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Abstract: The effect of relative humidity on the domain structure imaging and polarization switching
process of Pb(Zn1/3Nb2/3)O3-x%PbTiO3 (PZN-x%PT) ferroelectric single crystals has been investi-
gated by means of the piezoresponse force microscopy (PFM) and piezoresponse force spectroscopy
(PFS) techniques. It was found that the PFM amplitude increases with the relative humidity, and
that the ferroelectric hysteresis loops at different relative humidity levels show that the coercive bias
decreases with the increase in relative humidity. These observed phenomena are attributed to the
existence of the water layer between the probe tip and the sample surface in a humid atmosphere,
which could affect the effect of the electric field distribution and screening properties at the ferroelec-
tric sample surface. These results provide a better understanding of the water adsorption phenomena
at the nanoscale in regard to the fundamental understanding of ferroelectrics’ properties.
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1. Introduction

The superior piezoelectric and ferroelectric properties of ferroelectric materials have
made them promising candidates for non-volatile random access memories (NVRAMs),
microelectromechanical systems (MEMS), high-performance transducers, sensors, and
actuators [1–3]. These applications are closely related to their domain configurations
and polarization states, motivating extensive investigations on the domain structures and
polarization switching characteristics of ferroelectric materials [2,4,5]. With the rapid de-
velopment of the scanning probe microscopy (SPM) technique, it has already been widely
used for investigating ferroelectric domains on the micro- and nano-scale [5–7]. In partic-
ular, piezoresponse force microscopy (PFM) and piezoresponse force spectroscopy (PFS)
measurements are commonly used for the direct characterization of the local ferroelec-
tric domain structures and polarization switching behaviors, respectively [8–10]. Among
these studies, it was noted that the properties of ferroelectric materials could be extremely
sensitive to the ambient humidity [11–15].

In the last two decades, thanks to advances in humidity sensor technology [16–18], hu-
midity’s effects on ferroelectric materials have attracted numerous research interests and have
been studied by theoretical, experimental, and numerical simulation methods [11,19–21].
It is generally believed that the formation of a water meniscus between the tip and the
sample surface plays a crucial role in the SPM characterization of ferroelectric materials in
ambient humid atmospheres [22–25]. However, there is no consensus on the underlying
mechanism by which the water layer affects the property characterization of ferroelectric
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materials by SPM. Some researchers have ascribed this phenomenon to the existence of
the screening charges through ionized species from the water layer present under ambient
conditions [21,26–28]. Some other researchers have attributed it to the electrocapillary
phenomena at the tip–surface junction, and their interaction with bias-induced materials
responses [22]. In addition, the observed phenomena were believed to be caused by the re-
distribution of the switching electric field due to the existence of the conductive adsorption
surface layer [29,30]. Since the study of the water adsorption phenomena at the nanoscale
is significant for advancing the fundamental understanding of ferroelectric properties, it is
essential to clarify the effect of relative humidity on ferroelectrics.

In this work, two SPM techniques, including PFM and PFS, were used to characterize
the domain structure and ferroelectric hysteresis loops of PZN-x%PT single crystals under
various relative humidities. The purpose of this work was to study the effect of relative
humidity on the domain structure imaging and polarization switching properties of PZN-
x%PT single crystals, and to explore the possible mechanisms involved therein.

2. Materials and Methods

PZN-x%PT single crystals (supplied by Microfine Materials Technology Pte. Ltd.,
Singapore) grown by an improved flux method were used in this work [31]. After being
oriented into (100)L(010)W(001)T orientations, the samples were cut into dimensions of
4 mm (L) × 4 mm (W) × 0.5 mm (T). Then, the samples were polished to a mirror finish.

A commercial SPM instrument (MFP-3D, Asylum Research, Oxford Instruments, Santa
Barbara, CA, USA) was used to carry out the piezoresponse force microscopy (PFM) and
piezoresponse force spectroscopy (PFS) measurements for the acquisition of the domain
structure and the ferroelectric hysteresis loops, respectively. The PFM and PFS measure-
ments were performed using conductive PtIr-coated silicon tips (l ≈ 150 µm, f ~ 160 kHz,
k ≈ 7.4) (PPP-NCSTPt, Nannosensors, Switzerland). Before each measurement, the probe
was calibrated to guarantee data reliability. All the SPM measurements were conducted
at room temperature (25 ◦C), which was much lower than the Curie temperature of PZN-
x%PT (160 ◦C) [32]. In the PFS measurements, three loops were obtained at each point to
ensure repeatability. The negative (VN) and positive (VP) switching bias could be extracted
from the hysteresis loops, and the coercive bias and imprint bias could be calculated by
Vc = (VP − VN)/2 and Vi = (VN + VP)/2, respectively [33]. The relative humidity control
was achieved through a closed electrical cell (Figures S1 and S2 in the Supplementary
Materials). More detailed information can be found in the Supplementary Materials.

3. Results and Discussion

To explore the effects of relative humidity on the ferroelectric domain structure imag-
ing, the topography, PFM amplitude, and phase images of the PZN-9%PT single crystal
were measured with a scan area of 10 × 10 µm2 (Figure 1). It can be seen that there were two
types of contrast, and that they had an approximately 180◦ phase angle difference, which
represents two opposite polarity directions, i.e., one was upward and the other was down-
ward [1,34]. Figure 1d,e shows the PFM amplitude and phase distribution with relative
humidity at 5%, 10%, 20%, 30%, 40%, 50%, and 65%. It clearly demonstrates that the PFM
amplitude increased with the relative humidity, while the phase angle difference remained
around 180◦, without any significant change with relative humidity. Previous studies have
reported that the ambient humidity could affect SPM imaging because a water layer could
be formed between the SPM probe tip and the sample surface due to the condensation
of water molecules in the surrounding environment [12,21,29]. Therefore, below, we will
explore how this water layer affects the PFM amplitude of the ferroelectric domains.
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Figure 1. (a) Topography, (b) PFM amplitude, and (c) PFM phase images of the PZN−9%PT single crystal. (d,e) Histogram 
distribution of PFM amplitude and phase under various relative humidity levels from 5% to 65%. 

Figure 2 shows the schematics of the water layer between the tip and the sample 
surface. When the relative humidity was low, the effective contact area of the water layer 
was relatively small, and the effective contact area increased with relative humidity. This 
can be validated by the domain growth studies in different relative humidities, which 
report that the domain size increases with the relative humidity [30,35]. The difference of 
the effective contact area can affect the electric field strength and distribution between the 
probe tip and the sample surface. Numerical simulation has revealed that the electric field 
can be weakened by the thin water layer at low humidity, while being enhanced by the 
thick water layer at high humidity with the same applied bias [28,36]. This may explain 
why the amplitude increased with increasing relative humidities from one aspect. Besides, 
the water layer contains charge species and helps with the formation of the screening layer 
on the surface of ferroelectric materials [27,28]. This screening layer could weaken or neu-
tralize the depolarization field [22]. Therefore, the effective electric field, which is em-
ployed to measure the PFM images, increased at high relative humidities. This could be 
employed to interpret why the amplitude increased with relative humidity from another 
aspect. 
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Figure 1. (a) Topography, (b) PFM amplitude, and (c) PFM phase images of the PZN−9%PT single crystal. (d,e) Histogram
distribution of PFM amplitude and phase under various relative humidity levels from 5% to 65%.

Figure 2 shows the schematics of the water layer between the tip and the sample
surface. When the relative humidity was low, the effective contact area of the water layer
was relatively small, and the effective contact area increased with relative humidity. This
can be validated by the domain growth studies in different relative humidities, which
report that the domain size increases with the relative humidity [30,35]. The difference of
the effective contact area can affect the electric field strength and distribution between the
probe tip and the sample surface. Numerical simulation has revealed that the electric field
can be weakened by the thin water layer at low humidity, while being enhanced by the thick
water layer at high humidity with the same applied bias [28,36]. This may explain why the
amplitude increased with increasing relative humidities from one aspect. Besides, the water
layer contains charge species and helps with the formation of the screening layer on the
surface of ferroelectric materials [27,28]. This screening layer could weaken or neutralize
the depolarization field [22]. Therefore, the effective electric field, which is employed to
measure the PFM images, increased at high relative humidities. This could be employed to
interpret why the amplitude increased with relative humidity from another aspect.
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Relative humidity affected not only the PFM imaging process, but also influenced
the characterization of the polarization switching properties through the adsorption of
molecular water and ambient charge species [12,20,21,29,36]. Hence, the effects of relative
humidity on the ferroelectric switching behavior of PZN-9%PT single crystal were inves-
tigated. Figure 3a–c shows the amplitude, phase, and piezoresponse hysteresis loops of
a PZN-9%PT single crystal with the relative humidity in the range from 4% to 60%. The
coercive bias and imprint (Figure 3d) were extracted from the mathematical analysis of the
loops [37]. It clearly shows that the coercive bias decreased with relative humidity. This
phenomenon can be ascribed to the abovementioned water layer formed between the probe
tip and the sample surface [27,28]. This water layer can influence the switching behavior in
two aspects. One is that this water layer changes the electric field strength and distribu-
tion [20,29,36], and the other is that this water layer affects the sample surface screening
properties of ferroelectric materials through the adsorption of charge carriers [21,27]. Since
the electric field was weakened at a low relative humidity, while enhanced at high relative
humidity [28,36], that is why the coercive bias decreased with the relative humidity.
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loop, (b) phase loop, and (c) calculated piezoresponse loop. (d) Coercive bias and imprint as a function of the humidity.

Figure 3d also shows that the imprint increases with the relative humidity. Previous
studies have shown that the imprint of ferroelectric materials can be affected by various
factors, including the screening layer through surface trapped charges species [38–40]. With
the increase in the relative humidity, the amount of adsorbed water molecules increased,
and more charge species were introduced. These charge species were bound to the ferro-
electric material surface and favored one specific polarization direction. In this work, the
hysteresis loops were obtained in the domains with downward direction, and the imprint
shifted towards the direction that preferred the downward direction. This indicates that
the adsorbed water molecules can help to stabilize the original preferential polarization
direction, which is consistent with the results of previous studies [11,27].

To further validate the effect of the water layer on the polarization switching properties
of PZN-x%PT single crystals, hysteresis loops in the ambient air (with a humidity of
60–70%) and in synthetic air (21% oxygen, 79% nitrogen, and moisture content < 5 ppm)
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were obtained (Figure 4). In our experiments, the relative humidity was adjusted by
mixing different ratios of synthetic air and ambient air in a closed cell (Figures S1 and S2
in the Supplementary Materials). When the relative humidity was extremely low (<1%),
the closed cell was almost entirely filled with synthetic air, which contained only pure
nitrogen and oxygen, without water molecules or charge carriers. Figure 4c,f show the
hysteresis loops obtained in the ambient air and the synthetic air, respectively. It can be
seen that the hysteresis loops obtained in the ambient air demonstrated typical shapes
of the ferroelectric materials, i.e., the amplitude loop showed a butterfly shape, and the
phase loop presented an approximately 180◦ difference. In contrast to the hysteresis loops
obtained in the ambient air, the hysteresis loops acquired in the synthetic air did not
show any obvious polarization switching characteristics; the amplitude loops displayed
an irregular rhombus shape, and the phase loops showed a certain degree of oscillations,
which are smaller than 180◦, suggesting that the polarization switching process was not
successfully achieved in the synthetic air atmosphere.

Materials 2021, 14, x FOR PEER REVIEW 5 of 8 
 

 

To further validate the effect of the water layer on the polarization switching proper-
ties of PZN-x%PT single crystals, hysteresis loops in the ambient air (with a humidity of 
60–70%) and in synthetic air (21% oxygen, 79% nitrogen, and moisture content < 5 ppm) 
were obtained (Figure 4). In our experiments, the relative humidity was adjusted by mix-
ing different ratios of synthetic air and ambient air in a closed cell (Figures S1 and S2 in 
the Supplementary Materials). When the relative humidity was extremely low (<1%), the 
closed cell was almost entirely filled with synthetic air, which contained only pure nitro-
gen and oxygen, without water molecules or charge carriers. Figure 4c,f show the hyste-
resis loops obtained in the ambient air and the synthetic air, respectively. It can be seen 
that the hysteresis loops obtained in the ambient air demonstrated typical shapes of the 
ferroelectric materials, i.e., the amplitude loop showed a butterfly shape, and the phase 
loop presented an approximately 180° difference. In contrast to the hysteresis loops ob-
tained in the ambient air, the hysteresis loops acquired in the synthetic air did not show 
any obvious polarization switching characteristics; the amplitude loops displayed an ir-
regular rhombus shape, and the phase loops showed a certain degree of oscillations, 
which are smaller than 180°, suggesting that the polarization switching process was not 
successfully achieved in the synthetic air atmosphere. 

 
Figure 4. (a,d) PFM phase images of PZN−9%PT before PFS in the ambient air and the synthetic air, respectively; (b,e) 
PFM phase images after PFS in the ambient air and the synthetic air, respectively; and (c,f) hysteresis loops in the ambient 
air and the synthetic air, respectively. 

In addition, the PFM phase images before and after the polarization switching pro-
cesses in different atmospheres are shown in Figure 4a,b,d,e. For the phase images ac-
quired in the synthetic air, the marks of the PFS points are clearly seen in the PFM phase 
images after the PFS measurements, while no obvious marks can be seen in the PFM phase 
images obtained after the PFS measurements in the ambient air. This difference can be 
explained by the presence of humidity. For the hysteresis loops obtained in the ambient 
air, due to the presence of humidity, which contains free charge carriers, the charges gen-
erated during the PFS process can be compensated. For the hysteresis loops obtained in 
the synthetic air, there was not sufficient humidity to provide free charge carriers to com-
pensate for the tip-generated charges. Therefore, the charges generated during the PFS 
process accumulated on the surface of the sample. That is why the PFS points are visible 
in the PFM images obtained in the synthetic air. Considering the phase images and the 

Figure 4. (a,d) PFM phase images of PZN−9%PT before PFS in the ambient air and the synthetic air, respectively; (b,e) PFM
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the synthetic air, respectively.

In addition, the PFM phase images before and after the polarization switching pro-
cesses in different atmospheres are shown in Figure 4a,b,d,e. For the phase images acquired
in the synthetic air, the marks of the PFS points are clearly seen in the PFM phase images
after the PFS measurements, while no obvious marks can be seen in the PFM phase images
obtained after the PFS measurements in the ambient air. This difference can be explained
by the presence of humidity. For the hysteresis loops obtained in the ambient air, due to
the presence of humidity, which contains free charge carriers, the charges generated during
the PFS process can be compensated. For the hysteresis loops obtained in the synthetic
air, there was not sufficient humidity to provide free charge carriers to compensate for
the tip-generated charges. Therefore, the charges generated during the PFS process accu-
mulated on the surface of the sample. That is why the PFS points are visible in the PFM
images obtained in the synthetic air. Considering the phase images and the hysteresis loops
obtained in different atmospheres, it is believed that the polarization switching process can
be promoted by the charge carriers and moisture in the ambient air. Based on the different
results in synthetic air and ambient air, it can be concluded that the charge carriers and
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moisture in the ambient air can facilitate the polarization switching of PZN-x%PT single
crystals, i.e., reduce the coercive bias for polarization switching.

4. Conclusions

In this study, the effects of relative humidity on the domain structure imaging and
polarization switching properties of PZN-x%PT single crystals were investigated by PFM
and PFS techniques. It was found that the PFM amplitude increased with the relative
humidity, while the PFM phase had no significant relative humidity dependence. In
addition, the ferroelectric hysteresis loops at different relative humidity levels showed
that the coercive bias decreased with the relative humidity, while the imprint increased
with the relative humidity. The water layer formed between the probe tip and the sample
surface due to the condensation of water molecules in the environment was employed to
explain the above results. Specifically, the electric field was weakened with the thin water
layer at a low relative humidity, while it was enhanced with a thick water layer at a high
relative humidity. The study on the polarization switching behaviors in the ambient air
and synthetic air revealed that the coercive bias in synthetic air was larger than that in
the ambient air, suggesting that the charge species and moisture in the ambient air can
facilitate the polarization switching process. These results provided a better understanding
of the experimental contribution of the water layer to the domain structure and ferroelectric
hysteresis loop measurements of ferroelectric relaxors in SPM studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14092447/s1, Figure S1: Images of the closed electrical cell: (a) the top part; and (b) the
bottom part., Figure S2: (a) schematic of humidity control system; and (b) image of the humidity
control system used in this study.
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