strain relationships [35]. Using these
two Lamé constants, the stress tensor can be expressed as

σij = 2µεij + λεkkδij (A4)

The rate of deformation can be described as the sum of the elastic (
.
ε

e
ij) and plastic (

.
ε

p
ij)

strain rate components given as
.
εij =

.
ε

e
ij +

.
ε

p
ij (A5)

Any plasticity numerical model must distinguish between the elastic and plastic
responses. Therefore, some formulations are required to define the (a) yield surface, where
yielding occurs; (b) flow rule, which defines the direction of the plastic deformation; and (c)
hardening law, which describes the variation of flow with plastic deformation [27]. Thus,
the yield surface is defined by a function of the form

f
(

σij,
.
ε

p
ij, T, kn

)
= 0 (A6)

The yield surface is thus a function of the stress tensor (σij), plastic strain state (
.
ε

p
ij),

temperature (T), and hardening parameter kn. The stage for which f ≤ 0 indicates that the
material is within the elastic region. On the other hand, the condition f > 0 exists in the case
of rate-dependent plasticity, resulting in stress states that lie beyond the yield surface [27,36].
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For the isotropic von Mises yield criterion, the yield surface can be expressed in terms of
the second deviatoric stress invariant J2, and thus the yield function can be written as

f ( J2) = 0 (A7)

From the von Mises failure criterion (distortion energy theory) [34,35] and the second
deviatoric stress invariant J2, Equation (A7) can be written as

σy −
√

3J2 = 0 or σy −
√

3
2

SijSji = 0 (A8)

where σy is the yield stress or the value of stress of the last increment. This scalar quantity
of stress obtained from the deviatoric stress is commonly referred to as the von Mises
equivalent stress, q, computed in most finite element analysis packages such as ABAQUS
viz [27]:

q =
√

3/2
(
SijSji

)
(A9)

Likewise, the scalar quantity of strain from the deviatoric strain, commonly referred
to as equivalent strain, is expressed as [27]

εeq =
√

2/3
(
eijeij

)
(A10)

When σy −
√

q > 0, the state of the material is no longer elastic, and therefore a plastic
correction must be performed. In other words, the equivalent increment in inelastic strain
must be calculated to return the isotropic stress state to a von Mises yield surface. The
radial return mapping algorithm introduced by Wilkins [37] is the common method that
uses the von Mises yield surface to define the increment of plastic strain necessary to return
the stress state to the yield surface after an increment of trial stress (St

ij).

Appendix A.2. The Radial Return Algorithms

It is a very rare situation for most materials to behave perfectly plastic, the state
of which makes the yield surface expand during plastic deformation. In radial return
mapping, the stress is updated with an assumption that the response is elastic, and if it is
beyond the yield surface, the stress is projected onto the closest point on the yield surface.
In elastoplastic deformation, the total change in strain (∆ε) can be expressed as the sum of
the elastic (∆εe) and plastic strain (∆εp) changes:

∆ε = ∆εe + ∆εp (A11)

If the change in strain tensor (∆εij) has been derived for the Gauss integration point
from the current iteration, then the trial stress St

ij can be obtained as

St
ij = S(1)

ij + 2µ∆εij (A12)

where S(1)
ij is the old trial stress obtained from previous iteration, and µ is the shear modulus

of the material. The actual stress due to plastic deformation, obtained at the end of the
increment, is not the trial stress but rather the one returned to the yield surface, as seen in
Figure A1.
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From Figure A1, the actual deviatoric stress can be expressed as

S(2)
ij = S(1)

ij + 2µ∆εe
ij = S(1)

ij + 2µ
(

∆εkl − ∆ε
p
kl

)
= St

ij − 2µ∆ε
p
kl (A13)

The correction, also referred to as return stress (Sr
ij), is expressed as

Sr
ij = 2µ∆ε

p
kl (A14)

The return stress (Sr
ij) leads to the name “radial return” method. The implicit integra-

tion scheme [34] is presented in Appendix B.

Appendix B. The Implicit Integration Scheme to Compute for Equivalent
Plastic Strain

The deviatoric stress during plastic deformation can be expressed as [27]

S(2)
ij = S(1)

ij + 2µ∆εe
ij = S(1)

ij + 2µ
(

∆εkl − ∆ε
p
kl

)
= St

ij − 2µ∆ε
p
kl (A15)

where S(2)
ij and S(1)

ij are the new and old deviatoric stress; ∆εe
ij, ∆εkl , and ∆ε

p
kl are the

increment in deviatoric elastic strain, equivalent strain, and equivalent plastic strain,
respectively; St

ij is the trial stress; and µ is the shear modulus. The return stress from
Equation (A15) is

Sr
ij = 2µ∆ε

p
kl (A16)

To evaluate the value of the return stress Sr
ij, and therefore the deviatoric stress S(2)

ij ,

the increment of the plastic component ∆ε
p
kl , and therefore the increment in the equivalent

plastic strain ∆ε
p
e , must be determined. Thus,

∆ε
p
kl =

(
∂ f

∂σkl

)
∂εp =

3
2

S(2)
ij

q(2)
∆ε

p
e (A17)
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where ∂εp is the equivalent plastic strain increment, and q(2) is the new equivalent von
Mises stress. Equations (A15) and (A17) can be combined into

S(2)
ij = St

ij − 2µ
3
2

S(2)
ij

q(2)
∆ε

p
e = St

ij − 3µ
S(2)

ij

q(2)
∆ε

p
e (A18)

Thus, the new deviatoric stress is given by

S(2)
ij =

St
ij

1 + 3µ ∂εp

q(2)
(A19)

The new equivalent von Mises stress can be obtained from Equation (A19), thus
making Equation (A8) of the appendix

q(2) =

√
3
2

S2
ijS

2
ij =

√
3
2 St

ijS
t
ij

1 + 3µ ∆ε
p
e

q(2)

=
σt

e

1 + 3µ ∆ε
p
e

q(2)

(A20)

Since, at the yielding surface, q(2) = σ
(2)
y (where σ

(2)
y is the new stress computed from

the constitutive equation),

σ
(2)
y = σt

e − 3µ∆ε
p
e or σt

e − 3µ∆ε
p
e − σ

(2)
y = 0 (A21)

Equation (A21) is a non-linear yield function, and the increment of plastic strain ∂εp

between states 1 (old state) and 2 (new state) must be computed. The iteration methods
of finding solutions of non-linear functions can be used to do this. Alternatively, a non-
iteration method can be used to solve for ∂εp [27] if the plastic flow stress occurring between
the old and new state can be considered. The flow stress at the new state can be expressed
explicitly using the flow stress at the old state as

σ
(2)
y = σ

(1)
y + H∆ε

p
e (A22)

where H denotes the rate of change in flow stress with plastic strain. Equations (A21) and
(A22) can be combined to solve for ∂εp, the new deviatoric stress, and the stress tensor as

∆ε
p
e =

σt
e − σ

(1)
y

3µ + H
(A23)

f actor =
σ
(2)
y

σt
e

=
σ
(2)
y(

σ
(2)
y + 3µ∆ε

p
e

) (A24)

Snew
ij = f actor x St

ij (A25)

σnew
ij = Snew

ij + σm (A26)

Once the increase in equivalent plastic strain is computed, the proportionality factor(
σ
(1)
y /σt

e

)
is calculated using Equation (A24), and the trial deviatoric stresses are scaled

back to the yield surface using Equation (A25). The new stress tensor is then updated by
adding the scaled trial deviatoric stresses to the hydrostatic stress in Equation (A26).
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