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Abstract: The microstructure, revealed by X-ray diffraction and transmission Mössbauer spectroscopy,
magnetization versus temperature, external magnetizing field induction and mechanical hardness of
the as-quenched Fe75Zr4Ti3Cu1B17 amorphous alloy with two refractory metals (Zr, Ti) have been
measured. The X-ray diffraction is consistent with the Mössbauer spectra and is characteristic of
a single-phase amorphous ferromagnet. The Curie point of the alloy is about 455 K, and the peak
value of the isothermal magnetic entropy change, derived from the magnetization versus external
magnetizing field induction curves, equals 1.7 J·kg−1·K−1. The refrigerant capacity of this alloy
exhibits the linear dependence on the maximum magnetizing induction (Bm) and reaches a value
of 110 J·kg−1 at Bm = 2 T. The average value of the instrumental hardness (HVIT) is about 14.5 GPa
and is superior to other crystalline Fe-based metallic materials measured under the same conditions.
HVIT does not change drastically, and the only statistically acceptable changes are visibly proving the
single-phase character of the material.

Keywords: amorphous metallic alloys; X-ray diffraction; Mössbauer spectroscopy; magnetization;
isothermal magnetic entropy change; refrigerant capacity; mechanical hardness

1. Introduction

When searching for magnetic materials, finding the most suitable one for solid refrig-
erant applications has posed a great challenge in the last two decades [1–3]. Contrary to
classical refrigeration, which is based on the compression and expansion of gases, magnetic
refrigeration is more environmentally friendly and more energetically efficient. It is a direct
application of the magnetocaloric effect, i.e., the temperature change (∆Tad) during the
adiabatic magnetization or demagnetization of a refrigerant material. ∆Tad is related to the
isothermal magnetic entropy change during the isothermal magnetization process (∆SM),
especially in magnetic materials exhibiting the second-order ferromagnetic–paramagnetic
phase transition [1,3]. Thus, the magnetocaloric response of ferromagnetic materials can
be measured directly (∆Tad) or indirectly (∆SM). The maximum ∆SM exists near the Curie
point (TC) of the material. Therefore, looking for materials with a Curie temperature close
to the room one is important for the application of these materials in commonly used refrig-
erant appliances. Transition metal-based amorphous alloys, such as soft magnetic materials,
are very promising because of the ease of magnetization to saturation, the dependence of
TC on the chemical composition [4], the thermal history of the specimens [5], and the low
hysteresis losses and eddy current losses due to the high electric resistivity. Despite the
peak values of the isothermal magnetic entropy change in Fe-based amorphous alloys being
rather modest when compared with the rare-earth-based compounds [6], considerable
differences in the costs of raw elements make them attractive. An enhanced magnetocaloric
effect was observed in the amorphous Fe92−xZr7BxCu1 alloys series (x = 0–23 at. %) [7],
in Fe80−xMxB10Zr9Cu1 (M = Ni, Ti; x = 0, 3, 5) [8] and in Fe86-xBxMn4Zr8Nb2 (x = 4, 8,
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12, 16 and 20 at. %) [9] multicomponent amorphous alloys. The modest peak values of
∆SM are usually accompanied by a broad full width at a half maximum in the materials,
showing the second-order ferromagnetic–paramagnetic phase transition, resulting in a
large refrigerant capacity (RC). NANOPERM-type Fe-M-(Cu)-B (M = Nb, Zr, Mo, Hf or Ti)
amorphous alloys have also been studied under the aspect of applying them as excellent
soft magnetic materials [10]. They exhibit two well-separated stages of crystallization
which enable them to obtain nanocrystalline materials by conventional annealing [10]. Heat
treatments at temperatures close to or above the onset of primary crystallization lead to the
formation of a α-Fe granular phase embedded in the residual amorphous matrix. If the
volume fraction of the crystalline phase is equal to about 0.6–0.7, the composite material
shows excellent soft magnetic properties at temperatures lower than the Curie point of
the intergranular amorphous phase. The magnetic softening is due to the averaging out
of the magnetocrystalline anisotropy [11,12]. Additionally, if the volume fraction of the
crystalline phase is about 0.6, the effective magnetostriction becomes close to zero because
of the compensation of the positive contribution from the amorphous matrix and of the
negative one originating from the α-Fe crystalline phase. NANOPERM-type amorphous
and nanocrystalline materials containing one refractory element (Nb, Zr, Mo or Hf) have
a huge representation in the literature [10]. NANOPERM-type nanocrystalline alloys are
composites containing different magnetic phases. Each of them contributes to the effective
magnetic entropy change. Generally, ∆SM in nanocrystalline materials is lower than in
the corresponding amorphous precursors [13]. Thus, from an application point of view, as
solid refrigerants, amorphous alloys in the as-quenched state and after annealing within
the amorphous state are more interesting than nanocrystalline composites originating
from them.

As mentioned above, the Curie temperature of the amorphous alloys can be easily
tuned by the addition of refractory metals to Fe-B amorphous systems. It is reported [14,15]
that TC in the Fe80M7Cu1B12 amorphous alloys depends on the composition and equals
265, 333 and 413 K for M = Mo, Nb and Ti, respectively. It is known that Curie points in
amorphous alloys can be modified not only by changes in the chemical composition but by
proper heat treatments within the amorphous state of a precursor, as well [16]. Such facts
are very important if the application of these materials as refrigerants is considered [16,17].
It is also very interesting to combine magnetic properties with mechanical ones. In this
paper, the microstructure and some thermomagnetic and mechanical properties of the
multicomponent, rapidly quenched Fe75Zr4Ti3Cu1B17 amorphous alloy in the as-quenched
state are studied. The alloy contains two refractory elements (metals): Zr and Ti, with
different atomic radii of 0.155 and 0.140 nm in Zr and Ti, respectively [18]. As a comparison,
the atomic radius of the Fe atom is 0.140 nm [18]. The presence of two refractory metals with
different atomic radii improves the glass-forming ability of the Fe-B amorphous system.
Moreover, nonmagnetic zirconium and titanium atoms affect its magnetization and Curie
temperature. In NANOPERM-type amorphous alloys, the refractory elements’ content
does not exceed 10 at. %, so as not to distinctly diminish their magnetization. Additionally,
due to atomic radii, Mo, Nb, Zr and Ti lower the exchange interactions between magnetic
atoms (Fe-Fe) and indirectly lower the Curie temperature. Under this aspect, Ti seems
to be less effective [14,15]. We decide to combine Zr and Ti to obtain a wider spectrum
of exchange interactions in Fe-Fe pairs. The microstructure of the alloy is revealed by
X-ray diffraction and transmission Mössbauer spectroscopy. The microstructure studies
are accompanied by magnetization versus temperature, magnetizing field induction and
mechanical hardness measurements. The magnetic entropy change and refrigerant capacity
were computed from the isothermal magnetization versus applied field induction curves.

2. Materials and Methods

The amorphous ribbons, 10 mm wide and 20µm thick, with the composition Fe75Zr4Ti3Cu1B17
were obtained by rapid quenching on a single copper roller. The differential scanning
calorimetry (DSC) curve at the heating rate of 10 K/min was obtained by a NETZSCH
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STA 449F1 (NETZSCH-Gerätebau GmbH, Selb, Germany) set-up. The structure of rib-
bons was studied by X-ray diffraction and transmission Mössbauer spectroscopy. The
shiny surfaces of the ribbons were exposed to X-rays, and diffraction patterns in the 2θ
range of 30–110◦ were recorded at the ambient temperature by a Bruker-AXS, type D8
Advanced X-ray diffractometer (Bruker AXS Gmbh, Karlsruhe, Baden-Wurtemberg, Ger-
many). Transmission Mössbauer spectra were recorded at room temperature (300 K) by a
conventional constant acceleration spectrometer with a 57Co(Rh) radioactive source. The
spectrometer was calibrated and the isomer shift was given with respect to α-Fe polycrys-
talline foil. Spectra fittings were performed using the Normos package according to the
procedure described in [19]. The specific magnetization, M (magnetic moment per unit
mass), versus the temperature in the 300–550 K range at the magnetizing field induction
of B = µ0H = 5 mT, 10 mT and 50 mT (where µ0 is the vacuum permeability and H is the
magnetizing field strength) was measured for samples in the form of a strip 8 mm long and
1 mm wide by a VersaLab (Quantum Design, San Diego, CA, USA) system in zero field
cooling mode. In order to reduce the demagnetization effect, apart from the sample’s shape,
the magnetizing field was applied parallel to the ribbon edge in its plane. The isothermal
magnetization curves, M(µ0H), were obtained at a 405–500 K temperature with a step of
∆T = 5 K and 0–2 T magnetizing field induction ranges. To determine the instrumental
hardness of the as-quenched Fe75Zr4Ti3Cu1B17 alloy, the nanoindentation technique, with
respect to the Oliver–Pharr procedure [20], was applied. 25 × 25 tests that covered an area
of 360 µm × 360 µm were carried out with a maximum load of 100 mN for each specimen.
A statistical analysis of the 625 obtained results was performed to show the distribution
of instrumental hardness in the investigated alloy. All measurements were performed for
samples in the as-quenched state.

3. Results and Discussion

In Figure 1, the DSC curve for the as-quenched Fe75Zr4Ti3Cu1B17 alloy recorded at the
heating rate of 10 K/min is depicted. Two well-separated exothermic dips corresponding
to the crystallization are visible. The onsets of the primary crystallization at Tx1 = 798 K
and of the secondary one at Tx2 = 973 K are expected. The Curie temperature occurs at
TC = 455 K and the melting point at about Tm = 1409 K.
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Figure 1. DSC curve for the as-quenched Fe75Zr4Ti3Cu1B17 amorphous alloy; the red arrow denotes
the Curie temperature, the green arrows depict the onsets of primary and secondary crystallization
temperatures Tx1 and Tx2, and the blue arrow depicts the melting point Tm.

The X-ray diffraction pattern for the as-quenched sample, i.e., the X-ray intensity
related to the maximum of the main peak versus the diffraction angle 2θ, is presented in
Figure 2. The shiny surface is exposed to radiation. The penetration depth of the X-rays
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is about half of the ribbon thickness, like in the amorphous Fe79Mo8Cu1B12 ribbons [21],
so we can assume that the pattern gives the structure information that is representative
of the sample. The pattern is typical of an amorphous structure, with the main broad
hump located at about 2θ = 45◦ and a much lower but broader one situated at about
2θ = 80◦. Similar profiles of X-ray diffraction patterns were observed for amorphous
Fe74−xCrxCu1Nb3Si15.5B6.5 (x = 2, 8, 10, 12, 13, 14 and 20 at. %) [22], although in some cases
no broad maximum occurs at about 80◦ [23].
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Figure 2. Diffraction pattern of the as-quenched Fe75Zr4Ti3Cu1B17 amorphous ribbon.

The amorphicity of the alloy is also confirmed by Mössbauer spectroscopy. In Figure 3a,
the transmission Mössbauer spectrum for the as-quenched Fe75Zr4Ti3Cu1B17 ribbons,
recorded at the ambient temperature, is depicted. In the as-quenched state, the transmission
Mössbauer spectrum is typical of amorphous ferromagnets, with broad and overlapping
lines (Figure 3a). Its asymmetry results from the correlation between the hyperfine field
induction (Bhf) and the isomer shift (IS). The spectrum was fitted with a set of 40 sextets,
with Bhf in the range of 0–39 T changing with the step of 1 T. Taking into account the
linear IS(Bhf) relation, the corresponding distribution of the hyperfine magnetic induction
at the 57Fe nuclei, P(Bhf), is in this case obtained and shown in Figure 3b. Some best-fitted
hyperfine parameters are listed in Table 1. The bimodal character of the P(Bhf) distribution
is visible. P(Bhf) can be presented as the sum of two Gaussian distributions centered at
8.2 T and 17.5 T. These Gaussian distributions correspond to low (LFS) and high (HFS)
field sites of Fe atoms with two different topological and chemical short-range orderings.
Roughly speaking, the Fe sites possessing all Fe atoms as nearest neighbors correspond to
LFS (clusters) [24], whereas Fe sites with B, Zr, Ti or Cu atoms in the nearest neighborhood
are related to HFS. It is worth noticing that the probability of the paramagnetic spectrum
component (Bhf = 0) is equal to zero (Figure 3b) in the as-quenched state.

Table 1. Some best-fitted hyperfine parameters of the transmission Mössbauer spectrum for the
amorphous Fe75Zr4Ti3Cu1B17 alloy in the as-quenched state: Bh f —the average value of the hyperfine
field induction, ∆Bh f —its standard deviation, IS—the average value of the isomer shift, A2,5—the
relative intensity of the second and fifth line, and A—the relative area of the spectrum. Statistical
uncertainties for the last significant figure are given in brackets.

Thermal History
of the Sample Subspectra Bhf (T) ∆Bhf (T) IS (mm/s) A2,5 A (%)

as-quenched set of sextets 16.7 (1) 5.0 (1) −0.090 ± 0.003 2.93 (2) 100
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Figure 3. Transmission Mössbauer spectrum (a) and corresponding hyperfine magnetic induction
distribution (b) of the amorphous Fe75Zr4Ti3Cu1B17 alloy in the as-quenched state. Decomposition of
the hyperfine magnetic induction distribution into two Gaussians related to the low field sites (LFS)
and high field sites (HFS) of Fe atoms.

According to Figures 2 and 3, the amorphous Fe75Zr4Ti3Cu1B17 alloy can be treated
as a single phase. The magnetization, M, versus the temperature in the 300–550 K range,
measured at a constant external magnetizing field of B = µ0H = 5 mT, 10 mT and 50 mT
for the as-quenched specimens, is shown in Figure 4. In the case of µ0H = 5 mT, the
magnetization increases slightly with the temperature before a critical region is reached and
a drop of M occurs. To elucidate such a behavior, the different temperature dependences
of the effective magnetic anisotropy field and the magnetization should be taken into
account [25]. The effective anisotropy constant decreases faster with temperature than
the magnetization, and at a constant external magnetizing field an increase of M versus
temperature may be observed, providing that the anisotropy field is higher or comparable
with the external one. When the external magnetizing field exceeds the anisotropy field,
a monotonical decrease of the magnetization may occur in a similar way in the cases of
B = µ0H = 10 mT and 50 mT.
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Figure 4. The specific magnetization M as a function of the temperature T for the amorphous
Fe75Zr4Ti3Cu1B17 alloy in the as-quenched state at a magnetizing field induction of (a) µ0H = 5 mT,
(b) µ0H = 10 mT and (c) µ0H = 50 mT. As an inset, to determine the Curie point, the derivative ∂M/∂T
versus the temperature curve is shown.
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The derivative ∂M/∂T with the fast Fourier transformation smoothing for the as-
quenched samples is depicted as an inset in Figure 4. The minimum of the ∂M/∂T curve
corresponds to the Curie temperature of the amorphous Fe75Zr4Ti3Cu1B17 alloy which
is equal to TC = (455 ± 2) K. The Curie point of the amorphous Fe83B17 alloy is about
593 K [26]. In accordance with the Bethe–Slater curve, the exchange interaction is very
sensitive to the distance between magnetic moments [10]. If Ti and Zr atoms are situated
between Fe ones, they enlarge the distance between the magnetic atoms, leading to a
decrease of the exchange interaction. Such an effect is more enhanced in the case of the Zr
atom owing to its atomic radius. The wide spectrum of the exchange interaction strength
gives a rather high Curie temperature. The family of isothermal magnetization curves
M(µ0H) in the temperature range 405–500 K at a maximum magnetizing field induction of
2 T for this alloy is presented in Figure 5. The Arrott plots, i.e., M2 as a function of µ0H/M
in the abovementioned temperature and magnetizing field induction ranges, are presented
in Figure 6.
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The positive slope of the Arrott plots, according to the Banerjee criteria [27], confirms
the second-order ferromagnetic–paramagnetic phase transition in the investigated alloy,
and hence the isothermal magnetic entropy change can be obtained from one of the Maxwell
thermodynamic equations [3]:

∆SM =
∫ Bm

0

(
∂M(T, B)

∂T

)
B

dB (1)

where Bm denotes the maximum magnetizing field induction and ∂ the partial derivative.
∆SM is computed using the numerical approximation described in detail in [28]. In Figure 7,
the isothermal magnetic entropy change versus the temperature for five different values
of the maximum magnetizing field induction is presented. It is seen that ∆SM reaches its
maximum near the Curie point of the investigated material. Its peak value at Bm = 2 T is
about 1.7 J·kg−1·K−1. Moreover, ∆SM depends on Bm according to the relation [29,30]:

∆SM = CBn
m (2)

where C is temperature-dependent and n depends on the magnetic state of the sample. The
exponent n can then be obtained from the equation:

ln|∆SM| = ln|C(T)|+ n· ln Bm (3)

The relation (3) for six chosen temperatures is depicted in Figure 8. For some tempera-
tures, the discrepancy from the linearity is visible.
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The exponent n directly derived from the linear part of the relation (3) plotted versus
the temperature is presented in Figure 9. The exponent is about 1 at a low temperature
in the ferromagnetic state, reaches its minimum at a temperature close to TC and does
not amount to 2 in the paramagnetic state, although the tendency to increase is observed.
For a single-phase material exhibiting the second-order magnetic phase transition, three
characteristic values of n have been reported: n = 1 at a temperature below the Curie point
of the material, n = 1 + 1

δ (1−
1
β ) at TC, where δ and β are critical exponents, and n = 2

above TC if the material fulfills the Curie–Weiss law [29].
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Thus, one can say that the investigated material can be treated as a single phase well
below and well above the Curie point. As can be seen from Figure 7, the ∆SM(T) curves
are rather broad, and taking into account the application point of view, the refrigerant
capacity (RC) estimated as a product of the ∆SM peak value and temperature span at the
half value of the magnetic entropy change should be considered. In Figure 10, RC versus the
maximum magnetizing field induction for the as-quenched amorphous Fe75Zr4Ti3Cu1B17
alloy is depicted. The almost linear dependence is visible. The refrigerant capacity value at
Bm = 2 T (about 110 J·kg−1) is typical for magnetic amorphous refrigerants [3].
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In Table 2, the Curie points and the peak values of ∆SM obtained at the maximum
magnetizing field of 2 T for some Fe-based amorphous alloys in the as-quenched state
are listed. It can be seen that the higher the Curie point, the larger the maximum entropy
change. Such empirical behavior has been observed in transition metals-based amorphous
alloys [17] and has not been fully understood yet. An attempt to elucidate this behavior
qualitatively has been undertaken in [31]. The exchange interactions between magnetic
moments in amorphous alloys are distributed in strength and sign, leading to different
magnetic moment configurations: from random via noncollinear to simply collinear [32].
TC is also correlated with the exchange interaction distributions, and one can believe
that the higher the Curie point is, the more a collinear magnetic moment configuration
occurs. The magnetic entropy is the measure of the magnetic moment disorder. Its change
is larger during the transition from a more collinear (ferromagnetic) state to a random
(paramagnetic) one [29]. One can say that because of the rather high Curie temperature, the
investigated alloy is less attractive as a solid state refrigerant material in commonly used
cooling appliances. In the future, it might be used for special applications, for example in
the spacecraft industry.

Table 2. Curie temperature, TC, and peak entropy change, |∆SMpeak|, at Bm = 2 T for some chosen
transition metals-based amorphous alloys in the as-quenched state.

Composition TC (K) |∆SMpeak| (J·kg−1·K−1) Reference

Fe76Mo10Cu1B13 277 0.88 [5]

Fe70Mn10Mo5B15 298 0.89 [33]

Fe69.75Co0.25Mn10Mo5B15 320 0.92 [33]

Fe69.5Co0.5Mn10Mo5B15 370 1.30 [33]

Fe75Zr4Ti3Cu1B17 455 1.70 [This work]

The mechanical properties of the studied alloy also determine its potential application.
Figure 11 shows the distribution of the instrumental hardness (HVIT) measured for an
area of 360 µm × 360 µm. One can see that the instrumental hardness does not drasti-
cally change and that only statistically acceptable changes are visible. The statistically
allowed fluctuations of HVIT values are related to the nonuniform internal structure within
the amorphous phase and stresses introduced to the sample during the rapid cooling
production process.
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Figure 11. 2D map distribution of the instrumental hardness HVIT plotted for 25 × 25 indents
recorded for the as-quenched amorphous Fe75Zr4Ti3Cu1B17 alloy.

A more detailed statistical study of the hardness distribution is presented in Figure 12.
The single modal distribution with an average value of HVIT = 14.5 GPa characterizes the
mechanical properties of the investigated ribbons, as well as emphasizing the single-phased
nature of the alloy. The enhanced instrumental hardness value of the investigated alloy,
when compared with typical crystalline alloys (e.g., HVIT = 3.7 GPa for 316L stainless steel
and HVIT = 6 GPa for Ti6Al4V alloy [34]), results from its amorphous structure. Based on
the obtained results, it can be stated that the microstructure, in addition to the chemical
composition, significantly affects the mechanical properties of metallic materials.
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Figure 12. Histogram of the instrumental hardness P(HVIT) constructed for 625 indents recorded for
the as-quenched amorphous Fe75Zr4Ti3Cu1B17 alloy.

4. Conclusions

The NANOPERM-type amorphous Fe75Zr4Ti3Cu1B17 alloy with two refractory metals
(Zr and Ti) seems to be almost single-phase, as revealed by X-ray diffraction and trans-
mission Mössbauer spectroscopy. The Curie point of the alloy is about 455 K, and the
maximum magnetic entropy change at Bm = 2 T equals 1.7 J·kg−1·K−1. In comparison with
other Fe-based amorphous alloys with TC near room temperature, the investigated alloy
obeys the empirical rule: the higher the Curie temperature, the larger the peak value of
∆SM. The average value of HVIT is about 14.5 GPa, which is superior to other crystalline
Fe-based metallic materials. The instrumental hardness exhibits no sudden changes; only
statistically acceptable ones are visible, confirming the single-phase character of the alloy.
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read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are included in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brück, E. Developments in magnetocaloric refrigeration. J. Phys. D Appl. Phys. 2005, 38, R381–R391. [CrossRef]
2. Sanderman, K.G. Magnetocaloric materials: The search for new systems. Scr. Mater. 2012, 67, 566–571. [CrossRef]
3. Franco, V.; Blázquez, J.S.; Ipus, J.J.; Law, J.Y.; Moreno-Ramirez, L.M.; Conde, A. Magnetocaloric effect: From materials research to

refrigeration devices. Prog. Mater. Sci. 2018, 93, 112–232. [CrossRef]
4. Álvarez, P.; Gorria, P.; Sánchez Llamazares, J.L.; Blanco, J.A. Searching the conditions for a table-like shape of the magnetic entropy

in magneto-caloric materials. J. Alloys Compd. 2013, 568, 98–101. [CrossRef]
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