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Abstract: Nickel-based super alloys are popular for applications in the energy and aerospace indus-
tries due to their excellent corrosion and high-temperature resistance. Direct metal deposition (DMD)
of nickel alloys has reached technology readiness for several applications, especially for the repair of
turbomachinery components. However, issues related to part quality and defect formation during
the DMD process still persist. Laser remelting can effectively prevent and repair defects during metal
additive manufacturing (AM); however, very few studies have focused on numerical modeling and
experimental process parameter optimization in this context. Therefore, the aim of this study is to
investigate the effect of determining the remelting process parameters via numerical simulation and
experimental analyses in order to optimize an industrial process chain for part repair by DMD. A
heat conduction model analyzed 360 different process conditions, and the predicted melt geometry
was compared with observations from a fluid flow model and experimental single tracks for selected
reference conditions. Subsequently, the remelting process was applied to a demonstrator repair
case. The results show that the models can well predict the melt pool shape and that the optimized
remelting process increases the bonding quality between base and DMD materials. Therefore, DMD
part fabrication and repair processes can benefit from the remelting step developed here.

Keywords: additive manufacturing; laser remelting; direct metal deposition; process modeling;
repair welding; Inconel; process chain

1. Introduction

Metal additive manufacturing (AM) of nickel-based super alloys has been studied
widely in recent years, primarily for potential applications in the energy and aerospace
industries. While powder bed fusion (PBF) processes have various advantages for smaller
and complex-shaped part geometries, the fabrication or repair of larger parts may require
the increased machine size and accessibility of directed energy deposition (DED) processes.
Direct metal deposition (DMD) is a process whereby a laser creates a melt pool into which
metallic powder particles are continuously blown in order to create welding tracks. The
repair of turbomachinery components is a typical application of DMD. One challenge in
DMD is the formation of defects, especially in the transition zone between the substrate and
the AM material. Laser remelting processes have been shown to significantly reduce both
bonding defects and cracks [1]. Therefore, it is of high interest to include laser remelting
steps in part fabrication and repair process chains of nickel-based super alloys which
use DMD.

Laser remelting is a laser welding process with the purpose of local material melting
and resolidification. In metal AM, laser remelting can be applied to improve part quality in
terms of surface roughness, magnetic properties, and mechanical properties. Liu et al. [2]
fabricated AlSi10Mg test structures by PBF; laser remelting reduced surface roughness by
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25%, as previously unmelted or partially melted powder particles were fused with the
deposit. Yang et al. [3] applied laser remelting to an iron–cobalt-based alloy deposited
by PBF, and showed that saturation magnetization and microhardness increased due to
grain refinement. Liu et al. [1] used laser remelting for the deposition of the nickel-based
super alloy K417G by DMD. They found that remelting significantly reduced crack density
within the DMD structure. For the repair of Inconel 718 and Waspaloy turbomachinery
components, Liu et al. [4] proposed a combined process chain consisting of defect milling,
sandblasting, laser remelting, and DMD. The laser remelting step was used to reduce
liquation cracking in the heat-affected zone of the base material. The main parameters
of the laser remelting processes are laser spot size, laser power, and scanning speed. It
is expected that numerical simulation can support the determination of suitable laser
remelting processing parameters for a specific application.

Numerical models for the simulation of laser welding and AM processes are character-
ized by the model domain, heat source definition, material properties, and the governing
equations for heat transfer and fluid flow. The length scale of the model domain ranges
from less than a millimeter for the analysis of melt pool dynamics [5] to several centimeters
or even meters where the development of the temperature field on the part scale is of
interest [6]. For melt pool modeling of a single welding track, the symmetry of the process
permits consideration of only one half of the track within the domain, in order to reduce
computational costs [7,8]. According to Wei et al. [9], heat sources can be defined as point
or line heat sources for analytical models, and as surface or volumetric heat sources for
numerical models. Wirth et al. [10] presented a surface heat source model that considered
losses due to attenuation and reflection for a laser cladding process model applied to nickel-
and cobalt-based alloys. DebRoy et al. [11] emphasized the importance of reliable material
properties as a function of temperature. Because Inconel 718 is the most commonly-used
nickel-based super alloy, several studies have focused on the determination of its material
properties over a wide range of temperatures [12–14]. With these properties, the governing
equations for heat transfer and fluid flow can be solved. The governing equations are based
on the conservation of mass, momentum, and thermal energy and are mathematically de-
scribed by the continuity, Navier–Stokes, and heat transfer equations, respectively. Process
models typically involve various simplifications in order to reduce computational costs.
According to DebRoy et al. [11], a common simplification is the neglection of convective
heat transfer, which can be appropriate in conditions where no powder fusion occurs. As
described by Wei et al. [9], the neglection of convective heat transfer can have a significant
impact on the computed temperature distribution in the melt pool. Therefore, accurate
prediction of time-dependent spatial temperature fields requires the consideration of fluid
flow. However, for assessment of the sensitivity of the melt pool geometries to process
conditions, pure heat conduction models may be sufficient.

The aim of the present study is to develop a numerical laser remelting model and to
use the modeling results for the optimization of a laser remelting step within an industrial
process chain. A heat conduction model was developed to study the effect of processing
parameters on the melt pool geometry at low computational costs. A second model that
considers the fluid flow in the melt pool was adapted, and both modeling results were
compared to the experimental records. While the fluid flow model showed a higher
physical accuracy and high computing times, the heat conduction model could be solved
very quickly and with slight deviations of between +1.5 and +19.1% compared to the
experimental observations. An optimized process chain including groove milling, laser
remelting, and DMD was evaluated for cast Inconel 718 substrates. The laser remelting step
led to a more uniform bonding of the DMD deposit to the cast substrate material compared
to a combined process without intermediate surface remelting. The paper is structured
as follows: Section 2 focuses on the numerical models and input parameters; Section 3
describes the experimental procedures; Section 4 presents and discusses the simulation
and experimental results; and finally, Section 5 summarizes the main conclusions of the
present study.
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2. Numerical Modeling Approach

Two numerical models were developed in order to analyze the laser remelting process.
The main difference between the two remelting models was the fluid flow within the melt
pool, which was neglected in the heat conduction model in order to increase computational
efficiency. Both approaches were based on the laser cladding process model presented by
Wirth [15] and realized in COMSOL Multiphysics. The two modified models shared the
same model domain, heat source definition, and material properties, which are described
in the following sub-chapters.

2.1. Model Domain

The rectangular model domain had a length of 9.00 mm in x direction, a width of
5.34 mm in y direction, and a height of 3.00 mm in z direction. The model was set up in
the Eulerian coordinate system with a stationary heat source centered at x = 4.50 mm and
y = 0 mm. As indicated in Figure 1, the substrate material flow was along the positive x
axis, leading to a welding direction in the negative x direction. Due to the symmetry of
the melt problem, only one half of the remelting process was modeled in order to save
computational efforts. There was a fine-meshed zone in the area of the heat source where
the number of elements in z direction nez increases in order to enhance the spatial resolution
of the computed temperature fields. Temperature profiles in the heat source center were
used for a mesh convergence study.
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Figure 1. Mesh geometry and heat source location.

2.2. Heat Source Definition

The laser energy input was modeled as a surface heat source

Q(x, y) = I(x, y)·αwp (1)

with the laser intensity I(x,y) and the work piece absorptivity αwp; the intensity distribution

I(r) =
2P

πrL2 exp
(
−2

r2

rL2

)
, (2)

considering the laser power P and the laser spot radius rL, is defined as a bivariate Gaussian
distribution. Figure 2 illustrates the spatial laser beam intensity for the selected laser spot
diameter s of 3 mm. Fixing the laser source at position x = 4.50 mm and y = 0 mm within
the model domain, the radial distance r is expressed as follows:

r(x, y) =
√
(x− 4.5)2 + y2 (3)
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2.3. Heat Conduction Model

For this model a stationary solver was applied that solves the governing equa-
tions without time-dependent terms. In all zones of the domain the simplified heat
transfer equation

∂
(
ρcpT

)
∂t

+∇·(−k∇T) = 0 (4)

with density ρ, specific heat capacity cp, temperature T, and heat conductivity k is taken into
account. The surface heat input is treated as a boundary condition of the heat conduction
term at the upper surface of the model. Heat losses due to convective heat distribution
and thermal radiation are neglected, as they were shown to have only a minor effect on the
resulting melt pool geometries and their neglection increases the computational efficiency
of the model [15]. The velocity field is set to be constant and uniform, such that all material
is restricted to move only with the defined scanning speed v and the fluid flow within the
melt pool is neglected.

2.4. Fluid Flow Model

The fluid flow model was built with a time-dependent solver and adaptive time step-
ping. Heat convection inside the domain is now considered in the heat transfer equation

∂
(
ρcpT

)
∂t

+ ρcpu·∇T +∇·(−k∇T) = 0 (5)

with the velocity vector u. Fluid flow is described by the continuity equation

∇·u = 0 (6)

and the Navier–Stokes equation for incompressible flow

ρ

[
∂u
∂t

+ u·(∇⊗ u)
]
= ∇

{
−pI + µ

[
∇⊗ u + (∇⊗ u)T

]}
+ F (7)

with pressure p, dynamic viscosity µ, identity tensor I and volume force vector F, by which

the effects of gravity and buoyancy are considered. Surface tension and Marangoni stresses
are taken into account by surface boundary conditions as described by Wirth [15].

2.5. Material Properties

The material properties for Inconel 718 used in the numerical study originate from various
references. The constant parameters for the density ρ = 8190 kg/m3, solidus temperature
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Ts = 1528 K, liquidus temperature Tl = 1610 K, melting enthalpy hm = 227,000 J/kg, and the
coefficient of thermal expansion β = 6.473× 10−5 K−1 were taken from Pottlacher et al. [12]. The
work piece absorptivity αwp was defined as a constant and set to 0.3 per Anderson et al. [16].
Table 1 summarizes the constant material properties.

Table 1. Constant material properties of Inconel 718 for the numerical simulations according to
Pottlacher et al. [12] and Anderson et al. [16].

Property Symbol Value Source

Density ρ 8190 kg/m3 [12]
Solidus temperature Ts 1528 K [12]

Liquidus temperature Tl 1610 K [12]
Melting enthalpy hm 227,000 J/kg [12]

Coefficient of thermal expansion β 6.473 × 10−5 K−1 [12]
Work piece absorptivity αwp 0.3 [16]

Figure 3 illustrates the temperature-dependent material properties. At temperatures
that are higher than the specified values, the properties are treated as constants. The data for
the heat conductivity k and isobaric specific heat capacity cp were taken from the material
library of COMSOL Multiphysics for 293.15 K ≤ T ≤ 1000 K, and from Pottlacher et al. [12]
and Hosaeus et al. [13] for T > 1000 K. The dynamic viscosity

η(T) = 0.000179e(
50.2
RT )(Pa·s) (8)

is described by the Arrhenius equation, with the universal gas constant R = 0.008314 kJ/mol/K
and the other constants as determined by Overfelt et al. [14] for Inconel 718. The surface tension

σ(T) = 1.842
N
m
− 0.00011

N
mK

(T − 1998.15 K) (9)

is defined as a linear function with a negative gradient based on the formula provided by
Mills and Su [17].
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3. Experimental Procedure

Within the experimental part of this study, single track tests were performed to validate
the results of the numerical simulations. Subsequently, an optimized laser remelting process
was developed for a groove repair application. The laser remelting and DMD experiments
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were carried out on a five-axis GF HPM 450 U milling machine with an Ambit S5 laser
processing system. The system included an IPG fiber laser YLR-1000-MM-WC with a
maximum laser power of 1000 W and wave length of 1070 nm. The rotary axes were fixed
to their neutral position such that the developed processes could directly be transferred to
any three-axis machine. The working distance of the laser head was set at 9.0 mm for DMD,
as this is the distance with the highest powder efficiency and results in an approximate
melt pool width of 2.2 mm. For the laser remelting step, the powder flow was deactivated
and the working distance was increased to 15.0 mm in order to obtain an approximate melt
pool width of 3.0 mm, which increases the efficiency of the process. Investment cast Inconel
718 cylinders in solution-annealed condition with a diameter of 26 mm and a height of
50 mm were utilized as substrates. The spherical powder material for the DMD experiments
was Inconel 718 from LPW Technology Ltd., with a particle size distribution from 44 to
105 µm at a flow rate of 4.1 g/min. Argon was selected as the shielding, nozzle protection
and powder carrier gas at flow rates of 8 L/min, 4 L/min, and 6 L/min, respectively.

For the validation of the numerical models, 10 mm single remelting tracks were
applied on face-milled substrates. A cooling time of more than 10 min was applied between
each track in order to ensure that the substrate material was cooled to room temperature.
For validation, a constant laser power of 1000 W and six levels of scanning speed from 150
to 400 mm/min in steps of 50 mm/min were used. Metallographic cross sections were
prepared and evaluated in etched condition by optical microscopy and image analysis. To
assess the effect of laser remelting on the subsequent DMD process, one DMD welding
track with and without prior remelting was analyzed for one specimen, as illustrated in
Figure 4a. To optimize the laser remelting process for repair applications a groove was
milled into the cast substrates, as shown in Figure 4b; the groove geometry is illustrated in
Figure 5. The milling tool for this process step was an end mill with a 6 mm diameter and a
corner radius of 0.1 mm.
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To calculate the laser tool paths, self-developed research CAM software by Eisen-
barth [18] was used. For the DMD filling of the groove, four deposition layers with a height
of 0.9 mm each were calculated with a contour/raster scanning strategy, as visualized
in Figure 6. The contour to raster path distance was 0.4 mm, and the hatching distance
between the raster paths was set to 1.1 mm. For the laser remelting process, the same tool
path was applied for the first layer, and contour paths only for the following layers.
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4. Results and Discussion
4.1. Simulation Results

The heat conduction model could be solved with a computation time of less than
30 s, and was therefore selected for analyzing the effects of the processing parameters
on the resulting melt pool geometry. In total, 360 process conditions were solved by the
heat conduction model within the scope of a full-factorial parameter study (Table 2). The
fluid flow model was used to compute the velocity fields within the melt pool and its final
dimensions for one reference condition, for which the computation time was over 16 h. The
simulative results of both models were then compared to the experimental conditions.

Table 2. Process conditions for the full-factorial parameter study.

Parameter Symbol Unit Values

Laser power P W 550, 700, 850, 1000, 1150
Scanning speed v mm/min 150, 200, 250, 300, 350, 400

Substrate temperature T ◦C 0–1100 in steps of 100

Figure 7 shows the simulated stationary temperature field obtained by the heat con-
duction model for one reference condition. The isothermal curves visualize the boundaries
of the predicted melt pool. The melt pool front experiences a larger temperature gradient
than the backside, which leads to an elliptical melt pool shape. This finding is in agreement
with the results of Turichin et al. [19], who modeled a laser welding process for DMD with
and without powder addition for three materials (Inconel 718, stainless steel 316 L, and a
titanium alloy) and found elongated melt pool geometries for all conditions. Hence, the
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results confirm that laser welding at moderate to high scanning speeds typically leads to
elliptical melt pool shapes.
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The geometrical correlation between remelting depth and width for all simulation
results of the heat conduction model is illustrated in Figure 8. The ratio of remelting width
to depth slowly decreases for larger melt pool geometries until a width of approximately
5 mm. For a wide range of modeling conditions, the linear approximation

d = 0.555w− 0.6846 (10)

with a determination coefficient R2 of 0.992 leads to an accurate prediction of the remelting
depth d from the modeled remelting width w. Thus, the effect of the processing parameters
can be analyzed for one geometrical feature of the melt pool only, as the other feature can be
deduced by linear approximation. As indicated by Liu et al. [4], the remelting depth can be
of high importance for the prevention of cracks and should be larger than the heat-affected
zone of the subsequent DMD layer. Therefore, the remelting depth is of higher relevance
for process optimization, and is further investigated within this study.
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Figure 8. Correlation of remelting width and depth for the simulation results of the heat conduction
model with the fit, according to Equation (10).

Figure 9 presents the remelting depth as a function of laser power and scanning speed
as calculated by the heat conduction model. The depth of the melt pool rises nearly linearly
with increased laser power P and reduced scanning speed v, which is similar to the findings
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of Afrasiabi et al. [20]. The results confirm that once the heat source provides sufficient
energy to melt the material, an increase of the line energy

eL =
P
v

(11)

generally leads to larger melt pool dimensions.
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Figure 9. Remelting depth as a function of laser power and scanning speed with constant subtrate
temperature of 0 ◦C, obtained by the heat conduction model.

Figure 10 shows the effect of the initial substrate temperature on the remelting depth
for six scanning speed levels and a constant laser power of 1000 W. The melt pool depth
d monotonically increases with the substrate temperature T, and the correlation with the
scanning speed v can be described by

d = A1

(
eA2T + A3

)
(v + A4) (12)

with A1 = −1.832 × 10−4, A2 = 2.476 × 10−3, A3 = 4.72, and A4 = −948.70, which leads to a
determination coefficient R2 of 0.996. These results are of high interest for applications with
multiple welding tracks, especially in the field of metal additive manufacturing, where
substrate overheating occurs frequently [21]. The quantitative description of this effect can
help to develop compensation strategies to keep the melt pool dimensions more stable,
which increases the robustness of the deposition process.
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The velocity field within the melt pool computed by the fluid flow model is visualized
in Figure 11. The velocity magnitude can be up to two orders of magnitude larger than the
scanning speed. The liquid metal flows from the central to the peripheral area on the top
surface, then downwards back to the central area. As shown by Knapp et al. [8], surface
temperature gradients lead to gradients in surface tension and thereby to Marangoni
stresses, which are the main drivers of convective flow within the melt pool. The calculated
velocity fields in the present study confirm that the Marangoni effect is the dominant
driving mechanism in melt pool motion.
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v = 400 mm/min, T = 20 ◦C.

4.2. Single Track Validation

Figure 12a,b show the temperature fields for one reference condition calculated by the
heat conduction and fluid model, respectively. The melt pool geometries are approximated
by the isothermal curves at the remelting temperature Tm, which is assumed to be the
arithmetic mean value between the solidus and liquidus temperatures of the material. The
geometries predicted by the two models are significantly different from each other, as the
consideration of fluid flow results in a wider and shallower melt pool.
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Figure 12. Temperature fields within the model domain and isothermal curves at remelting tem-
perature Tm calculated by (a) the heat conduction and (b) the fluid flow model for P = 1000 W,
v = 400 mm/min, T = 20 ◦C.

Figure 13 compares the melt pool geometries predicted by the two numerical models
with the experimental results. While the heat conduction model slightly overestimates
the remelting depth and underestimates the width, the fluid flow model predicts the
actual geometry very well for this reference condition. According to Le and Lo [22], the
outward flow pattern in Figure 11 can be related to a negative surface tension gradient and
leads to a wider and shallower melt pool. Hence, the fluid motion within the melt pool
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significantly affects the final shape of the remelted zone, and the surface tension model
provided by Mills and Su [17] and described in Equation (9) increases the accuracy of the
numerical model. While the predicted melt pool geometries are very smooth, the interface
in the experimentally-obtained cross section shows a patterned structure. This is due to
the dendritic microstructure of the cast base material and the segregation of phases with
a lower melting point in the interdendritic regions. As the melt pool dimensions were
determined by the best fit along the interface, the assumption of a remelting temperature
between solidus and liquidus temperatures appears suitable for this study.
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Figure 13. Comparison of the melt pool geometries obtained by two different numerical approaches
and the experimental result for P = 1000 W, v = 400 mm/min, T = 20 ◦C.

Further experimentally-obtained melt pool cross sections are compared to the simu-
lation results in Figure 14. The heat conduction model predicts the remelting depth with
deviations between +1.5 and +19.1%. Thus, the results computed by the heat conduction
model can be considered as sufficiently accurate for the purposes of process understanding
and optimization.
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Figure 14. Comparison of the remelting depth computed by the heat conduction model with the
experimental results for P = 1000 W and T = 20 ◦C with scanning speeds varying from 150 to
400 mm/min.

Figure 15 shows the effect of a laser remelting track on the substrate bonding of
a subsequently-deposited DMD track. While the remelting track in Figure 15a has a
regular and smooth bonding line, the DMD track without prior remelting in Figure 15b
shows irregular bonding to the substrate. This irregular bonding might be explained by
unsymmetrical powder feeding, as described by Eisenbarth et al. [23]. For the DMD track
with prior remelting in Figure 15c, the regular and smooth substrate bonding remains
unchanged, and it is apparent that the maximum remelting depth is larger than the dilution
caused by the DMD process. Hence, the selected remelting parameters fulfill the required
purpose for these DMD process conditions.
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Figure 15. Single track geometries for (a) laser remelting only (P = 1000 W, v = 250 mm/min),
(b) DMD only (P = 1000 W, m = 4.0 g/min), (c) laser remelting and DMD.

4.3. Groove Repair Process Optimization

The laser remelting process was applied to the groove geometry as described in
Section 3. Remelting with a constant scanning speed of 300 mm/min was evaluated with
the metallographic cross section shown in Figure 16a. In the bottom section, where the laser
remelts the material with eight raster paths, the remelting depth increases linearly. This is
due to heat accumulation, which leads to an increased substrate temperature. The low heat
conductivity of Inconel 718 increases the risk of substrate overheating, especially for parts
with small cross-sections and multiple short welding tracks adjacent to each other. The
remelting depth of the individual raster tracks in the groove bottom is between 1.03 mm
and 1.32 mm. Thus, substrate overheating leads to an increase in the remelting depth
of 28%. Compared to the heat conduction model results in Figure 10 for the scanning
speed of 300 mm/min, such an increase of remelting depth could be related to a 300 K
substrate temperature increase. This finding is similar to the observations by Higashi
and Yoshimi [24], where multi-track scanning increased the substrate temperature, and
therefore the size of the resulting melt pools. To realize a more constant remelting depth,
the remelting process can be optimized via several methods. One option is to include
cooling times after each deposited track, which would lead to an increased processing
time. Another option is to reduce the amount of heat input, either by reducing the laser
power or increasing the scanning speed. In order to optimize the laser remelting process
for both a stable remelting depth and minimum processing time, the option with increased
scanning speed was selected. Figure 16b shows the result of laser remelting with a scanning
speed that was increased from 250 mm/min for the first raster path to 400 mm/min for the
last, along with the resulting contour paths. Overall, the remelting depth is much more
stable compared to the specimen in Figure 16a. Figure 16c,d shows the cross sections of
grooves filled by DMD without and with prior laser remelting. Similar to the findings
of Zhang et al. [25], there is a high bonding quality for both conditions, without bonding
defects. The specimen with prior laser remelting shows a more regular bonding depth,
especially in the inclined wall area. Thus, the optimized laser remelting process may be
applied for repair applications that require very regular substrate bonding. Furthermore,
the combined milling and laser processing machine allowed for the realization of all
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process steps within one setup, which is of advantage for the dimensional accuracy of the
repair weldment.
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Figure 16. Groove cross sections after (a) laser remelting with constant scanning speed
(v = 300 mm/min), (b) laser remelting with variable scanning speed (v = 250–400 mm/min), (c) DMD
groove filling only without prior remelting, and (d) laser remelting with variable scanning speed and
DMD groove filling.

For the qualification of AM processes, it is essential to analyze the mechanical prop-
erties of the deposited material. A previous study of the authors [26] investigated the
microstructural evolution and tensile properties of Inconel 718 deposited by DMD without
laser remelting on cast IN718 substrates. Here, tensile testing of the interface specimens
showed that the interface is not the critical zone under tensile load, as the fracture location
was within the cast section, where the material has a lower yield strength due to its larger
grains. Therefore, cast Inconel 718 seems not to require laser remelting prior to the DMD
process for the investigated conditions. The main limitations of the present study are
related to the numerical accuracy of the fluid flow model. While the heat conduction
model could be solved very quickly for a large amount of processing conditions, it slightly
overestimated the remelting depth and underestimates the width. In contrast, the fluid
flow model could predict the melt pool shape of one reference condition very accurately;
however, the high computing time and limited model robustness prevented its application
for detailed parameter studies.

Overall, both of the numerical models developed were able to predict the melt pool
geometries of laser remelting tracks. Single track and groove filling experiments with and
without remelting confirm that the laser remelting process increases the bonding quality.
This improved bonding quality may lead to greater durability of parts fabricated or repaired
using DMD.

5. Conclusions

The present study describes two numerical models for the simulation of laser remelting.
Single track experiments were performed for model validation along with part scale experi-
ments, demonstrating the applicability of the developed remelting process for metal addi-
tive manufacturing. The results confirm that the proposed process increases the quality of
metal AM parts. The simulation and experimental results lead to the following conclusions:

• The neglection of fluid flow in the numerical simulation reduces the computing time
from 16 h to less than one minute.
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• The simplified heat conduction model is useful for quantifying the effects of the main
laser remelting processing parameters.

• Single remelting track experiments with varying scanning speeds confirm the high
physical accuracy of both the heat conduction model and the fluid flow model. The
fluid flow model showed the highest geometrical accuracy, while the heat conduction
model slightly overestimated the remelting depth and underestimated the width.

• Single tracks fabricated by DMD with and without prior remelting show that the
remelting step leads to more uniform substrate bonding.

• The application of laser remelting within a process chain for part repair confirms
increased bonding quality. Furthermore, the remelting process is expected to be
suitable for defect prevention in metal AM part fabrication and repair.
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