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Abstract: In this paper, the review of the new class of ionic conductors was made. For the last several
years, the layered perovskites with Ruddlesden-Popper structure AIILnInO4 attracted attention
from the point of view of possibility of the realization of ionic transport. The materials based on
Ba(Sr)La(Nd)InO4 and the various doped compositions were investigated as oxygen-ion and proton
conductors. It was found that doped and undoped layered perovskites BaNdInO4, SrLaInO4, and
BaLaInO4 demonstrate mixed hole-ionic nature of conductivity in dry air. Acceptor and donor
doping leads to a significant increase (up to ~1.5–2 orders of magnitude) of conductivity. One of
the most conductive compositions BaNd0.9Ca0.1InO3.95 demonstrates the conductivity value of 5
× 10−4 S/cm at 500 ◦C under dry air. The proton conductivity is realized under humid air at low
(<500 ◦C) temperatures. The highest values of proton conductivity are attributed to the compositions
BaNd0.9Ca0.1InO3.95 and Ba1.1La0.9InO3.95 (7.6 × 10−6 and 3.2 × 10−6 S/cm correspondingly at the
350 ◦C under wet air). The proton concentration is not correlated with the concentration of oxygen
defects in the structure and it increases with an increase in the unit cell volume. The highest proton
conductivity (with 95−98% of proton transport below 400 ◦C) for the materials based on BaLaInO4

was demonstrated by the compositions with dopant content no more that 0.1 mol. The layered
perovskites AIILnInO4 are novel and prospective class of functional materials which can be used in
the different electrochemical devices in the near future.

Keywords: BaLaInO4; layered perovskite; Ruddlesden-Popper structure; water uptake; oxygen-ion
conductivity; protonic conductivity; the proton conducting solid oxide fuel cells

1. Introduction

Recent economic and social challenges pose a priority task for scientists to create
new high-efficiency and clean energy resources [1,2]. Hydrogen is a renewable and high-
efficiency energy source, and its use has more advantages compared to fossil fuels [3,4].
The hydrogen-based economic requires development and improvement of many electro-
chemical devices including systems for hydrogen-producing (such as protonic ceramic
electrolysis cells PCECs) and hydrogen-operated devices (solid oxide fuel cells SOFCs).
Despite the active development of these devices, carried out during the past decades, the
unresolved problems of their high cost and poor long-term stability still exist [5,6].

The development and complex investigation of oxygen- and proton-conduction ce-
ramic materials is very relevant due to the possibility of using them as materials for PCECs
and SOFCs [7–11]. The most investigated oxygen-ion and proton conductors are com-
plex oxides with perovskite structure. However, further development of the materials
science requires the study of compounds with a different type of structure, including the
block-layered structures.
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2. Structure of Layered Perovskite-Related Materials
2.1. Materials with K2NiF4-Type Structure

The composition of K2NiF4 with monolayer block-layer structure was described for
the first time by D. Balz and K. Plieth in the year 1955 [12]. Two years later, S.N. Ruddlesden
and P. Popper showed that the structure of some new compounds (Sr2TiO4, Ca2MnO4, and
SrLaAlO4) belongs to the structural type K2NiF4 [13]. This structure can be described as
sequence of layers of distorted octahedra [NiF6] and layers [KF] with rock-salt framework
(Figure 1a). The crystal structures presented in this work were depicted with VESTA [14].
In 1958 year, S.N. Ruddlesden and P. Popper showed the possibility of the existence of
block-layer structures in which a perovskite block can contain not one, but several layers of
octahedra [15]. Subsequently, such structures with the general formula An+1BnX3n+1 were
called as Ruddlesden-Popper (RP) structures [16]. In this general formula, A and B are
cations, X is an anion (e.g., oxygen, fluorine), and n is the number of octahedral layers in
the perovskite block.
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Figure 1. Structure of K2NiF4 (a), BaNdInO4 (b), and BaLaInO4 (c), where red spheres represent the
oxygen atoms, green spheres represent the atoms of A-sublattice (K/Ba/La), and orange spheres
represent the neodymium atoms.

In general, the K2NiF4-type structure has tetragonal symmetry I4/mmm and coor-
dination formula AIX

(1)A
IX
(2)B

VIOVI
4 . For obtaining this structure, the combination of struc-

tural characteristics is need: (i) The tolerance (Goldschmidt) factor t must lie between
0.95 and 0.985 [13]; (ii) cation size ratio RA/RB must be in the range 1.7−2.4 [17]. The mono-
layer RP-structure can be obtained by the different charge combinations of cations, such
as A+

2 B2+F4, A2+
2 B4+O4, A3+

2 B2+O4, A2+A3+B3+O4, A+A3+B4+O4, A+B6+O4, A+
2 B2+Cl4,

A2+
1.5 A3+

0.5 B4+
0.5 B3+

0.5 O4 [18]. The different types of structures derived from the K2NiF4-type
structure are described: (i) The T-structure (directly K2NiF4-structure) with tetragonal
symmetry I4/mmm (e.g., La2NiO4); (ii) the tetragonal T′-structure which is characteris-
tic for cuprates Ln2CuO4 (Ln = Pr, Nd, Sm, Eu, Gd); (iii) the orthorhombic O- and O′-
structures (e.g., La2CoO4 and SmCoO4 correspondingly); (iv) the monoclinic M-structure
(e.g., Pr2NiO4) [17]. It should be noted that the decrease in the symmetry of the structure
leads to an increase in the tilting of octahedra [BO6]. It can be said that despite some differ-
ences is the crystal structures, the compositions derived from the K2NiF4-type structure
can be named as PR-or PR-related materials.

For the last 30 years, different compositions with K2NiF4 or related structures were
described as superconductors [19–26], giant and colossal magnetoresistors [27–30], mi-
crowave dielectrics [31–35], phosphors [36–39], mixed ionic and electronic conductors
(MIEC) [40–50], dielectrics [51–55], magnetic materials [56–58], thermoelectrics [59–62],
photocatalysts for hydrogen production [63–65], oxygen-ionic conductors [66–73], protonic
conductors [74–85] (Figure 2).
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Figure 2. Historical overview on the investigation of the materials with Ruddlesden–Popper structure.

The possibility of existence of block-layer structures at the cation size ratio lower than
1.7 was described by Yu. Titov et al. [86]. It was shown that compositions with RP-structures
with a different type of crystal lattice symmetry may exist up to RA/RB = 1.473. In other
words, the significant difference between the radii of the cations in the A and B sublattices
leads to the distortion of the structure and decreasing in the symmetry group. At the same
time, the sequence of AO salt layers and ABO3 perovskite layers remain unchanged.

Some compositions obtained by Titov and characterized by RA/RB < 1.7 are rep-
resented in the Table 1. The general formula of these compositions can be written as
AIILnnInnO3n+1, where A is the alkali-earth element, Ln is lanthanide, and n = 1. A few
years later, the use of neutron scattering allowed K. Fujii to prove the single phase of
BaNdInO4 and to determine the monoclinic symmetry (s.g. P21/c) for it [67]. Therefore,
the new structural types of BaNdInO4 and BaLaInO4 were described. They are derived
from K2NiF4-type structure and belonged to the monolayer PR-structures. Their unit cells
are presented in Figure 1.

Table 1. Some compositions with layered perovskite structure, obtained by Titiov et al. [86], the
cation size ratio is indicated in brackets.

Samples with Main Phase with K2NiF4
Structure and Some Unidentifiable

Impurity

Single-Phase Samples with
Orthorhombic

Structure (s.g. Pbca)

Samples with Main Phase with
Rhombic Perovskite Structure and

Some Unidentifiable Impurity

SrNdInO4 (1.545)
SrSmInO4 (1.526)

BaLaInO4 (1.678)
SrLaInO4 (1.578)
SrPrInO4 (1.555)

CaLaInO4 (1.497)
BaPrInO4 (1.655)
BaNdInO4(1.645)

2.2. Materials with BaNdInO4-Type Structure

The structure of BaNdInO4 has seven independent sites Ba1, Nd1, In1, O1, O2, O3,
and O4 (Figure 1b). In this type of the structure the layers of octahedra [InO6] do not
alternate with salt layers BaO but with oxide layers (Ba,Nd)2O3. The significant distortion
of BaNdInO4 structure from K2NiF4 structure leads to the changes in coordination environ-
ment of ions. The coordination formula for BaNdInO4 can be written as AXI

(1)A
VII
(2)B

VIOVI
4 .

It was shown [73] that compositions BaYInO4, BaSmInO4, BaHoInO4, BaErInO4, BaYbInO4
also belonged to the BaNdInO4-type structure. The increase in the ionic radii of alkali-earth
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element led to the increase in the lattice parameters a, b and unit cell volume and decrease
in the parameter c иβ angle.

The layered structure of BaNdInO4 exhibits the ability to accommodate various types
of substitutions. The possibility of acceptor doping of Nd-sublattice [67,72,73] and donor
doping of In-sublattice [71] were described. The introduction of cations of alkali-earth
metals Ca2+, Sr2+, Ba2+ in the Nd3+-positions led to the formation of oxygen vacancies.
For the general formula AIILnInO4 the quasi-chemical equation can be written as:

2AO
Ln2O3→ 2A′Ln + 2O×o + V••o (1)

At the same time, doping by ions with close ionic radii (Ca2+) led to the contraction
of cell volume. Contrarily, the doping by bigger ions (Sr2+, Ba2+) led to the expansion of
cell volume (rCa(VII)2+ = 1.06 Å, rSr(VII)2+ = 1.21 Å, rBa(VII)2+ = 1.38 Å, rNd(VII)3+ = 1.046 Å [87]).
The unit-cell volume of the solid solutions BaNd1−xSrxInO4−x/2 (0 ≤ x ≤ 0.3) [67] and
Ba1+xNd1−xInO4−x/2 (0 ≤ x ≤ 0.1) [72] linearly increased with the increase of dopant
concentration. The cell volume for the solid solution BaNd1−xCaxInO4−x/2 (0 ≤ x ≤ 0.2)
slightly decreased [82].

The donor doping of In-sublattice by such ions as Zr4+, Ti4+, Nb5+, Ta5+ with dopant
concentration x = 0.1 led to the formation of single-phase compositions with BaNdInO4-type
structure [71]. The donor doping of AIILnInO4 by M4+ and M5+ cations of In3+-sublattice
assumes the formation of interstitial oxygen in the structure:

2MO2
In2O3→ 2M•In + 3O×o + O′′i (2)

M2O5
In2O3→ 2M••In + 3O×o + 2O′′i (3)

Nevertheless, the details of crystal structure of donor-doped samples BaNdIn0.9M0.1O4+δ
were missed. Moreover, the influence of doping on the local structure including the change
in the coordination environment of ions due to the formation of point defects (oxygen va-
cancy, oxygen interstitial) and in the deformation of polyhedra have not been investigated.

2.3. Materials with BaLaInO4-Type Structure

The structure of BaLaInO4 has four independent sites Ba1/La1, In1, O1, and O2
(Figure 1c) and belongs to the orthorhombic symmetry (s.g. Pbca). The coordination
formula is the same as for K2NiF4-type structure. The compositions SrLaInO4 and SrPrInO4
have the same type of the structure (s.g. Pbca) [86]. The changes in the ionic radii of alkali-
earth (A(1)) and lanthanide metals (A(2)) leads to some changes in the structure of these
compositions (Table 2). As can be seen, the decrease in the ratio RA/RB is accompanied
by the decrease in the parameter a and in the interlayer space (bond length A(1),A(2)−O2)
and by the increase in the deformation of the [(A(1),A(2))O9] polyhedra. This occurs at
decreasing of the ionic radii of A(1) and A(2) metals. The deformation ∆ of polyhedra was
calculated as [86]:

∆ =
1
n ∑ [(li − l)/l]

2
(4)

where li is the bond length M−O, l is the average bond length M−O, n is the coordination number.
The possibility of acceptor and donor doping for SrLaInO4 and BaLaInO4 composi-

tions were described. The insertion of Sr2+-ions in the La3+-sublattice of SrLaInO4 (acceptor
doping) led to the formation of Sr1+xLa1−xInO4−0.5x (x = 0.1, 0.2) [66]. The compositions
BaLa0.9M0.1InO3.95 (M = Ca2+, Sr2+, Ba2+) [76] and solid solution Ba1+xLa1−xInO4−0.5x
(0 ≤ x ≤ 0.15) [79] were produced by the doping by M2+-ions of BaLaInO4. The insertion
of La3+-ions in the Sr2+-sublattice [69] and M′4+-ions (M′ = Ti, Zr) in the In3+-sublattice [70]
(donor doping) led to the formation of Sr1−xLa1+xInO4+0.5x and SrLaIn1−xMxO4+0.5x (x = 0.1, 0.2).
The compositions BaLaIn0.9M′0.1O4+δ (M′ = Ti, Zr, Nb) [78] and solid solutions BaLaIn1−xTixO4+0.5x
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(0 ≤ x ≤ 0.15) [80] and BaLaIn1−xNbxO4+x (0 ≤ x ≤ 0.10) [83] were obtained by the doping
of BaLaInO4.

Table 2. Some structural characteristics of layered perovskites, obtained by Titiov et al. [86].

Composition RA
RB

a, Å
∆

(A(1),A(2))O9
×10−4

Bond Length A(1),A(2)−O2
(Interlayer Space), Å

rA(1), Å rA(2), Å

BaLaInO4 1.678 12.933(3) 154 2.341 1.47 1.216
SrLaInO4 1.578 12.594(2) 192 2.382 1.31 1.216
SrPrInO4 1.555 12.474(4) 249 2.323 1.31 1.179

Both acceptor and donor doping led to the formation of oxygen defects in the structure
(oxygen vacancy and oxygen interstitial correspondingly). Consequently, comparative
analysis of the changes in the local structure of doped samples is needed.

The investigation of local structure of acceptor- and donor-doped samples based
on BaLaInO4 using Raman spectroscopy showed the presence of local disordering of
the crystal lattice [88,89]. The acceptor doping led to the decrease in the coordination
number of metal (barium and lanthanum) because of the formation of oxygen vacancies
during doping (Equation (1)). Consequently, the bond length Ba,La−O2 in the vacancy-
containing polyhedra decreased. At the same time, the introduction of ions with bigger
ionic radii Sr2+, Ba2+ (rSr(IX)2+ = 1.31 Å, rBa(IX)2+ = 1.47 Å, rLa(IX)3+ = 1.216 Å [87]) in the
La3+-sublattice provides the increase of Ba,La−O1 bond length. The average bond length
Ba,La−O increases what caused the expansion of unit cell in the ab direction and the
decrease of octahedra [InO6] titling [88,89]. This allows to say that acceptor doping of
BaLaInO4 led to the formation of less distorted structure. The distortion decreased with
increasing the ionic radius of dopant and dopant concentration.

The donor doping led to the appearance of “additional” (interstitial) oxygen O3 (Equa-
tions (2) and (3)). Consequently, the coordination number of some Ba2+- and La3+-cations
increased, and the bond lengths Ba,La−O1 and Ba,La−O2 and lattice parameter a increased
also [88,89]. The increase of the charge of dopant (Ti4+, Nb5+) and the concentration of
dopant led to a decrease of distortion of the structure. It is accompanied by the decrease of
the tilting of In-containing polyhedra.

Therefore, acceptor doping of La3+-sublattice of BaLaInO4 by ions with bigger ionic
radii (Sr2+, Ba2+) and donor doping of In3+-sublattice by Ti4+-, Nb5+-ions, accompanied
by the formation of interstitial oxygen, led to the increase of the average bond length
Ba,La−O and expansion of unit cell in the ab direction. In other words, the structure of
doped samples became less disordered and less compressed. These factors can provide the
positive role in the hydration processes and transport properties.

3. Water Intercalation into Structure of Layered Perovskites

The materials with layered RP-structure have two principal different ways for water
intercalation. First, the formation of hydrates occurs. In this case, the water molecules are
embedded into the sites within the rock-salt layers without dissociation into H+- and OH−-
ions. The crystal structure hydrated such as Ba2ZrO4·nH2O that contains ordered PR-layers
separated by (H2O)n layers with statistical distribution within the layer [90]. The thickness
of water layers is different and dependent on hydration conditions such as the temperature
and water partial pressure.

The same situation was observed for titanates NaEuTiO4 [91] and ALaTiO4 (A = Li,
Na, K) [92]. However, for compositions ALnTiO4 where A is the alkali metal and Ln
is the rare-earth metal, both types of water intercalation processes are possible [93–96].
The dissociative intercalation of water is obtained by the protonation and leads to the
formation of the compositions with the general formula HLnTiO4. The most common
situation is the existence of partially or completely protonated compositions with some
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amount of water HxLn1−xTiO4·nH2O. In this case, the hydrogen atoms are present in
crystallographic position of alkali metal into A-sublattice and as part of water molecules in
the interlayer space at the same time. It should be noted that for all cases the hydration led
to the expansion of interlayer space and was accompanied by the structural rearrangement.

Second opportunity for the water intercalation in the PR-phases is the dissociative
dissolution of water into crystal lattice. This type of hydration was observed for the per-
ovskite or perovskite-related materials with oxygen vacancies in the structure. The amount
of water uptake depends on the amount of oxygen vacancies which can be introduced into
the crystal lattice by the acceptor doping [97] or to be own structural defects [98–100]:

V••o + H2O + O×o ⇔ 2(OH)•o (5)

V×o + H2O + 2O×o ⇔ 2(OH)•o + O′′i (6)

where V••o is the oxygen vacancy, O×o is the oxygen atom in the regular position, (OH)•o is the
hydroxyl group in the oxygen sublattice, O′′i is the oxygen atom in the interstitial position.

Because the RP-materials A(1)A(2)BO4 do not contain the oxygen vacancies, the disso-
ciative intercalation of water is realized by the incorporation of hydroxyl groups into salt
blocks [(A(1),A(2))O]:

H2O + Ox
O ⇔ (OH)•O + (OH )′i (7)

where (OH)•O is the hydroxyl group in the regular oxygen position, (OH )′i is the hydroxyl
group located in the interlayer space. This process is accompanied by the increase of the
coordination number of metals in the A-sublattice from 9 (Figure 3a) up to 12 (Figure 3b–d).
Therefore, the possibility of water uptake in the RP-materials is provided at the realization
of next conditions:

1. The possibility of increasing coordination number of the metals in the A-sublattice;
2. The sufficient size of interlayer space for the localization of hydroxyl groups.
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The data about water uptake of the materials based on BaNdInO4 and SrLaInO4 are
not numerous. It was proved by the thermogravimetric measurements, that acceptor-
doped solid solution BaNd1−xCaxInO4−x/2 (0 ≤ x ≤ 0.25) was capable for the dissociative
incorporation of H2O up to 1.1 mol per formula unit [82]. The refinement of neutron
powder diffraction data obtained for donor-doped complex oxides BaxSr0.8−xLa1.2InO4+δ
(x = 0.2, 0.3) was shown the presence of about 0.50 water molecules per formula unit in the
structure [77]. These data confirm that RP-materials can incorporate a significant water
content. However, the relationships of the changes of the crystal structure during hydration,
the amount of water uptake, and the nature of oxygen-hydrogen groups are described in
detail only for doped compositions based on BaLaInO4.

The change in the crystal symmetry from s.g. Pbca for anhydrous forms of the samples
to s.g. P2/m for hydrated forms was observed for all compositions obtained by the
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doping of BaLaInO4 [76,78–81,83,84]. As it was mentioned earlier, the acceptor and donor
doping led to the formation of oxygen vacancies and oxygen interstitial in the structure
correspondingly. Consequently, the influence of the presence of oxygen defects and their
concentration on the water uptake should be taken into account for the acceptor- and
donor-doped compositions.

Figure 4a represents the dependency of water uptake vs. concentration of oxygen
vacancies for acceptor-doped samples. All data were obtained by thermogravimetric (TG)
measurements [101]. Based on the amount of oxygen vacancies, we can predict the amount
of water uptake in the structure according to Equation (5) (black symbols in the Figure 4a).
The real values of water uptake are represented by colored symbols. As seen, the general
trend of increase in the amount of water uptake with increase in the vacancy concentration
is retained. However, the experimental data are higher than the predicted values up to
one order of magnitude, and the range of values obtained for the compositions with the
same vacancy concentration is 0.3−0.6 mol H2O (yellow color in the Figure 4a). Therefore,
the correlation of amount of water uptake with the concentration of oxygen vacancies is
not obvious.
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Figure 4. The dependencies of water uptake vs. concentration of oxygen vacancies (a) and unit cell
volume (b) for the compositions BaLaIn0.9Sc0.1O4 (1) [83], BaLaInO4 (2) [74], Ba1.05La0.95InO3.975

(3) [79], Ba1.1La0.9In0.95Ti0.05O3.98 (4) [81], Ba1.1La0.9In0.95Ti0.1O4 (5) [81], BaLa0.9Ca0.1InO3.95

(6) [74], BaLa0.9Sr0.1InO3.95 (7) [74], Ba1.1La0.9InO3.95 (8) [79], Ba1.15La0.85InO3.925 (9) [79],
BaLaIn0.95Ti0.05O4.025 (10) [80], BaLaIn0.95Nb0.05O4.05 (11) [84], BaLaIn0.9Zr0.1O4.05 (12) [78],
BaLaIn0.9Nb0.1O4.10 (13) [84], BaLaIn0.9Ti0.1O4.05 (14) [80], BaLaIn0.85Ti0.15O4.075 (15) [80]. The violet,
green/blue/red, and rose symbols correspond to the compositions without oxygen defects, with
oxygen vacancies and oxygen interstitials in the structure correspondingly.

Figure 4b represents the dependency of water uptake vs. unit cell volume for the
compositions based on BaLaInO4. As we can see, for all compositions the general trend of
increase of water uptake amount with increase of unit cell volume is observed. The data
for donor-doped samples are presented in Figure 4 also, i.e., the data for the samples with
oxygen interstitial in the crystal lattice. The presence of such oxygen defects in the structure
leads to the increase in coordination number of the part of Ba,La-contained polyhedra from
9 (Figure 3a) to probably 10 (Figure 3b) in the anhydrous state. Consequently, it can be
expected the less amount of water uptake for the donor-doped samples compared with the
amount for acceptor-doped samples at the same unit cell volume. For example, the amount
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of water uptake for BaLaIn0.9Zr0.1O4.05 was less than for BaLa0.9Sr0.1InO3.95 by ~0.2 mol
per formula unit.

The state of oxygen-hydrogen groups in the structure of hydrated compositions based
on BaLaInO4 was detected by the infrared spectroscopy (IR) method. According to IR-
data, only hydroxyl groups were present. No water molecules or hydroxonium ions were
detected [101]. Thus, it can be said that for the layered perovskites based on BaLaInO4 the
mechanism of dissociative dissolution of water into crystal lattice is realized.

The comparative analysis of TG- and IR-data of solid solutions Ba1+xLa1−xInO4−0.5x
(0 ≤ x ≤ 0.15) and BaLaIn1−xTixO4+0.5x (0≤ x≤ 0.15) made it possible to identify the energy
non-equivalent hydroxyl groups. As we can see from Equation (7), the hydroxyl groups
have different positions in the crystal lattice. The hydroxyl groups on the regular oxygen
position and the hydroxyl groups located within the rock-salt layers can be distinguished.
Obviously, the hydroxyl groups located into different crystallographic positions must be
involved in hydrogen bonds with different strength. Figure 5. represents the dependency
of share hydroxyl groups involved in different hydrogen bonds vs. dopant concentration
for Ba-doped (Figure 5a) and Ti-doped (Figure 5b) solid solutions. As it was discussed
earlier, the increase in the dopant concentration lead to the expansion of unit cell in the ab
direction. This expansion must lead to the increase in the distance between hydroxyl group
and the oxygen atom, involved in the hydrogen bond. Consequently, the decrease in the
share of hydroxyl groups involved in the strong hydrogen bonds (I) compared with share
of hydroxyl groups involved in the weaker (II) and isolated (III) hydrogen bonds can be
predicted. The experimental obtained data (Figure 5) confirm this assumption. It should
be noted that the nature of oxygen defect (oxygen vacancy, oxygen interstitial) does not
significantly affect the proportion of shares from different hydroxyl groups.
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Figure 5. The dependencies of share hydroxyl groups involved into different hydrogen bonds vs.
dopant concentration for the solid solutions Ba1+xLa1−xInO4−0.5x (a) [79] and BaLaIn1−xTixO4+0.5x

(b) [80], where “I” and “II” are attributes to the share of hydroxyl groups involved in the strong and
weaker hydrogen bonds, “III” is corresponded to the share of isolated hydroxyl groups.

Therefore, the layered perovskites are capable for the intercalation of water even if
there are no oxygen vacancies in the structure. The hydration of the complex oxides based
on BaLaInO4 is realized by the dissociative dissolution of water molecules and the localiza-
tion of hydroxyl groups into interlayer space. This process is accompanied by the increase
in the coordination number of Ba and La atoms. The water uptake increases with the in-
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crease in the unit cell volume and it is not determined by concentration of oxygen defects in
the structure. The water uptake for doped compositions based on BaLaInO4 is up to 1.5 mol
H2O per formula unit, which is much bigger than for known perovskite-related materi-
als [97]. This makes it possible to consider RP-materials as promising proton conductors.

4. Oxygen-Ionic Conductivity in the Layered Perovskite-Related Materials
4.1. General Remark

Despite the layered perovskites first reported in the mid 1950s [12,13,15], the impor-
tance of these materials was initially limited by the discovery of superconductivity in
cuprate La2-xBaxCuO4, discovered in 1986 [19]. For a long time, the electrical properties of
this class of materials did not attract attention. X. Turrillas et al. studied the conductivity of
Sr3Ti1.9M0.1O7-δ, (M = Al, Mg) and low level of conductivity was observed [102].

Among the early works on the study of oxygen-ionic conductivity in RP phases, the
paper [103] should be mentioned, in which the oxygen deficient barium indates Ba8In6O17
was investigated. Its structure consists of an intergrowth of rock-salt planes of BaO with
triple layers of the oxygen-deficient perovskite-like BaInO2.5. This phase exhibited the
high oxygen-ionic conductivity comparable to Y2O3-stabilized zirconia (1.1 × l0−4 S·cm−1

at 450 ◦C).
The conductivity of the family of the materials Srn+lZrnO3n+1 was investigated by F.W.

Poulsen et al. in 1992 [104] and the composition Sr2ZrO4 had a conductivity of 7.5 × 10−5

and 5.9 × 10−4 S/cm at 750 and 1000 ◦C, respectively. The authors emphasized that the
nature of ionic conductivity is not known; it can be either oxygen-ion or proton transport.

In 1997 the investigation of the Ruddlesden-Popper phases was started by C. Navas
and H.-C. zur Loye [105] in order to find a new oxygen-deficient layered intergrowth
structure, analogous to the Aurivillius phases, but without Bi. The phases Sr3M2O7 (M = Ti,
Zr) doped with Al3+, Ga3+, and In3+ were investigated. Ionic conductivity predominated
only in intermediate pO2 ranges (10−5−10−15 atm), and it is only slightly higher than
10−5 S/cm at 800 ◦C. Like Turrillas X. et al. in early work [102], these authors concluded
that these phases are not good candidates for using as electrolyte systems. This is a serious
hindrance to the application of layered perovskites to SOFC.

Because the conductivity of these doped materials was fairly low, the main doping
strategy of many research was to increase electronic conductivity. Later, with the devel-
opment of materials science research, the systems with high oxygen-ion conductivities
were discovered. For example, S. Kato et al. in 2002 [66] described the solid solution
La1−xSr1+xInO4-δ that exhibited a conductivity of 10−3 S/cm at 600 ◦C. Perhaps this was
the first work in which the promising nature of the usage of phases with RP- structure as
oxygen-ion conductors and the possibility of a significant change in the conductivity with
suitable doping have been proved. This article became the starting point for motivation for
the development of a broad materials science search of new phases with a layered structure.
Further, systemic studies of phases with the RP-structure made it possible to establish the
main relationships of ion transport for this class of layered oxides.

In this review, we will focus on a discussion of phases with ionic conduction based on
In-containing compounds R3+(Sr,Ba)InO4 with RP-type structure.

4.2. Mechanisms of Oxygen Ion Migration in RP-Phases

Since RP-phases, containing transition metals with a variable oxidation state (nicke-
lates and cuprates mainly), have been widely studied as mixed conductors and the under-
standing of mechanism of oxygen-ion transport is important for such systems, therefore,
works devoted to this problem have been widely discussed in the literature. Recent reviews
describe mechanisms of oxygen ion migration in sufficient detail [106–108]. The defect
processes in RP oxides can be described by anion Frenkel disorder:

Ox
O ⇔ V••o + O′′i (8)
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Due to the structural features of RP oxides and flexibility in oxygen stoichiometry
(hypostoichiometry or hyperstoichiometry) oxygen ion migration in RP-structures can
occur by oxygen vacancy or oxygen interstitial mechanisms. It is usually believed that
in oxygen-deficient phases oxygen diffusion is carried out by the migration of oxygen
vacancies within the perovskite layer, and in oxygen-excess phases an interstitial oxygen
migration is dominant.

In general, there are three oxygen diffusion mechanisms: the vacancy mechanism, the
direct interstitial mechanism, and interstitialcy mechanism [107].

(i) The direct interstitial mechanism is associated with the migration of interstitial ions
directly to the adjacent interstitial site.

(ii) Interstitialcy mechanism includes such process: interstitial oxygen kicks the apical
lattice oxygen atom out from the LaO-plane, placing it to the next nearest available
interstitial site, while itself moving to site of the displaced apical oxygen on the
LaO plane (push–pull mechanism). The facile transport of the interstitial oxygens is
enabled by the cooperative titling of the BO6 octahedron. DFT calculations indicate
that this process requires a lower activation energy than that of the direct interstitial
mechanism [109].

(iii) The vacancy mechanism of diffusion is due to oxygen jumping to a neighboring vacancy.

All these mechanisms are described for RP-phases [110]. Researchers are more focused
on describing the interstitial mechanisms of oxygen migration, however, there is work that
pays attention to vacancy migration [111]. The oxygen migration mechanisms, described by
C. Tealdi at al. [111], are shown in Figure 6. The authors showed that vacancy migration is
not necessarily restricted to the perovskite layer, since jumps occur between apical oxygens
of adjacent layers. Figure 6 shows the following migration paths:

(a) Oxygen vacancy migration between

1. Equatorial-apical positions,
2. Between equatorial positions,
3. Between apical positions belonging to separate layers;

1. Oxygen interstitial migration—”wave-like” mechanism (2D path between apical and
interstitial sites within the ab plane).
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The activation energy for oxygen vacancy migration by hopping between two adjacent
equatorial positions within the perovskite layer is lowest migration energy (0.97 eV) [111];
the activation energies for oxygen vacancy migration between equatorial–apical positions
and apical–apical positions in two separate perovskite layers are slightly higher (1.14 and
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1.26 eV); and the activation energy for oxygen vacancy migration between apical–apical
positions within the perovskite layer is 2.11 eV. The oxygen interstitial migration occurs
with a lower activation energy of 0.71 eV [111].

Among the features of oxygen diffusion in RP-phases, the following can be noted:

− There is a high degree of anisotropy in the oxygen transport, interstitial diffusion in
the rock-salt ab plane is at least an order of magnitude faster than along the c-direction;

− Unusual feature of rp-materials is the existence of interstitials in both oxide and
peroxide states, and both can take part in diffusion [112].

Oxygen migration in RP-phases, containing elements with higher stable oxidation
states is less studied, although it can be assumed that in general the mechanisms will be
similar to those described for mixed conductors. Ca-doped NdBaInO4 phase was described
by X. Yang et al. [72] and both the static lattice and molecular dynamic simulations indicated
oxygen vacancy migration within the perovskite layer. Molecular dynamic simulations
specified two major vacancy migration ways, via one intraslab path along the b-axis and one
interslab path along the c-axis. The intraslab and interslab migration involves the terminal
oxygen sites within the perovskite layers and has comparable contributions. This result
is consistent with the 2D oxygen diffusion in [NdO] layer suggested by K.Fujii et al. in
accordance with the DBVS results [67].

4.3. SrLaInO4-Based Materials

The solid solution La1−xSr1+xInO4-δ 0 ≤ x ≤ 0.2, was described by S. Kato et al. in
2002 [66]. These compounds exhibited dominant oxide ion conduction at pO2 below
10−5 atm. In air, the phases showed contribution of hole conduction. The authors showed
that introduction of oxygen vacancy by increasing of Sr2+/La3+ ratio on A-site of the layered
perovskite LaSrInO4 was effective for increasing oxide ion conductivity. Doping increased
the conductivity by almost 2 orders of magnitude compared to the undoped composition
LaSrInO4 (Figure 7). The value of activation energy Ea of the oxide-ion conduction was
not large and reached 0.87 eV. The authors pointed out that the ion conduction in Sr-
doped layered perovskite LaSrInO4 is comparable to the ion conduction in Sr-doped
simple perovskite LaInO3 (logσ = −2.3 at 800 ◦C [113]), making layered perovskite-type
compounds promising candidate for SOFC. Further works appeared on the introduction of
various dopants into the phase LaSrInO4.

Introduction of Ga3+ in In3+-sublattice of layered perovskite LaSrInO4 or solid solution
La1-xSr1+xInO4-δ was accompanied by a decrease in conductivity [114], which is explained
by a decrease in the unit cell volume. Thus, for layered structures, in addition to defective-
ness (concentrations of defects), an important parameter affecting oxygen-ion conductivity
is an increase in the lattice volume. In this regard, Ba2+-substituted phases or Ba-analogs of
layered perovskites may be of interest.

An important feature of layered perovskites is the ability to adapt interstitial oxygen in
a wide range; therefore, donor doping of the phase LaSrInO4 was also used. The interstitial
oxygens are located in the NaCl-layer and coordinated of A-cations. The interstitial oxygens
are mobile, because of their coordination numbers are lower than those of other oxygen
atoms. For example, In3+ can be replaced by Zr4+ or Ti4+ and introduction of some oxygen
excess can be realized [69,70]. The solid solutions LaSrIn1−xBxO4+δ (B = Zr, Ti) were
synthesized via a nitrate–citrate route and neutron diffraction analysis proved that the
interstitial O3 atoms occupy the (La,Sr)O rock-salt layer and promote the expansion of the
ab plane. Although the cell volume decreased upon doping (due to the contraction along c),
the conductivity of doped samples increased, for example, by an order of magnitude for
the composition LaSrIn0.8Zr0.2O4+0.08 [70] (Figure 7). Thus, the expansion of the salt block
is an important factor for increasing the oxygen-ion conductivity in layered perovskites.
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Figure 7. The temperature dependencies of electrical conductivities of the compositions SrLaInO4

(1) [70]; SrLaIn0.8Zr0.2O4+d (2) [70]; Sr1+xLa1−xInO4−d, x = 0 (3), x = 0.1 (4), x = 0.2 (5) [66].

4.4. BaNdInO4-Based Materials

In 2014 a new structure family of oxide-ion conducting material, based on the composi-
tion NdBaInO4 was discovered [67]. From the point of view of the design of new materials
among the composition AA′BO4, where A and A′ are larger cations and B is a smaller
cation, the choice of Nd, Ba, In cations was based on the following considerations: (i) the
different sizes of Nd and Ba- cations result in the ordering of Ba/Nd cations and (ii) the
BaInO2.5 perovskite unit can form in view of the sizes of Ba and In cations. The structure of
NdBaInO4 is slightly different from K2NiF4, which was discussed in Section 2 above.

4.4.1. Effect of Substitutions on the A-Sites

A systemic research was carried out by researchers [67,68,72,73] to study the structure,
ion transport mechanisms, and electrical properties of phases based on NdBaInO4. Among
all of the BaRInO4-based materials (R = Y, Nd, Sm, Gd, Ho, Er, Yb) with layered perovskite
structures the Nd-containing phases showed the highest oxide ion conductivities (Figure 8).
Therefore, doped NdBaInO4 was the most widely studied.

The undoped BaNdInO4 exhibited mixed oxide-ion and hole conduction; oxide-ion
conduction was dominant in the intermediate pO2 region (e.g., pO2 = 10−22−10−9 atm
at 858 ◦C). The improvement of oxide-ion conductivity of BaNdInO4 was performed by
various cation doping. The oxygen-deficient Ca, Sr, Ba- doped on the Nd-sites phases were
obtained and the existence of oxygen vacancies in the crystal structures was experimentally
confirmed by neutron powder diffraction data [69,72]. For the doped samples and for the
same concentration of oxygen vacancies, the bulk conductivities in air increases in the
sequence σ(Nd0.9Ba1.1InO3.95)—σ(Nd0.9Sr0.1BaInO3.95)—σ(Nd0.9Ca0.1BaInO3.95) (Figure 9).
In the same sequence, the activation energy for oxide-ion conduction decreased 0.86 [68,82]—
0.795−0.73 eV, these values were lower than that of undoped BaNdInO4 0.95 eV [72].
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Figure 9. The concentration dependencies of electrical conductivities for the solid solutions
BaNd1−xSrxInO4−0.5x (green) [68] and BaNd1−xCaxInO4−0.5x (blue) [82], and for the compositions
BaNd0.9Ca0.1InO3.95 (1) [72], BaNd0.9Sr0.1InO3.95 (2) [72], BaNd0.9Ba0.1InO3.95 (3) [72] at 600 ◦C.

The authors [72] analyzed various reasons explaining the effect of the dopants Ca2+,
Sr2+, and Ba2+ on oxygen-ion conductivity in NdBaInO4.

− Energetic of defect formation. The calculated solution energies of Ca2+ (0.76 eV), Sr2+

(0.84 eV), and Ba2+ (1.6 eV) on Nd3+ sites showed that Ba2+ was the most energy-
unfavorable dopant [72].The authors of [72] indicated that the replacement of Nd3+ by
the cations with the comparable size may reduce the local structural relaxation and
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this made it possible to explain the increase in the oxygen conductivity in the order
Ba2+, Sr2+, Ca2+-dopants.

− Binding energy of the dopant-vacancy cluster. It is well-known that minimal binding
energy for the dopant-vacancy cluster promotes the O2−-conductivity. At the same
time, the calculated binding energies for Ca-, Sr-, and Ba-doped NdBaInO4 were
comparable ca. −0.9 eV, so, the trapping of the oxygen vacancies is not the main factor
in understanding the change in conductivity upon doping.

− Oxygen migration energy. The oxygen vacancy migration is two-dimensional within
the perovskite-laere boundary region for the acceptor-doped NdBaInO4. Molecular
dynamic simulations for the Ca-doped NdBaInO4 specified two major vacancy mi-
gration ways, respectively, via one intraslab way along the b-axis and one interslab
way along the c-axis. As a result, the authors concluded [72] that the Ca2+ is optimal
dopant for NdBaInO4 among Ca2+, Sr2+, and Ba2+-ions.

So, it was found that acceptor doping makes it possible to increase the oxygen-ion
conductivity, while in air the samples remain mixed conductors. The ratio of the total and
oxygen-ion conductivities is shown in Figure 10. As it can be seen, there is a scatter of data
for NdBaInO4 in different publications, but, in general, there is a correlation.
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Figure 10. The temperature dependencies of total (solid line) and oxygen-ionic (dash dot line) conduc-
tivities of the compositions BaNdInO4 (1 and 6) [68], BaNdInO4 (2) [82], BaNdInO4 (3) [72], BaLaInO4

(4 and 5) [76], BaNd0.9Sr0.1InO3.95 (7 and 8) [68], BaNdIn0.9Cr0.1O4 (9) [71], BaNdIn0.9Mg0.1O4

(10) [71], BaNdIn0.9Ti0.1O4 (11) [71].

4.4.2. Effect of Substitutions on the B-Sites

Effects of substitution at In3+-sites in NdBaInO4 on O2−-conductivity were investigated
in NdBaIn0.9M0.1O4 (M = Ce, Ga, Cr, Si, Mg, Zr, Nb, Ta, Ti, and Sn) [71]. As it was
shown in Figure 10, the total conductivity in air decreased by doping in the following
order: Cr > Mg > Ti > Ce > Nb = Ta = Sn > Zr > Ga >Si. In case of Cr-doping, although
highest total conductivity was observed, but, significant electron conductivity appeared and
moreover the Cr-containing phase was unstable at low pO2. Although the Mg-containing
sample had a high total conductivity, the ionic conductivity was lower than the Ti and
Ce-containing phases. The authors concluded that, in general, doping with higher valence
cation is suitable for achieving the higher conductivity. It was found that for increasing
oxide ion conductivity the substitution of In3+ with Ti4+ in NdBaInO4 was more effective.
As for other phases with the RP-type structure, the high oxide ion conductivity in NdBaInO4
could be assigned to the fast oxygen diffusion in rock-salt layer.
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4.5. BaLaInO4-Based Materials
4.5.1. Effect of Substitutions on the A-Sites

The new La2O3-containing phases with the composition BaLaInO4 were investigated
as oxygen-ion and proton conductors since 2018 by our research group. The structure of
this phase was described earlier by Titov Y.O. at al. [86].

As it was mentioned above, for undoped phases of the composition BaRInO4, the
electrical conductivity increased with increasing radius of R3+. Following this logic, the
phases where R3+ = La3+ should have the highest oxygen-ionic conductivity. As it is shown
in Figure 10, the undoped phase BaLaInO4 is characterized by a greater magnitude of
the oxygen-ion conductivity in comparison with phase BaNdInO4 in the area of lower
temperatures (T < 600 ◦C), and the phase BaNdInO4 exhibited higher conductivity at high
temperatures. This is explained by the higher activation energies of O2−-transport for
BaNdInO4 (Ea = 0.95 [72]) in comparison with BaLaInO4 (Ea = 0.87 eV [80]). This reason
presupposes the promising development of the materials science search for new phases
based on BaLaInO4 (Figure 11).
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Figure 11. Scheme of acceptor and donor doping of cationic sublattices of BaLaInO4.

The substitution of Ca2+, Sr2+, Ba2+- ions for La+3 ion led to the increase in the cell
volumes and Ba2+-doped sample showed more significant increase in parameters and
cell volume [76]. The ionic conductivities of the doped phases increase in the order of
BaLa0.9Ca0.1InO3.95−BaLa0.9Sr0.1InO3.95−BaLa0.9Ba0.1InO3.95, i.e., in the order of increas-
ing the ionic radius of dopants (Figure 12). The Nd-phase BaNdInO4 doped with M2+-
ions showed another trend in comparison with the BaLaInO4, as it was discussed above.
The authors [76] discuss other reasons for the increase in oxide-ion conductivity. The in-
crease in the lattice volume and the lattice parameters reduces the metal−O2− bonding, and,
as a consequence, increases the oxygen mobility. In doped BaLaInO4 the activation energy
of oxide-ion conductivity decreased in the order of Ca2+ (0.86 eV)—Sr2+ (0.85 eV)—Ba2+

(0.82 eV). So, Ba2+ is the most suitable dopant on the La3+ sites.
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Figure 12. The temperature dependencies of total conductivities in dry air of the compositions
BaLaInO4 (1) [74], BaLa0.9Ca0.1InO3.95 (2) [74], BaLa0.9Sr0.1InO3.95 (3) [74], Ba1.1La0.9InO3.95 (4) [74],
BaLaIn0.9Ti0.1O4.05 (5) [81], BaLaIn0.9Nb0.1O4.10 (6) [84].

The solid solution Ba1+xLa1–xInO4–0.5x (0 ≤ x ≤ 0.15) was investigated in [79] and
summarizing these results, it can be concluded that (Figures 13 and 14):

− Increasing oxygen vacancies due to the M2+−additions (Ba2+, as an example) results
in enhancement of oxygen-ion conductivity;

− Oxygen migration in RP-phases is strongly dependent on the dopant concentrations,
there is a narrow range of compositions for increasing conductivity x ≤ 0.10;

− High concentrations of dopant (Ba2+ x ≥ 0.10) lead to interaction of the defects and
decrease in the oxygen ion conductivity.
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Figure 13. The concentration dependencies of oxygen-ionic conductivities (filled symbols) and
activation energies (open symbols) for the solid solutions Ba1+xLa1−xInO4−0.5x (red) [79] and
BaLaIn1−xTixO4+0.5x (blue) [80] at 600 ◦C.
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Figure 14. The concentration dependencies of oxygen-ionic transport numbers for the solid solution
Ba1+xLa1−xInO4−0.5x (red) [79] at 600 ◦C and for the solid solution BaLaIn1−xTixO4+0.5x (blue) [80] at
300 and 600 ◦C.

4.5.2. Effect of Substitutions on the B-Sites

The solid solution BaLaIn1–xTixO4+0.5x (0≤ x≤ 0.15) was investigated in [80]. The introduction
of ions with a smaller ionic radius (rTi4+ = 0.605 Å, rIn3+ = 0.80 Å [87]) should lead to a
decrease of cell parameters, however, decreasing was observed for c-parameter, but a and
b-parameters as well as unit cell volume increased with dopant concentration. The observed
increase in a and b-parameters and cell volume may be a consequence of the incorporation
of the oxygen interstitials in the rock-salt layers.

The Ti4+-doping of BaLaInO4 led to the increase in the O2−-conductivities up to
~1–1.5 orders of magnitude. The concentration dependencies of the oxygen-ionic con-
ductivity and the temperature dependences of the ionic transport numbers are shown
in Figures 13 and 14. The sample BaLaIn0.9Ti0.1O4.05 (x = 0.10) exhibited nearly pure
oxygen-ionic conduction at T ≤ 400 ◦C. Comparison of the activation energies of oxygen-
ion transport with acceptor-doped phases showed that Ti4+-substituted phases had lower
activation energies (~0.77 eV) [87].

The Zr4+ and Nb5+-doped samples showed similar conductivity values in compar-
ison with the Ti4+-doped phase [78,84]. The oxygen-ionic conductivity of Nb5+-doped
phase BaLaIn0.9Nb0.1O4.1 was higher than for undoped composition BaLaInO4 by ~1 or-
der of magnitude and the conductivity values for doped sample were comparable and
slightly lower than for Ti4+-doped composition (Figure 12). So, the appearance of oxygen
interstitials can lead to enhancement of the oxygen-ion conductivity of BaLaInO4.

It is of interest to compare the phases with higher conductivity with an oxygen de-
ficiency and with an oxygen excess in order to understand—Is the oxygen mobility in
deficient phases faster than in excess phases? Comparison of oxygen-ion conductivities
is shown in Figure 15a. The dependence of the lattice parameters of a vs. oxygen nonsto-
ichiometry is also shown (Figure 15b). As can be seen, the a-lattice parameters changed
significantly upon doping. Comparing the ionic conductivities of the acceptor-doped
phases (Ca2+, Sr2+, Ba2+), it should be said that their conductivities were higher than for
Ti4+, Zr4+, Nb5+-doped samples. Although, it should be emphasized that both methods of
doping can significantly increase the oxygen-ion conductivity. It should also be noted that
the phases with the largest lattice expansion have the highest values of the oxygen-ionic
conductivity. In this regard, phases with isovalent doping (that is, nominally stoichiometric
RP oxides) may be of interest in order to find out, which factor most significantly affects the
oxygen mobility in RP-phases—defectiveness or geometric parameters? Such studies have
not been carried out in practice, but there is work on the Sc3+-doped phase BaLaInO4 [83].
The data on the oxygen-ionic conductivity of this phase are also shown in Figure 15. As it
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can be seen, isovalent doping can also significantly affect oxygen-ion transport. That is
the enhancement of the oxygen-ion conductivity can be due to a change in the geometrical
factor, and not only in the concentration of the defects.
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Figure 15. The values of oxygen-ionic conductivity (a) and lattice parameter a (b) vs. oxygen
stoichiometry in doped compositions based on BaLaInO4: BaLaIn0.9Sc0.1O4 (Sc0.1) [83], BaLaInO4

(red symbol) [74], Ba1.05La0.95InO3.975 (Ba0.05) [79], Ba1.1La0.9InO3.95 (Ba0.1) [79], Ba1.15La0.85InO3.925

(Ba0.15) [79], BaLa0.9Ca0.1InO3.95 (Ca0.1) [74], BaLa0.9Sr0.1InO3.95 (Sr0.1) [74], BaLaIn0.95Ti0.05O4.025

(Ti0.05) [80], BaLaIn0.9Ti0.1O4.05 (Ti0.1) [80], BaLaIn0.85Ti0.15O4.075 (Ti0.15) [80], BaLaIn0.9Zr0.1O4.05

(Zr0.1) [78].

Thus, both the factors, defect concentration and geometric factor, have an apparent
influence on oxygen ion migration. Which factor is the main one is not yet clear. Since such
layered systems with one salt block and one perovskite block are very labile and adapt a
large variations of cation substitutions, it is possible that a combination of the optimal size
of the salt block and the required concentration of defects will be the most favorable factor
for increasing the oxygen-ion conductivity.

4.6. BaGdInO4-Based Materials

Recently H.Yaguchi et al. [115] reported the new compounds BaGdInO4 and
BaGd0.9A0.1InO3.95 (A = Mg, Ca, Sr). These phases belong to a new structure family of
oxide-ion conductors and are quite different from those of the monoclinic BaRInO4-based
compounds. New phases have an orthorhombic Pnma Ba2Y2CuPtO8-type structure con-
sisting of square pyramid InO5, octahedron InO6, (Gd,A)O7 polyhedron (monocapped
trigonal prism) and Ba cation. The oxide-ion conductivity of BaGd0.9Ca0.1InO3.95 was app.
400 times higher than that of BaGdInO4 at 400 ◦C, as a result of oxygen vacancy forma-
tion [115]. The oxide-ion conductivity of BaGd0.9Ca0.1InO3.95 was comparable to those of
BaNdInO4 -based materials (Figure 16). The bulk conductivity of BaGd0.9Ca0.1InO3.95 was
1.3 × 10−3 S/cm at 700 ◦C and pO2 = 10−4 atm. The authors suggested that the conductiv-
ities of BaGdInO4-based materials can be improved by various doping. This conclusion
is quite justified, since a comparison of the Ca2+-doped compositions for the Gd, Nd,
La-containing phases confirms this statement (Figure 16).
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Concluding Remarks

Thus, undoped BaRInO4 phases are insulator in nature. The ability of these phases to
adapt a wide range of oxygen stoichiometry due to both the deficiency and the excess of
oxygen during acceptor or donor doping, respectively, makes it possible to significantly
increase the oxygen-ion conductivity. The comparison of the electrical conductivity values
is presented in the Table 3. However, in air, the doped phases also retain some level of
electronic conductivity. In the recent years researchers have mainly focused attention
on doped BaNdInO4 and BaLaInO4, that is on phases with the largest size of the R3+

ion. The effect of cation substitutions on oxygen migration is less understood, compared
with the perovskite ABO3, since the number of the systems studied is still quite limited.
The doped BaRInO4 phases are promising and for further improvement these materials
need more investigations.

Table 3. The comparison of the electrical conductivity values of phases with Ruddlesden–
Popper structure.

Composition Values of Electrical Conductivity under Dry
Air at 500 ◦C, S/cm Ref.

SrLaInO4 4.1 × 10−6 [70]
SrLaInO4 1.0 × 10−4 [66]

SrLaIn0.8Zr0.2O4+d 2.0 × 10−4 [70]
Sr1.1La0.9InO3.95 1.5 × 10−5 [66]
Sr1.2La0.8InO3.90 4.5 × 10−6 [66]

BaNdInO4 1.4 × 10−7 [73]
BaNdInO4 1.0 × 10−7 [72]
BaNdInO4 6.2 × 10−5 [82]

BaNdIn0.9Cr0.1O4 2.2 × 10−4 [71]
BaNd0.9Sr0.1InO3.95 3.3 × 10−5 [68]
BaNd0.9Ca0.1InO3.95 5.0 × 10−4 [72]
BaNdIn0.9Mg0.1O4 3.5 × 10−6 [71]
BaNdIn0.9Ti0.1O4 1.6 × 10−6 [71]
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Table 3. Cont.

Composition Values of Electrical Conductivity under Dry
Air at 500 ◦C, S/cm Ref.

BaGdInO4 6.3 × 10−8 [72]
BaGd0.9Ca0.1InO3.95 2.0 × 10−4 [115]

BaLaInO4 5.0 × 10−5 [76]
Ba1.1La0.9InO3.95 2.5 × 10−5 [74]

BaLa0.9Sr0.1InO3.95 1.3 × 10−5 [74]
BaLa0.9Ca0.1InO3.95 7.9 × 10−6 [74]
BaLaIn0.9Nb0.1O4.10 1.7 × 10−4 [84]
BaLaIn0.9Ti0.1O4.05 1.0 × 10−4 [81]

BaYInO4 1.7 × 10−3 [72]
BaErInO4 2.2 ×10−4 [72]

The approach, promising for further investigations, is finding the optimal size of the
rock-salt block for oxygen migration with the changing nature of the A- and B-site cations.

5. Protonic Conductivity in the Layered Perovskite-Related Materials

For ordinary perovskites, the dissociative incorporation of water (in other words
hydration) leads to the formation of protonic defects. This process takes place due to the
presence of oxygen vacancies, which may be obtained by acceptor-doping of the oxide.
The oxygen vacancies can be replaced by protons (OH−) when treated in water vapor
at some temperatures, and the proton is attracted to the electron cloud of an oxide ion,
and forms hydroxide ion defects (Equation (5)). It is currently an established fact that the
migration of protons in perovskites occurs according to the Grotthuss mechanism [116]. The
proton rotates around the oxygen and diffuses by jumping to a neighboring oxygen atom.

As shown in Section 3, for layered perovskites the introduction of water is not due
to the presence of oxygen vacancies as for ordinary perovskites. Not only the defect
structure of the oxide, but mainly the size of the rock-salt layers determines the degree
of hydration, which happens according to Equation (7). Therefore, the mechanisms of
proton migration will differ from ordinary perovskites. In this respect neutron diffraction
techniques will be helpful to provide detailed information about localization of protons
and further understanding the mechanism of the proton diffusion. However, these studies
are quite rare and the understanding of the mechanism of proton migration has not yet
been conclusively established in RP-perovskites.

First investigation of proton transport in the layered perovskites was performed
for the compositions Pr1−xM1+xInO4 (M = Ba2+, Sr2+; x = 0, 0.1) [117]. It was proved
that these materials had proton conductivity but oxide-ionic conductivity was extremely
low. In contrast, the Pr1−xBa1+xInO4 materials exhibited both proton and oxide-ionic
conductivity, and with increasing temperature, the proton transport number decreased,
and oxide-ionic transport number increased. Both materials seem suitable for operation of
proton-conducting solid oxide fuel cells (PC-SOFCs) at targeted temperature from 500 to
700 ◦C.

The most complete investigations for the compositions based on BaLaInO4 layered
perovskite were made. The first article concerning protonic conductivity in the doped
compositions based on BaLaInO4 was published in the 2018 year [85], and the over ten
works appeared till now [76,78–81,83–85,88,89,101]. Figure 17a represents the tempera-
ture dependencies of proton conductivities for acceptor BaLa0.9M0.1InO3.95 (M = Ca, Sr,
Ba) and donor-doped BaLaIn0.9M0.1O4+d M = Ti4+, Zr4+, Nb5+ compositions. As can be
seen, the doping leads to the increase in the protonic conductivity values up to 1.5 orders
of magnitude. However, some regularities can be determined. First, the values of pro-
tonic conductivity of acceptor-doped compositions were higher than the conductivity of
donor-doped samples with the same dopant concentration. As it was shown earlier, the
oxygen-ionic conductivity for these compositions were characterized by the same tendency.
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Obviously, for the layered perovskites as well as for ordinary perovskites, the dynamics
of the oxygen sublattice affects the mobility of protons, and the relationships of protonic
transport correlate with the relationships of oxygen ion transport. Second, the increase
in the protonic conductivity among compositions with the same type of oxygen defects
(oxygen vacancy or oxygen interstitial) correlates with an increase in the amount of water
uptake during hydration, i.e., with proton concentration. Therefore, both factors including
concentration of protonic species and their mobility affect significantly to the values of
protonic conductivity.
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BaLaIn1−xNbxO4+x (dark yellow) (b) [84].

To understand the role of change in the concentration of point defects, the conductivity
values for the compositions with different concentration of the same dopant must be
considered. Figure 17b represents the concentration dependencies of protonic conductivities
for the solid solutions Ba1+xLa1−xInO4−0.5x, BaLaIn1−xTixO4+0.5x, and BaLaIn1−xNbxO4+x
at 400 ◦C. For all solid solutions, increasing the dopant concentration leads to the increase
in the unit cell volume and, consequently, to the increase of the proton concentration. Then,
the increase in the protonic conductivity can be expected. However, the obtained results
do not match this assumption. As can be seen (Figure 17b), the maximum of protonic
conductivity is observed for small (0.05−0.10) dopant concentrations. The subsequent
increase in dopant concentration leads to the decrease in the conductivity values due to the
formation of proton-aggregating clusters:

M′A + (OH)•o →
(
M′A·(OH)•o

)× (9)

M•B + (OH)′i →
(

M•B·(OH)′i

)×
(10)

In other words, the increase in the acceptor/donor dopant concentration leads to the
trapping of protons for both acceptor- and donor-doped solid solutions despite the different
types of oxygen defects.

In this way, for the doped compositions based on BaLaInO4 two factors (concentration
and mobility of protons) play a significant role in the protonic transport. In the area of
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“low” dopant concentration, the proton conductivity increases due to increase in both
concentration of current carriers and their mobility (Figure 18). In the area of “big” dopant
concentration, the decrease in the proton mobility plays more significant role than the
increase in the proton concentration. Consequently, obtaining high-conductive protonic
electrolytes with layered perovskite structure is needed for the optimal combination of
both factors. It should be noted that all acceptor- and donor-doped samples based on
BaLaInO4 samples are ~ 90−98% proton conductors under wet air below 400 ◦C, which is
good characteristic with respect to their possible application as an electrolytic materials
in H-SOFCs.
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Figure 18. The water uptake (a), protonic conductivity (b) and protonic mobility (c) vs. oxygen
stoichiometry in doped compositions based on BaLaInO4: BaLaIn0.9Sc0.1O4 (Sc0.1) [83], BaLaInO4

(red symbol) [74], Ba1.05La0.95InO3.975 (Ba0.05) [79], Ba1.1La0.9InO3.95 (Ba0.1) [79], Ba1.15La0.85InO3.925

(Ba0.15) [79], BaLa0.9Ca0.1InO3.95 (Ca0.1) [74], BaLa0.9Sr0.1InO3.95 (Sr0.1) [74], BaLaIn0.95Ti0.05O4.025

(Ti0.05) [80], BaLaIn0.9Ti0.1O4.05 (Ti0.1) [80], BaLaIn0.85Ti0.15O4.075 (Ti0.15) [80], BaLaIn0.9Zr0.1O4.05

(Zr0.1) [78].

In the last three years, several articles concerning protonic conductivity in other layered
perovskites were published. The donor doping in the A-sublattice of AIILnInO4 was investi-
gated for the layered perovskite SrLaInO4 [77]. The presence of the protons in the structure
of BaxSr0.8−xLa1.2InO4+d was shown by the neutron powder diffraction method. However,
the conductivity measurements were performed without controlling the water partial pres-
sure, and the protonic conductivity values were not obtained. The compositions with accep-
tor doping in the A-sublattice for layered perovskites BaNdInO4 [82] and BaNdScO4 [118]
were obtained. For solid solutions BaNd1−xCaxInO4−0.5x and BaNd1−xCaxScO4−0.5x (x = 0.1;
0.2 for both solid solutions) it was shown that the doping leads to the increase in the pro-
tonic conductivity values in comparison with undoped samples; and the compositions with
x = 0.2 demonstrated the highest protonic conductivity. However, the systematic investiga-
tions of the effect of nature and concentration of dopant on the protonic conductivity were
not performed for these layered perovskites.

The comparison of proton conductivity values for Ca2+-doped composition based
on BaNdInO4 [82] with values for doped compositions based on BaLaInO4 is presented
in the Figure 17a. As can be seen, the composition BaNd0.9Ca0.1InO3.95 had higher
conductivity values compared with the values for the composition of more conductive
BaLa0.9Ba0.1InO3.95. However, the proton transport numbers for BaNd0.9Ca0.1InO3.95 did
not exceed 0.57 at the low temperatures (250−475 ◦C). At the same time, the composition
BaLa0.9Ba0.1InO3.95 was characterized by almost fully protonic transport (95−98% below
400 ◦C) despite slightly lower proton conductivity values.
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Therefore, the layered perovskites AA′BO4 are the new and promising class of proton
conductors. The nature of cations of their constituent as well as the nature and concentra-
tion of dopants strongly affect the values of proton conductivity and the proton transport
numbers. Obviously, the further materials research will allow to obtain the novel compo-
sitions with layered perovskite structure, characterized by high proton conductivity and
fully protonic transport at the same time.

6. Conclusions and Outlook

The materials research over the past few years has highlighted one more application
area of layered perovskites. Besides superconductors, magnetoresistors, dielectrics, ther-
moelectrics, phosphors, and photocatalysts, the compositions with layered PR-structure
can be used as the oxide-ions and proton conductors. The most investigated materials
with general formula AIILnInO4 are the compositions BaNdInO4 and BaLaInO4, which
demonstrate mixed hole-ionic nature of conductivity in dry air. Acceptor and donor doping
leads to a significant increase (up to ~1.5 orders of magnitude) of conductivity. However,
in dry air, the undoped and doped phases also retain some level of hole conductivity.
Despite this, the compositions with sufficiently high conductivity values were obtained
(Figure 19a). The interaction of these materials with water vapor leads to the dissociative
dissolution of water molecules and the localization of hydroxyl groups within the rock-salt
layers. The amount of water uptake increases with the increase of unit cell volume and
it is not determined by the concentration of oxygen defects in the structure. The water
uptake for doped compositions based on BaLaInO4 is up to 1.5 mol H2O per formula unit,
which is much bigger than for known perovskite-related materials. However, the proton
concentration in the structure is not a main factor determining the high proton conductivity.
For the layered perovskites based on BaLaInO4 it was shown that the presence of “big”
dopant content (>0.1 mol) led to the decrease in the proton mobility due to the appearance
of clusters with lower mobility. Consequently, the task of creation of novel highly conduc-
tive protonic electrolytes requires the complex approach including choosing the nature and
the ratio of cations in the structure (Figure 19b).
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Figure 19. The temperature dependencies of conductivity under dry air (a): BaLaInO4

(1) [76], Sr0.6Ba0.2La1.2InO4+δ (2) [74], Ba1.1La0.9InO3.95 (3) [76], BaNd0.9Sr0.1InO3.95 (4) [68],
BaNdIn0.9Mg0.1O4 (5) [71], ZrO2 (8 mol% Y2O3) [74] (6), BaGd0.9Ca0.1InO3.95 [115] (7) and under
wet air (b): BaLaInO4 (1) [76], Ba1.1La0.9InO3.95 (2) [76], SrCeO3(10 mol% Y2O3) (3) [119], BaCeO3

(10 mol% Y2O3) (4) [119].

In the past years, the need of developing new materials suitable for using in vari-
ous electrochemical devices keeps growing. From electrocatalysts [120] and MIEC mem-
branes [121] to SOFCs [122], PCFCs, and PCECs [123], every branch of energy application
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sciences requires novel and highly effective materials for creation of advanced devices and
technologies. The active growth of investigation of cathode materials with layered per-
ovskite structure [46–50] makes the task of creating electrochemical sources with the same
type of structure of electrolyte more relevant. Sure enough, proton-conducting layered per-
ovskites must take a significant place in the roadmap of future inorganic materials science.
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