# Autonomous Design of Photoferroic Ruddlesden-Popper Perovskites for Water Splitting Devices

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Autonomous Workflow and Computational Methods

## 3. Results

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Sivula, K.; van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater.
**2016**, 1, 1–16. [Google Scholar] [CrossRef] - Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys.
**1961**, 32, 510–519. [Google Scholar] [CrossRef] - Trasatti, S. Surface chemistry of oxides and electrocatalysis. Croat. Chem. Acta
**1990**, 63, 313–329. [Google Scholar] - Castelli, I.E.; Landis, D.D.; Thygesen, K.S.; Dahl, S.; Chorkendorff, I.; Jaramillo, T.F.; Jacobsen, K.W. New cubic perovskites for one- and two-photon water splitting using the computational materials repository. Energy Environ. Sci.
**2012**, 5, 9034. [Google Scholar] [CrossRef] - Weber, M.; Dignam, M. Splitting water with semiconducting photoelectrodes—Efficiency considerations. Int. J. Hydrog. Energy
**1986**, 11, 225–232. [Google Scholar] [CrossRef] - Nayak, P.K.; Mahesh, S.; Snaith, H.J.; Cahen, D. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater.
**2019**, 4, 269–285. [Google Scholar] [CrossRef] - Wong, L.H.; Zakutayev, A.; Major, J.D.; Hao, X.; Walsh, A.; Todorov, T.K.; Saucedo, E. Emerging inorganic solar cell efficiency tables (Version 1). J. Phys. Energy
**2019**, 1, 032001. [Google Scholar] [CrossRef] - Chiarella, F.; Zappettini, A.; Licci, F.; Borriello, I.; Cantele, G.; Ninno, D.; Cassinese, A.; Vaglio, R. Combined experimental and theoretical investigation of optical, structural, and electronic properties of C
_{3}NH_{3}SnX_{3}thin films (X = Cl, Br). Phys. Rev. B**2008**, 77, 045129. [Google Scholar] [CrossRef] - Fridkin, V.M. Ferroelectric Semiconductors; Springer: New York, NY, USA, 1980. [Google Scholar]
- Castelli, I.E.; Olsen, T.; Chen, Y. Towards photoferroic materials by design: Recent progress and perspectives. J. Phys. Energy
**2019**, 2, 011001. [Google Scholar] [CrossRef] - Wallace, S.K.; Svane, K.L.; Huhn, W.P.; Zhu, T.; Mitzi, D.B.; Blum, V.; Walsh, A. Candidate photoferroic absorber materials for thin-film solar cells from naturally occurring minerals: Enargite, stephanite, and bournonite. Sustain. Energy Fuels
**2017**, 1, 1339–1350. [Google Scholar] [CrossRef] [Green Version] - Choi, T.; Lee, S.; Choi, Y.J.; Kiryukhin, V.; Cheong, S.W. Switchable ferroelectric diode and photovoltaic effect in BiFeO
_{3}. Science**2009**, 324, 63–66. [Google Scholar] [CrossRef] - Nie, R.; Yun, H.S.; Paik, M.J.; Mehta, A.; Park, B.W.; Choi, Y.C.; Seok, S.I. Efficient solar cells based on light-harvesting antimony sulfoiodide. Adv. Energy Mater.
**2017**, 8, 1701901. [Google Scholar] [CrossRef] - Nechache, R.; Harnagea, C.; Li, S.; Cardenas, L.; Huang, W.; Chakrabartty, J.; Rosei, F. Bandgap tuning of multiferroic oxide solar cells. Nat. Photonics
**2014**, 9, 61–67. [Google Scholar] [CrossRef] - Zhang, G.; Wu, H.; Li, G.; Huang, Q.; Yang, C.; Huang, F.; Liao, F.; Lin, J. New high Tc multiferroics KBiFe
_{2}O_{5}with narrow band gap and promising photovoltaic effect. Sci. Rep.**2013**, 3, 1–9. [Google Scholar] [CrossRef] [Green Version] - Tang, J.; Zou, Z.; Ye, J. Efficient photocatalysis on BaBiO
_{3}driven by visible light. J. Phys. Chem. C**2007**, 111, 12779–12785. [Google Scholar] [CrossRef] - Wang, H.; Gou, G.; Li, J. Ruddlesden–Popper perovskite sulfides A
_{3}B_{2}S_{7}: A new family of ferroelectric photovoltaic materials for the visible spectrum. Nano Energy**2016**, 22, 507–513. [Google Scholar] [CrossRef] [Green Version] - Lan, Z.; Småbråten, D.R.; Xiao, C.; Vegge, T.; Aschauer, U.; Castelli, I.E. Enhancing oxygen evolution reaction activity by using switchable polarization in ferroelectric InSnO
_{2}N. ACS Catal.**2021**, 11, 12692–12700. [Google Scholar] [CrossRef] - Marzari, N. Materials modelling: The frontiers and the challenges. Nat. Mater.
**2016**, 15, 381–382. [Google Scholar] [CrossRef] - Seminario, J. (Ed.) Recent Developments and Applications of Modern Density Functional Theory (Theoretical and Computational Chemistry); Elsevier Science: New York, NY, USA, 1996. [Google Scholar]
- Lejaeghere, K.; Bihlmayer, G.; Björkman, T.; Blaha, P.; Blügel, S.; Blum, V.; Caliste, D.; Castelli, I.E.; Clark, S.J.; Dal Corso, A.; et al. Reproducibility in density functional theory calculations of solids. Science
**2016**, 351, 1415. [Google Scholar] [CrossRef] [Green Version] - Curtarolo, S.; Hart, G.L.W.; Nardelli, M.B.; Mingo, N.; Sanvito, S.; Levy, O. The high-throughput highway to computational materials design. Nat. Mater.
**2013**, 12, 191–201. [Google Scholar] [CrossRef] - Back, S.; Tran, K.; Ulissi, Z.W. Toward a design of active oxygen evolution catalysts: Insights from automated density functional theory calculations and machine learning. ACS Catal.
**2019**, 9, 7651–7659. [Google Scholar] [CrossRef] - Bölle, F.T.; Mathiesen, N.R.; Nielsen, A.J.; Vegge, T.; Garcia-Lastra, J.M.; Castelli, I.E. Autonomous discovery of materials for intercalation electrodes. Batte. Supercaps
**2020**, 3, 488–498. [Google Scholar] [CrossRef] - Haastrup, S.; Strange, M.; Pandey, M.; Deilmann, T.; Schmidt, P.S.; Hinsche, N.F.; Gjerding, M.N.; Torelli, D.; Larsen, P.M.; Riis-Jensen, A.C.; et al. The Computational 2D Materials Database: High-throughput modeling and discovery of atomically thin crystals. 2D Mater.
**2018**, 5, 042002. [Google Scholar] [CrossRef] - Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I.E.; Cepellotti, A.; Pizzi, G.; et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol.
**2018**, 13, 246–252. [Google Scholar] [CrossRef] [Green Version] - Bölle, F.T.; Mikkelsen, A.E.G.; Thygesen, K.S.; Vegge, T.; Castelli, I.E. Structural and chemical mechanisms governing stability of inorganic Janus nanotubes. NPJ Comput. Mater.
**2021**, 7, 1–8. [Google Scholar] [CrossRef] - Castelli, I.E.; Olsen, T.; Datta, S.; Landis, D.D.; Dahl, S.; Thygesen, K.S.; Jacobsen, K.W. Computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ. Sci.
**2012**, 5, 5814–5819. [Google Scholar] [CrossRef] - Wu, Y.; Lazic, P.; Hautier, G.; Persson, K.; Ceder, G. First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy Environ. Sci.
**2013**, 6, 157–168. [Google Scholar] [CrossRef] [Green Version] - Kuhar, K.; Crovetto, A.; Pandey, M.; Thygesen, K.S.; Seger, B.; Vesborg, P.C.K.; Hansen, O.; Chorkendorff, I.; Jacobsen, K.W. Sulfide perovskites for solar energy conversion applications: Computational screening and synthesis of the selected compound LaYS3. Energy Environ. Sci.
**2017**, 10, 2579–2593. [Google Scholar] [CrossRef] - Materials Project—A Materials Genome Approach. Available online: https://materialsproject.org (accessed on 30 December 2021).
- Esposito, V.; Castelli, I.E. Metastability at defective Metal oxide interfaces and nanoconfined structures. Adv. Mater. Interfaces
**2020**, 7, 1902090. [Google Scholar] [CrossRef] - Castelli, I.E.; Kuhar, K.; Pandey, M.; Jacobsen, K.W. Chapter 3. Computational screening of light-absorbing materials for photoelectrochemical water splitting. In Advances in Photoelectrochemical Water Splitting; Royal Society of Chemistry: London, UK, 2018; pp. 62–99. [Google Scholar] [CrossRef]
- Mortensen, J.J.; Hansen, L.B.; Jacobsen, K.W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B
**2005**, 71, 035109. [Google Scholar] [CrossRef] [Green Version] - Enkovaara, J.; Rostgaard, C.; Mortensen, J.J.; Chen, J.; Dułak, M.; Ferrighi, L.; Gavnholt, J.; Glinsvad, C.; Haikola, V.; Hansen, H.A.; et al. Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter
**2010**, 22, 253202. [Google Scholar] [CrossRef] [PubMed] - Larsen, A.H.; Mortensen, J.J.; Blomqvist, J.; Castelli, I.E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M.N.; Hammer, B.; Hargus, C.; et al. The atomic simulation environment—A Python library for working with atoms. J. Phys. Condens. Matter
**2017**, 29, 273002. [Google Scholar] [CrossRef] [Green Version] - Mortensen, J.; Gjerding, M.; Thygesen, K. MyQueue: Task and workflow scheduling system. J. Open Source Softw.
**2020**, 5, 1844. [Google Scholar] [CrossRef] - Castelli, I.E.; Jacobsen, K.W. Designing rules and probabilistic weighting for fast materials discovery in the Perovskite structure. Model. Simul. Mater. Sci. Eng.
**2014**, 22, 055007. [Google Scholar] [CrossRef] - Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett.
**2008**, 100, 136406. [Google Scholar] [CrossRef] [Green Version] - Gritsenko, O.; van Leeuwen, R.; van Lenthe, E.; Baerends, E.J. Self-consistent approximation to the Kohn-Sham exchange potential. Phys. Rev. A
**1995**, 51, 1944–1954. [Google Scholar] [CrossRef] [Green Version] - Kuisma, M.; Ojanen, J.; Enkovaara, J.; Rantala, T.T. Kohn-Sham potential with discontinuity for band gap materials. Phys. Rev. B
**2010**, 82, 115106. [Google Scholar] [CrossRef] [Green Version] - Castelli, I.E.; Hüser, F.; Pandey, M.; Li, H.; Thygesen, K.S.; Seger, B.; Jain, A.; Persson, K.A.; Ceder, G.; Jacobsen, K.W. New light-harvesting materials using accurate and efficient bandgap calculations. Adv. Energy Mater.
**2014**, 5, 1400915. [Google Scholar] [CrossRef] [Green Version] - Butler, M.A.; Ginley, D.S. Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J. Electrochem. Soc.
**1978**, 125, 228–232. [Google Scholar] [CrossRef] - Xu, Y.; Schoonen, M.A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral.
**2000**, 85, 543–556. [Google Scholar] [CrossRef] - Castelli, I.E.; Thygesen, K.S.; Jacobsen, K.W. Calculated optical absorption of different perovskite phases. J. Mater. Chem. A
**2015**, 3, 12343–12349. [Google Scholar] [CrossRef] - Ishihara, T. Perovskite Oxide for Solid Oxide Fuel Cells; Springer: Boston, MA, USA, 2009. [Google Scholar]
- Benedek, N.A.; Rondinelli, J.M.; Djani, H.; Ghosez, P.; Lightfoot, P. Understanding ferroelectricity in layered perovskites: New ideas and insights from theory and experiments. Dalton Trans.
**2015**, 44, 10543–10558. [Google Scholar] [CrossRef] [Green Version] - Zhang, Y.; Shimada, T.; Kitamura, T.; Wang, J. Ferroelectricity in Ruddlesden–Popper chalcogenide perovskites for photovoltaic application: The role of tolerance factor. J. Phys. Chem. Lett.
**2017**, 8, 5834–5839. [Google Scholar] [CrossRef] - Aguiar, R.; Logvinovich, D.; Weidenkaff, A.; Rachel, A.; Reller, A.; Ebbinghaus, S.G. The vast colour spectrum of ternary metal oxynitride pigments. Dye. Pigment.
**2008**, 76, 70–75. [Google Scholar] [CrossRef] - Grätzel, M. Photoelectrochemical cells. Nature
**2001**, 414, 338–344. [Google Scholar] [CrossRef] - Seger, B.; Castelli, I.E.; Vesborg, P.C.K.; Jacobsen, K.W.; Hansen, O.; Chorkendorff, I. 2-Photon tandem device for water splitting: Comparing photocathode first versus photoanode first designs. Energy Environ. Sci.
**2014**, 7, 2397–2413. [Google Scholar] [CrossRef] [Green Version] - Jumas, J.; Olivier Fourcade, J.; Vermot-Gaud-Daniel, F.; Ribes, M.; Philippot, E.; Maurin, M. Etude structurale de thiocomposes a groupements anioniques de type -pyro-, Na
_{6}X_{2}S_{7}(X = Ge, Sn) et Ba_{3}Sn_{2}S_{7}. Rev. Chim. Miner.**1974**, 11, 13–26. [Google Scholar] - ICSDWeb. Available online: http://www.fiz-karlsruhe.de/icsd_web.html (accessed on 30 December 2021).
- Autonomous Materials Discovery (AiMade). Available online: http://www.aimade.org (accessed on 30 December 2021).

**Figure 1.**Workflow to autonomously identify photoferroic materials (

**left**). The five most common Ruddlesden-Popper prototypes considered in this work (

**right**). The A-cation is shown in blue, the B-cation in green, and the X-anion in yellow.

**Figure 2.**Heat maps showing the heat of formation (top

**left**triangle) and band gap (bottom

**right**triangle) for the oxide (a), sulfide (b), and selenide-based perovskites (c). A completely red square indicates a stable compound with good electronic properties, which is thereby considered a potential candidate. The space group of the most stable prototype is indicated in each square and stars (*) mark the materials that show an intrinsic polarization.

**Figure 3.**Position of the band edges, calculated for direct gaps, for all the materials that show stability and optimal size of the band gap. The values of the direct (indirect in parentheses) gap is indicated for each composition. The oxygen and hydrogen evolution potentials are also indicated.

**Figure 4.**Efficiencies of the 19 candidate materials. The materials indicated in red show potential for one-photon water splitting, while all the others could be used for a two-photon water splitting device. The green line represents the maximum theoretical efficiency. The figure reports materials with efficiency above 10%, while below 10% (enclosed in the dashed box) are summarized in the table.

**Table 1.**Calculated spontaneous polarization of the stable candidate materials with a band gap in the visible range. * indicates which materials also have well-positioned band edges, according to Figure 3.

Formula | Pol. ($\mathsf{\mu}\mathbf{C}/{\mathbf{m}}^{2}$) | Direction |
---|---|---|

${\mathrm{Mg}}_{3}{\mathrm{Hf}}_{2}{\mathrm{Se}}_{7}$ * | 23.97 | Z |

${\mathrm{Mg}}_{3}{\mathrm{Sn}}_{2}{\mathrm{Se}}_{7}$ | 46.56 | Z |

${\mathrm{Mg}}_{3}{\mathrm{Sn}}_{2}{\mathrm{S}}_{7}$ * | 31.24 | Z |

${\mathrm{Mg}}_{3}{\mathrm{Ti}}_{2}{\mathrm{S}}_{7}$ * | 51.12 | Z |

${\mathrm{Ca}}_{3}{\mathrm{Zr}}_{2}{\mathrm{Se}}_{7}$ | 20.36 | Z |

${\mathrm{Ca}}_{3}{\mathrm{Hf}}_{2}{\mathrm{Se}}_{7}$ | 3.72 | Z |

${\mathrm{Ca}}_{3}{\mathrm{Sn}}_{2}{\mathrm{S}}_{7}$ * | 34.29 | Z |

${\mathrm{Sr}}_{3}{\mathrm{Zr}}_{2}{\mathrm{Se}}_{7}$ | 8.12 | Z |

${\mathrm{Ca}}_{3}{\mathrm{Ti}}_{2}{\mathrm{S}}_{7}$ | 15.72 | Z |

${\mathrm{Sr}}_{3}{\mathrm{Hf}}_{2}{\mathrm{Se}}_{7}$ | 24.19 | Z |

${\mathrm{Sr}}_{3}{\mathrm{Sn}}_{2}{\mathrm{S}}_{7}$ * | 8.99 | Z |

${\mathrm{Sr}}_{3}{\mathrm{Pb}}_{2}{\mathrm{O}}_{7}$ * | 31.74 | Z |

${\mathrm{Ba}}_{3}{\mathrm{Sn}}_{2}{\mathrm{S}}_{7}$ * | 10.64 | Z |

${\mathrm{Ba}}_{3}{\mathrm{Ge}}_{2}{\mathrm{Se}}_{7}$ * | 20.58 | Z |

${\mathrm{Sr}}_{3}{\mathrm{Ti}}_{2}{\mathrm{Se}}_{7}$ | 24.23 | Z |

${\mathrm{Ba}}_{3}{\mathrm{Zr}}_{2}{\mathrm{Se}}_{7}$ | 28.07; 1.12 | $\mathrm{X};\mathrm{Y}$ |

${\mathrm{Ba}}_{3}{\mathrm{Hf}}_{2}{\mathrm{Se}}_{7}$ | 19.89; 10.16 | $\mathrm{X};\mathrm{Y}$ |

${\mathrm{Ba}}_{3}{\mathrm{Zr}}_{2}{\mathrm{S}}_{7}$ * | 24.84; 0.14 | $\mathrm{X};\mathrm{Y}$ |

${\mathrm{Ba}}_{3}{\mathrm{Hf}}_{2}{\mathrm{S}}_{7}$ * | 17.51; 7.76 | $\mathrm{X};\mathrm{Y}$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ludvigsen, A.C.; Lan, Z.; Castelli, I.E.
Autonomous Design of Photoferroic Ruddlesden-Popper Perovskites for Water Splitting Devices. *Materials* **2022**, *15*, 309.
https://doi.org/10.3390/ma15010309

**AMA Style**

Ludvigsen AC, Lan Z, Castelli IE.
Autonomous Design of Photoferroic Ruddlesden-Popper Perovskites for Water Splitting Devices. *Materials*. 2022; 15(1):309.
https://doi.org/10.3390/ma15010309

**Chicago/Turabian Style**

Ludvigsen, Alexandra Craft, Zhenyun Lan, and Ivano E. Castelli.
2022. "Autonomous Design of Photoferroic Ruddlesden-Popper Perovskites for Water Splitting Devices" *Materials* 15, no. 1: 309.
https://doi.org/10.3390/ma15010309