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Abstract: Surrogate models (SM) serve as a proxy to the physics- and experiment-based models to
significantly lower the cost of prediction while providing high accuracy. Building an SM for additive
manufacturing (AM) process suffers from high dimensionality of inputs when part geometry or tool-
path is considered in addition to the high cost of generating data from either physics-based models or
experiments. This paper engineers features for a surrogate model to predict the consolidation degree
in the fused filament fabrication process. Our features are informed by the physics of the underlying
thermal processes and capture the characteristics of the part’s geometry and the deposition process.
Our model is learned from medium-size data generated using a physics-based thermal model coupled
with the polymer healing theory to determine the consolidation degree. Our results demonstrate
high accuracy (>90%) of consolidation degree prediction at a low computational cost (four orders of
magnitude faster than the numerical model).

Keywords: additive manufacturing; data-driven approach; fused filament fabrication

1. Introduction

High fidelity models (HFM) can capture the physical phenomena in many manufac-
turing processes with high accuracy. However, they also come with an inherent burden of
high computational cost that impedes any practical optimization of the process or in-situ
control. The finite element models [1–6] of the thermally driven processes in additive
manufacturing belong to this category. Current state-of-the-art physics-based models
require more time to simulate the underlying processes than to physically print and test
the specimen (Figure 1). The major cost stems from the need to solve the large system of
equations (i.e., transient heat equation) subjected to complex boundary conditions in AM.
The mesh activation associated with the gradual deposition of small blocks or thin layers
additionally makes the model numerically expensive. Finally, the computational burden
is aggravated by the need to handle the associated boundary conditions that change in
each time step. The cost of simulation grows exponentially with the size of the part geome-
try. Although various advanced numerical approaches [7,8] have been proposed to cope
with the computational cost, these approaches still lack the speed required for real-time
monitoring or optimization. For these reasons, surrogate models have been emerging as a
computationally efficient alternative to the numerical models.

In recent years, there have been multiple efforts focusing on creating surrogate models
to cope with the computational cost of the HFMs for AM [5,9–14]. In general, the data ac-
quired from the high fidelity simulations or experiments are used for training the surrogate
models (see Figure 1). A physics-based model focuses on capturing the underlying physics
given a set of input parameters (e.g., all materials properties, system, and process variables).
In the surrogate models, the focus is the opposite. Surrogate models aim to map the specific
input set to the selected outputs, while significantly reducing the computational cost. Since
the surrogate model is constructed with a specific objective, typically targeting the subset
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of input and output variables, a significant reduction in computational cost is possible.
However, when the input or the output of SM is not a scalar but a high-dimensional vector,
the SM may require significantly more data, more sophisticated statistical models, or might
become impractical to build [15].

Two Data Regimes and Complexity of the Surrogate Models in AM

In Table 1, we list the state-of-the-art surrogate models and compare and contrast the
size of data, the inputs and outputs, and the model used. The SMs handle various processes
in the AM family ranging from fused filament fabrication (FFF) to direct energy deposition
(DED). We sort the models listed in Table 1 based on the size of data used for the training.
The size can be as small as 60 data points when the output is a scalar (i.e., the pull-up stress
in [9]) or as high as 250,000 for the time-series temperature prediction [12]. Three to four
orders of magnitude difference in terms of size can be attributed to the high dimensionality
of the output of SM. All models in the large data category handle high-dimensional vectors,
either time-series data of temperature profile [16] or distortion field [13]. We follow the
increasing data size order to discuss the various aspects of the models and motivate our
approach. We grouped models into two categories: high- and low-volume data regimes.

Table 1. Current state-of-the-art surrogate models in additive manufacturing.

Paper AM
Process

Features
(Input of SM) Output of SM Reported

Data Set Model

Mozaffar [12] DED

Laser power,
scan speed,
toolpath,
geometry

Temperature
(time series) 250,000 RNN

Stathatos [16] LBAM Trajectory de-
scriptors

Temperature
(time series) 54,450 Iterative

ANN

Francis [13] LBAM Thermal
images

Distortion
field 21,818 CNN

Our work [17] FFF
Distance
from cooling
surfaces

Temperature
(time series) 12,000 ANN

Tapia [10] L-PBF
Scan speed,
laser power,
beam size

Melt pool
depth (scalar) 96 Gaussian

process

Wang [9] SLA
Geometry as
grid connec-
tion

Pull up stress
(scalar) 60 ANN

The first category of models handles high-dimensional input and output and tends to
employ deep learning methods. We consider the model by Mozaffar et al. [12] as the most
complex model among these that we compare. The model has been built based on the data
from the physics-based model of the direct energy deposition process (DED). The SM aims
to predict the temperature at any point as a time series using a recurrent neural network
(RNN). The input to the SM is relatively diverse and consists of the process parameters
(laser power and scan speed), tool-path (distance from the deposition and relative time),
and the geometry (the set of two shortest distances from the closest free surfaces). The
RNN utilizes a large dataset (250,000 points) for training, and the reported training time
was 40 h (100 epochs) on an Nvidia Quadro P5000 system. The model was tested on two
separate datasets: (i) expanded time span; and (ii) dissimilar geometries. The performance
of the model has been shown for selected points from several geometries. Moreover, the
performance in terms of extrapolation into the expanded time (i.e., beyond training time)
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has been shown for a few randomly chosen points. The testing mean square error for a
time span longer than the training time span was reported as 3.17 · 10−5. However, when
tested on different geometry, the error was only reported qualitatively to be significantly
higher. The reported reason behind the high error was attributed to the small number of
features assigned to capture the geometry (two hand-picked parameters).

A broader set of input variables capturing the tool-path was proposed by
Stathatos et al. [16]. Instead of using one distance from the deposition (as in [12]), this
model aims to handle a more complex tool-path by engineering a set of variables that
represent an intricate heat introduction pattern in a Laser-Based Additive Manufacturing
(LBAM) process. The effect of the laser heating at any point is taken into account by
dividing the neighboring area into a few concentric circles with increasing radius according
to the Fibonacci sequence. The number of the heat source points within each circle acts as
an input to the surrogate model. The proposed feature set captures the heat introduction
associated with the tool-path in terms of density of deposition, and each circle designates
the severity of the heat source. The model also addresses the effect of past trajectories
by defining a heuristic cutoff time. The SM is based on artificial neural networks (ANN)
and predicts the effect of the laser on the nearby region as the laser moves in space. The
predictive power of the SM is showcased for multiple test trajectories. The model predicted
the temperature and density with high accuracy (mean <1%) three orders of magnitude
more quickly. However, the model was built and tested for trajectory on only one layer.
Moreover, the model assumes an infinitely large system and does not consider the effect of
cooling from free surfaces.

Another class of model was proposed by Francis et al. [13], who leveraged the
convoluted neural networks to predict the distortion of the printed parts in LBAM processes.
In that case, both the input and output of SM are high-dimensional vectors. The input
consists of the thermal images obtained through the experimental measurements, and the
distortion field is considered as the output of the model (measured experimentally through
a 3D surface profiling system). The data for the model were collected in situ during the
printing processes and consist of 21,818 thermal images (40 GB). The total time of data
collection was 66 min. The reported time is much lower than the equivalent computational
time of any other model. However, the authors reported a relatively long training time of
26 days (and 260 epochs) on a supercomputer. The paper recognizes the localized behavior
of the printing process and its effect on distortion. In this area, a radius of importance
was assumed to account for the localized behavior. The model demonstrated an accuracy
within the tolerance (30 microns) of an AM machine in the trained region; however, higher
error (56 microns) was reported in the extrapolation region. The thermal images acting
as features, a large dataset, and a robust learning algorithm enabled the model to predict
with high accuracy. However, the high computational power and time requirements for
training, expensive sensor setup, and large data requirements pose an obstacle to the usage
of the model. Moreover, capturing the thermal response at a high resolution during the
fast printing process requires a complex sensor setup.

The second category of SMs lies in the low volume regime, which requires fewer data
points to train. In this case, the SMs focus on relating the process parameters (e.g., laser
intensity and print speed) to the part properties (e.g., melt pool depth and stress) [11]. In
such cases, the choice of the input quantities is relatively straightforward. This is in contrast
to the above-mentioned models handling geometry or deposition pattern and/or predict
time-series output. Here, we compare two representative models [9,10]. For example,
Tapia et al. [10] created a Gaussian process-based surrogate model. The goal of this SM
was to predict the variation of the melt pool depth of the Laser Powder-Bed Fusion process
(L-PBF) with respect to a few selected process parameters (e.g., scan speed, laser power,
beam size). The selection of the input was unambiguous, as the quantitative measure of
these process parameters is readily available. The uncertainty of the experimental data
was captured through the statistical Gaussian process model. The model was created with
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process-oriented features and limited dataset, as shown in Table 1. The work reported the
predicted melt pool depth for testing process parameters with high accuracy and speed.

Wang et al. built the surrogate model to predict the pull-up separation stress for
printed parts in a stereo-lithography (SLA) process. The model was constructed from the
data generated using finite element simulated pull-up stress distribution. The input to the
model consists of a two-dimensional shape grid (15× 15) of the cross-section. The grid
captures the shape of each layer. The pull-up stress constitutes the output of the model. The
model was trained using a relatively small dataset with 60 grids. The authors showcased
their ANN-based model by predicting the pull-up stress at a fraction of time (compared to
the physics-based model) with high accuracy.

In summary, in the area of AM, at the current state of the data-driven models, there is
a lack of well defined and tested features. Several surrogate models have been proposed so
far which either rely on the large volume of data to capture the correlation between high
dimensional inputs and outputs or operate in a small data regime and focus on selected
low dimensional inputs and outputs. This paper aims to close this gap and designs the
features by gradually incorporating the characteristics of the physical processes occurring
in manufacturing. This work aims to demonstrate that, given the medium size of the data
available, one can construct the robust surrogate model by enriching the set of features
with the characteristics of the underlying physical processes. We note that the underlying
physical processes are well established with analytical solutions to the simplified cases
available. This knowledge is leveraged to define a new set of features.

Our model builds on the ideas from our previous work [17], where we reported that a
relatively simple SM (based on the shallow neural network) assisted with distance-based
features. Our former model can predict the thermal behavior for relatively simple and
similar geometries (differing in size rather than shape). We categorize our model in the
medium data regime (12,000 data points—see Table 1). Our former model deals with the
time series thermal profiles, an example of high-dimensional output. The model in this
paper expands the previous model by handling more complex geometries but simpler
output. We build our surrogate model to predict the degree of consolidation of the printed
parts in the fused filament fabrication (FFF) process.

The model was trained using a relatively small data set with 60 grids. The authors showcased their ANN-based
model by predicting the pull-up stress at a fraction of time (compared to the physics-based model) with high
accuracy.

In summary, in the area of AM, at the current state of the data-driven models, there is a lack of well defined
and tested features. Several surrogate models have been proposed so far which either rely on the large volume of
data to capture the correlation between high dimensional inputs and outputs, or operate in a small data regime
and focus on selected low dimensional inputs and outputs. In this paper, we aim to close this gap and design the
features by gradually incorporating the characteristics of the physical processes occurring in manufacturing. For
the AM process considered in this work, the underlying physical processes are well established with analytical
solutions to the simplified cases available. We leverage this knowledge to engineer the features and to enrich
the feature set while improving the robustness of our model.

Our model builds on the ideas from our previous work [17], where we have reported that a relatively simple
SM (based on the shallow neural network) assisted with distance-based features. Our former model can predict
the thermal behavior for relatively simple and similar geometries (differing in size rather than shape). We
categorize our model in the medium data regime (12,000 data points-see Table 1). Our former model deals with
the time series thermal profiles that is an example of the high dimensional output. The model in this paper
expands the previous model by handling more complex geometries but simpler output. We build our surrogate
model to predict the degree of consolidation of the printed parts in the fused filament fabrication (FFF) process.

Our model utilizes physics-based features to improve both training and testing performance. To that end,
we leverage the form of an analytical solution to the instantaneous heat source to engineer the set of features.
Moreover, we capture the effect of the geometry by a set of weighted effective distances from the heat sources
and the sinks within a localized neighborhood that we call heat influence zone (HIZ). In this way, we reduce
the number of potential features influencing the thermal behavior and consolidation degree. Through system-
atic studies, we demonstrate the performance of our model that operates in the medium data regime and is
generalizable between geometries of various complexities.
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Figure 1: A schematic representation of numerical model, surrogate model, and printing process. In general, it
takes a few minutes to hours to print a part depending on the size. Few exceptionally large parts require hours
to print. However, it requires hours to days to simulate the same parts using traditional modelling. A surrogate
model can predict the output in real-time.
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Figure 1. A schematic representation of numerical model, surrogate model, and printing process. In
general, it takes a few minutes to hours to print a part depending on the size. Few exceptionally large
parts require hours to print. However, it requires hours to days to simulate the same parts using
traditional modeling. A surrogate model can predict the output in real-time.

Our model utilizes physics-based features to improve both training and testing perfor-
mance. To that end, we leverage the form of an analytical solution to the instantaneous heat
source to engineer the set of features. Moreover, we capture the effect of the geometry by a
set of weighted effective distances from the heat sources and the sinks within a localized
neighborhood that we call heat influence zone (HIZ). In this way, we reduce the number
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of potential features influencing the thermal behavior and consolidation degree. Through
systematic studies, we demonstrate the performance of our model that operates in the
medium data regime and is generalizable between geometries of various complexities.

2. Problem Formulation

The focus of this paper is on the feature engineering for a robust surrogate model
of the fused filament fabrication process predicting the consolidation degree at the in-
terfaces between the roads and layers. In this paper, we build a surrogate model (SM)
that is a statistical approximation of the computationally expensive numerical simula-
tions. The numerical simulation encompass the heat transfer model coupled with the
polymer healing theory to determine the consolidation degree between roads described in
Sections 3.1 and 3.2. Formally, a complex numerical simulation can be represented as
a mapping function where the inputs (physical parameters) are mapped to the output
(quantity of interest):

y = f (x) (1)

where y is the response of the numerical model ( f ) for the set of input parameters x. In
this work, y is the consolidation degree and f is the thermal model coupled with polymer
healing theory. In a general case, the inputs (x) are given as the materials properties,
process and system variables (e.g., print speed, feed rate, deposition temperature, base
heating, and ambient conditions), and deposition details (e.g., geometry, deposition pattern,
and deposition size). We aim to build the SM (g) represented as:

ȳ = g(x̄) (2)

where ȳ is the statistical approximation of y and x̄ is the engineered feature set. The
statistical inverse problem of determining a computationally inexpensive g by reducing
the difference between y and ȳ is called training. The training is conducted with the data
generated from the numerical model that serve as the “experience” of the model.

The key challenge is to engineer a set of features (x̄) that is robust enough to predict the
consolidation degree, as the SM training is performed on limited data. We focus on building
an SM that is capable of predicting the consolidation degree for complex geometries. In
other words, we focus on capturing the effect of part geometries for nontrivial deposition
processes. We aim to engineer a feature set (x̄) that encodes the geometry-related factors
into the model g, ensuring high accuracy and speed.

3. Numerical Model and the Physical Background of the Manufacturing Process

In this section, the key physical characteristics of the layer-by-layer printing process
are described followed by the physics-based numerical model used to generate data for
the surrogate model. First, details of the physical phenomena that govern the thermal
behavior are given. Next, the model of the consolidation degree and its link with the
thermal behavior are discussed.

3.1. Heat Transfer Model

The physical phenomena that govern the thermal behavior can be partitioned in
these categories: (i) heat introduction by deposited material; (ii) conduction within the
deposited material; and (iii) convection and radiation from the evolving free surfaces. The
thermal response of FFF during the printing process was extensively investigated by
Costa et al. [3]. The heat conduction within the part is represented by a transient
heat equation:

∂
(
ρCpT

)

∂t
= ∇(λ∇T) (3)

where ρ is the density of the deposited material, T is the temperature, Cp is the specific
heat of the material, and λ is the thermal conductivity. The thermal processes in FFF are
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influenced by the convection and radiation from the evolving free surface of the printed
parts. The free surface flux (Qsur f ), associated with the surface cooling, is given by

Qsur f = h(T − Tam) + κ
(

T4 − T4
∞

)
(4)

where h is the heat convection coefficient of the material measured at the ambient tempera-
ture (Tam), which is assumed to be the constant printing chamber temperature during the
printing process, and κ is the radiation coefficient. The reference temperature at an infinite
distance (T∞) is also assumed to be Tam.

To predict temperature profiles for the deposited layers, Equation (3) is solved numer-
ically (finite element method) with an initial thermal condition of deposition temperature
and boundary conditions for surface flux (Equation (4)). The free surface is redefined
at each time step with the boundary conditions applied. More details on the model are
included in our other work [18]. The model was experimentally validated in our previous
study [6]. The data are used for the training and testing of the surrogate model.

We design the features (see Section 4) by leveraging the analytical solution of the heat
equation (Equation (3)) for the problem of instantaneous point source (Q) on an infinite
medium [19]. The analytical solution is given by Equation (5):

∆T(d, t) =
Q

(4παt)3/2 exp
(
− d2

4αt

)
(5)

where α is the thermal diffusivity. In AM processes, the point sources can be superimposed
to model the cumulative effect of the heat. However, the complex boundary conditions
associated with the cooling surfaces limit the treatment of the part as a semi-infinite
medium. Nevertheless, we propose to leverage the analytical solution to design the feature
related to the heat input and loss. Although the relative effect of heat sources and sinks
on the temperature and consolidation degree may differ, the contributions depend on the
distances. The intuition behind the feature engineering is explained in greater detail in
Section 4.

3.2. Thermoplastic Consolidation

The second element of the numerical model involves consolidation degree calculations.
The bonding strength is computed at the interfaces between the roads constituting the
printed part. The consolidation occurs at the contact surfaces of the roads, also known as
deposition tool-paths. The polymer chains diffuse across the heated interface. This process
occurs at a temperature higher than the glass temperature (Tg). This phenomenon is also
known as thermal fusion bonding [20]. The time required to achieve the ultimate fusion
(or bond strength) strongly depends on the temperature profile. If the interface between
two roads is kept at an elevated temperature for an adequate time, the maximum fusion
can be achieved. In a less ideal condition, partial bonding is achieved and may lead to
fracture [21,22]. Hence, to determine the bonding strength, the temperature profile needs
to be established. Once the temperature profile is available, the bond strength is computed
using the polymer healing theory.

The bonding theory for the non-isothermal condition [23] is formulated as:

γ(t)1/2 =

[
n

∑
i=1

(
t1/2
i+1 − t1/2

i

τ∗r 1/2

)]1/2

(6a)

σ(t)
σ∞

=

{
γ(t)1/2 γ(t)1/2 <= 1
1 γ(t)1/2 > 1

(6b)

where γ(t) is the ratio of the diffused length with respect to the length of the polymer chain
at time t, σ(t) is the achieved bond strength at time t, σ∞ is the bulk strength or the ultimate
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bond strength, and n is the number of time intervals used to compute the bonding. For
each time interval ∆t = ti+1 − ti = t/n, the reptation time τ∗r is computed for the average
temperature

(
T∗i
)

of the interval by the Williams–Landel–Ferry (WLF) equation [24].

τr(T) = τr

(
Tre f

)
× exp



−C1

(
T − Tre f

)

C2 +
(

T − Tre f

)


 (7)

where C1, C2 are the WLF shift coefficients and Tre f is the reference temperature. The coeffi-
cients are material dependent. The shift coefficients for ABS plastic were experimentally
determined by Bartolai [25] using parallel shear rheometry.

4. Feature Engineering for the SM of Consolidation Degree

For any data-driven model, the choice of features is a critical element. Designing
the features constitutes a major part of the modeling process. For complex systems with
unknown or partially understood underlying processes, many features are chosen, followed
by feature selection processes (wrappers and filters). There has been considerable work in
the field of machine learning regarding feature selection [26,27] and engineering [28–30].
The primary aim of feature engineering is to reduce the computational cost, increase the
accuracy and generalizability, and avoid over-fitting.

Features in the AM Surrogate Models

The features are proposed for the exemplar SM models in AM, which is fused filament
fabrication. To capture the effect of the geometry or deposition path, different approaches
have been explored including 12× 12 grid-connection of a 2D layer [9], 2D images [11,13],
the shortest distances from the free surfaces [12], trajectory descriptors [16], and process
parameters [13]. The choice of features related to the geometry is dependent on the AM
process under consideration. For a road-wise deposition process, such as thermally driven
FFF, for each point in the part, Mozaffar [12] chose two distances to the nearest free surfaces.
The relatively small feature set captures the effect of part geometry in terms of the cooling
from the free surfaces. Such a choice of features has only been shown to perform well for
simple geometries. Another approach was taken for the stereolithography apparatus (SLA)
process in [9], where deposition is layer-wise. For each layer, the laser is used to draw
a shape on to the surface of the already formed layers. The geometry of each layer was
represented as a two-dimensional grid with 15× 15 discrete points. The grid encoding
the connectivity matrix was used as an input to SM that aimed to predict a scalar value of
pull-up stress for a given layer. The relatively small size of the input (15× 15) and output
(1) led to a good performance of the training and testing using small data.

The feature capturing the effect of the printing pattern is even less explored. Only one
work was found to propose a parameterization of intricate printing patterns.
Stathatos et al. [16] introduced a trajectory descriptor for the LBAM process. The de-
scriptors capture the effect of the heat sources that accounts for the relative distance and
the relative time of the heated depositions. The authors demonstrated a highly accurate
performance of the surrogate model for complex 2D scanning patterns. However, the
model was trained and tested using 2D scanning patterns on a semi-infinite medium and
only one layer. The expansion of the feature definition into 3D processes and defining
input for the finite print boundaries are still to be advanced.

4.1. Limit the Number of Defined Features by Introducing a Heat Influence Zone

The major observation that drives the feature engineering in this work is related to
the local characteristics of the deposition process. We observe that there exists a finite
zone where the effect of the manufacturing-related processes is significant. We call this
zone a heat influence zone (HIZ) [17] and define it as the maximum extent within which a
heated deposition causes a significant thermal change within the printed part. We limit the
distances related to the features to the extent of the HIZ. For the HIZ to be useful, it should
be independent of the geometry and dependent only on the material properties and the
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deposition parameters. In our other work [17], we showed a conservative estimation of
the HIZ. Here, the transient heat equation inside a semi-infinite part is used. The extent of
the HIZ for ABS thermoplastic has been estimated to be 0.8 mm (4 layers). This estimation
corresponds to the zone within which the temperature increase from a deposition is at least
∆T = 10.5 ◦C. Intuitively, beyond this zone, the thermal effect of the heat source and heat
sinks should be negligible.

4.2. Two Major Pieces of Information: The Distance and the Relative Time

The major factors affecting heat dissipation and heat introduction in a system are
the distance of the heat sinks and sources as well as the relative time of the heat source
introduction (i.e., time of deposition). Hence, we choose these two factors to capture the
effect of the geometry and the deposition pattern on the consolidation degree. Consequently,
all features are derived from the distances from/to heat sources and sinks and the relative
times of the deposition.

4.3. Designed Features

We design the features based on the underlying physics of the heat transfer by focusing
on the heat sources and heat sinks that depend on the geometry, and the deposition pattern
(see Figure 1). Heat sinks are associated with the part geometry and location of the cooling
surfaces, while heat sources are associated with the printing pattern. In Table 2, we list
the final set of features used in our model. In total, we derive five features related to
the heat sources: (i) effective area; (ii) weighted effective distance; (iii) relative time of
layer deposition; (iv) relative time of subsequent road deposition; and (v) relative time of
previous road deposition. Additionally, we define two features related to heat sinks: one
feature related to the free surfaces and one capturing the effect of the base. To calculate each
feature, we consider only the distances and relative time related to the depositions within
HIZ. Below, we discuss the features by categorizing them into geometry and printing
pattern related features, respectively.

Table 2. List of the final features with the formulae provided and the link to reference figure depicting
the corresponding feature.

Category Associated Characteristic Engineered Features Ref.

Geometry

Heat sinks Weighted effective distance Is = ∑
Nsur f

i=1 exp
(−d2

i
4α

)
Figure 2

Heat source
Weighted effective distance Ih = ∑

Nsur f

i=1 exp
(−d2

i
4α

)
Figure 2

Effective area Il = Ainput/AHIZ Figure 2

Base Weighted effective distance Ib = exp
(−d2

b
4α

)
Figure 2

Printing Next road In = 1
|td−tn | Figure 3

pattern Previous road Ip = 1
|td−tp | Figure 3

Layer Il =
1

|td−tl | Figure 3

4.3.1. Geometry-Related Features

Two sets of features related to the geometry are considered here: features related to
the heat sources and features related to the heat sinks. The heat sources are represented
by three factors: (i) the normalized area of deposition within the HIZ, where the area is
normalized by the area of the HIZ; (ii) the weighted effective distance; and (iii) relative
time of heat introduction. The heat sinks are represented by factors related to their distance
from the point. Three categories are considered: the side free surface, top free surface, and
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base surface. The side and top free surfaces always act as a heat sink. However, the heated
base may act as a heat sink or a source, depending on the part temperature.

We begin by explaining the feature related to the distances from the free surfaces. To
capture the collective effect of the cooling from the free surfaces, we integrate over the local
free surfaces within the HIZ. Figure 2 depicts the visual interpretation of this feature. For
any point (P) of interest within the printed part, the influence from any free surface (top or
side) is represented as:

Is =

Nsur f

∑
i=1

exp

(
−d2

i
4α

)
(8)

where Nsur f is the number of uniformly distributed points on the surface that are within
the HIZ and di is the shortest distance from the point (without crossing voids). The number
of discrete points used to compute the feature is chosen to match the discretization of the
numerical model. The exact form of the feature is inspired by the closed-form solution of
the transient heat equation with an external point source on a semi-infinite body [19]. In
this case, rather than simply computing the shortest distances, we additionally normalize
the distance with the heat diffusion length and weight the distance through the exponential
function. In this way, the free surfaces located at a short distance from a given point are
considered more influential than free surfaces at a longer distance. In the initial tests (see
Results Section), we showcase that defining features using the shortest distance without
the weighting function does not provide a good performance of SM. We report a superior
performance of the SM when the weighting function is included in the feature.

An analogous form of the feature is leveraged to capture the effect of the base:

Ib = exp

(
−d2

b
4α

)
(9)

where db is the shortest distance of the point from the base. However, this time only one
distance is computed and weighted in an analogous way as in the previous feature.

The normalization and weighting of the distances is the major innovation of this work
in the area of features. In Section 5, we analyze how the choice of the features affects the
training convergence of the SM.

• Layer influence (Il) the feature capturing the effect of the relative time of deposition of the next layer.
This is one of the most influencing parameter as the most significant contributor to reheating is the
subsequent layer depositions. The relative time dictates the heat accumulation. Considering the time of
deposition of the next layer to be tl, the influence is given as:

Il =
1

|td � tl|
=

1

�t3
(12)

Note that all time differences are given with respect to the time of deposition for the point of interest (here
P ).

5 Results
In this section, we first describe the data generation; next, we present the analysis of the model robustness and
their link to the increasing complexity of the features. The main element of this work is to build SM from the
data corresponding to one set of geometries and use the model for property prediction in other geometries. We
demonstrate the results that are nontrivial in terms of part geometry, printing pattern, and material behavior.
We showcase the robustness of our approach for the entire part.

(a) Free surface points within the heat influence zone for
two points P and Q.

(b) Free surface points within the heat influence
zone.

(c) Top cooling surface
points for point P contribut-
ing towards Is.

(d) Side cooling surface points for point
Q contributing towards Is.

(e) Deposition surface points for
point R contributing towards Ih.

Figure 2: Surface points constituting the heat sinks for internal points P Q, and R. The spheres with radius
LHIZ denote the HIZ around the points. The surface points are denoted by black circles.
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Figure 2. Surface points constituting the heat sinks for internal points P Q, and R. The spheres with
radius LHIZ denote the HIZ around the points. The surface points are denoted by black circles.



Materials 2021, 14, 2239 10 of 20

4.3.2. Printing Pattern Related Features

The features related to the printing pattern directly affect the temporal evolution of
the heat source. We use the following features to capture the dynamics of the pattern:

• Next road influence (In) depends on the time at which the adjacent next road is
deposited.Consider a point P on a given road, as shown in Figure 3, and its adjacent
deposition. The relative time of deposition of the next road affects the heat transfer.
Intuitively, if the relative time is long, the point gets sufficient time to cool down, and
the heat retention will be lower. Thus, the temperature difference between the next
road and P would be higher, and, in terms, heat flow would be higher, which causes
high peaks. The effect of the next road can be quantified as:

In =
1

|td − tn|
=

1
∆t1

(10)

where td is the time of deposition of point P and tn is that of the next road.
• Previous road influence (Ip) depends on the time at which adjacent previous road was

deposited. The previous roads also contribute to heat flow out of P. If the relative time
of the previous road deposition (td − tp) is high, it will be at a low temperature, and
higher heat will flow from P to the road compared to a more recently deposited one.

Ip =
1

|td − tp|
=

1
∆t2

(11)

where tp is the time of deposition of the neighboring previous deposition.
• Layer influence (Il) is the feature capturing the effect of the relative time of deposition

of the next layer. This is one of the most influencing parameter as the most significant
contributor to reheating is the subsequent layer depositions. The relative time dictates
the heat accumulation. Considering the time of deposition of the next layer to be tl ,
the influence is given as:

Il =
1

|td − tl |
=

1
∆t3

(12)

Note that all time differences are given with respect to the time of deposition for the
point of interest (here P).

tp td tn tl

P P P P

Deposition of the
previous road

Deposition of the
reference point (P)

Deposition of
the next road

Deposition of
the next layer

time
�t2 �t1

�t3

�t2

�t1

�t3

0 tp td tn tl

Figure 3: Feature representation of the deposition pattern. For a point P on the interface of a deposition, the
three features representing the deposition pattern is denoted by the three time spans (�t1,�t2, and �t3). The
darker deposition represent the deposition occurred in the time span.

for digit five and two is depicted in Figure 5. Each digit consists of eight layers (each 0.2 mm thick) with the
cross-section area on an average of 1.2 cm along the x-axis and 2.4 cm along the y-axis (the dimensions differ
slightly between digits - more details are given in the Supplemental Information).

Given Gcode, we generated FEM computational mesh, and the activation protocol simulating the quasi-
continuous discrete deposition. For each discrete point on inter-layer and inter-road surfaces (between deposi-
tions), the thermal history was extracted from the FEM simulation. Next, the reptation theory was applied to
the thermal history to compute the degree of consolidation, as explained in Section 3.2. The bonding degree,
expressed as the ratio of the bond strength to the ultimate strength, is considered as the output of the surrogate
model. The schematic is depicted in Figure 1.

In total, 87,808 data points are generated for the ten geometries. Five different geometries (one, two, four,
six, eight) were used for the training of the SM, which constitutes 42,912 data points. The size of data used in
training places our model in the medium data size category.

5.2 Non trivial behavior for relatively simple geometries
Before explaining the training process, we explain the nontrivial material behavior associated with our part
geometries and printing patterns. Example distribution of the consolidation degree is depicted in Figure 5.

11

Figure 3. Feature representation of the deposition pattern. For a point P on the interface of a
deposition, the three features representing the deposition pattern is denoted by the three time spans
(∆t1, ∆t2, and ∆t3). The darker deposition represents the deposition occurred in the time span. The
bottom panel depicts the temperature profile for a point P with features marked on the profile. The
curve has been obtained through a computational model of heat transfer for the deposition process.
Note that the features correspond to the characteristic points on the temperature profile.
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5. Results

In this section, the data generation is described first. Then, the analysis of the model
robustness and their link to the increasing complexity of the features is provided. Our anal-
ysis supported by the results demonstrates the robustness of our approach for nontrivial
geometries in terms of part geometry, printing pattern, and material behavior.

5.1. Data Generation

The numerical model (Section 3) was used to simulate the layer-by-layer depo-
sition process for a series of geometries with a nontrivial printing pattern. The ten
Hindu–Arabic numerals (0–9) were chosen as part geometries, as they have sharp cor-
ners while having dissimilar geometries. For each geometry, a Gcode was generated
using Cura®. CAD representations of all geometries, generated using Blender®, are
shown in Figure 4, and an example printing pattern for digit five and two is depicted in
Figure 5. Each digit consists of eight layers (each 0.2 mm thick) with the cross-section area
on an average of 1.2 cm along the x-axis and 2.4 cm along the y-axis (the dimensions differ
slightly between digits-more details are given in Appendix A, Figure A1).

Given Gcode, we generated the FEM computational mesh and the activation protocol
simulating the quasi-continuous discrete deposition. For each discrete point on inter-layer
and inter-road surfaces (between depositions), the thermal history was extracted from the
FEM simulation. Next, the reptation theory was applied to the thermal history to compute
the degree of consolidation, as explained in Section 3.2. The bonding degree, expressed as
the ratio of the bond strength to the ultimate strength, is considered as the output of the
surrogate model. The schematic is depicted in Figure 1.

In total, 87,808 data points were generated for the ten geometries. Five different
geometries (one, two, four, six, and eight) were used for the training of the SM, which
constitutes 42,912 data points. The size of data used in training places our model in the
medium data size category.

G1 G2 G3 G4 G5

G6 G7 G8 G9 G0

Figure 4: CAD models of the complex simulations. Each geometry is 8 layers thick and have distinct printing
pattern.

We use two digits (digit two and five) to demonstrate the nontrivial behavior of the deposition pattern and
consolidation for the seemingly similar geometries. Although the geometry of these two digits is very similar (ro-
tational symmetry), the printing pattern is significantly different. This has implications on the distribution of
the bonding degree.

Figure 5 depicts the distribution of the consolidation degree for a representative layer (layer 5) along with
the deposition pattern. For both digits, the printing process starts from the left bottom corner and proceeds
right. We use blue lines to mark the sequence of the road depositions, and orange arrows to indicate the changes
in the printing pattern. The bonding degree is neither uniform nor continuous over the geometry. This occurs
due to the nontrivial printing pattern that induces discontinuities in deposition that result in the discontinuous
distribution of the consolidation.

In the left panel of Figure 5, we marked five zones with a low consolidation degree (marked A-E). The
location of poorly consolidated zones in digit two (zones A, B, and C) is not consistent with that of digit
five (D-E). The difference in the distribution of the low consolidation regions is a direct consequence of the
difference in the deposition pattern. For example, in the digit two, segment A (as shown in the figure) has a
low consolidation due to a delayed deposition of the adjacent subsequent road (next road). Specifically, the
poor consolidation is attributed to tool-path, specifically, the long time lag between the adjacent depositions
and the associated heat transfer, resulting in the lower temperatures and reduced consolidation. As depicted
in the sub-figures 5(a)-(c), after the deposition of material in section A, the liquifier moves to the bottom and
right part of the digit two. The changes in the deposition are marked in the panels of Figure 5 with orange
arrows to facilitate tracing of the changes in the deposition.

A similar situation occurs for segments B, C, D, and E. A discontinuity in the printing pattern (time lag in
deposition) translates to the discontinuity in the consolidation degree. Even though the low consolidation zones
do not occur at the same position of the two similar geometries, the reason behind the phenomena is the same.

12

Figure 4. CAD models of the complex simulations. Each geometry is eight layers thick and has
distinct printing pattern.
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On the other spectrum of the consolidation degree, the higher consolidation regions are found in the areas
with narrower breadth than the broader ones. Even though points in the narrower regions are potentially
affected more by the cooling surfaces, the rate of heat introduction due to the next road deposition is relatively
higher than the heat loss. The positive balance results in higher heat retention, and consequently, higher
consolidation. In the regions of broader breadth, we observe an alternating high and low consolidation due to
an alternating print direction.

Moreover, the low consolidation regions occur due to the low thermal energy at temperature below Tg. Only
above that temperature the consolidation is initiated. These characteristics pose challenges for the regressive
models. To address this challenge, we build the surrogate model in two steps. In the first step, we first classify
the data into two categories: unconsolidated points (�(t) = 0), and partially consolidated points (�(t) > 0).
In the second step, the regressor model is used to predict the degree of consolidation only for the points with
partial consolidation.

5.3 Technical details
The data from the numerical model was generated on a 20 CPU system (Intel® Xeon® E5645 @2.40 GHz with
48 GB RAM). For the classification, we used decision trees to classify points that are fully consolidated and
unconsolidated. Decision trees demonstrated the highest accuracy among other classifiers that were tested (e.g.,

(a) (b) (c) (d)

Degree of consolida-
tion at the fifth layer Printing pattern

(e) (f) (g) (h)

A

BC

A

B C

D

E

D

E

Figure 5: Effect of printing pattern over consolidation degree in similar geometry. Note: The two geometries
are the same with difference lies only in the printing pattern. The first column depicts the distribution of the
consolidation degree while the rest of the figure demonstrates the printing pattern. The blue lines represent
the individual roads and the orange arrows direct the deposition progress (view in color). The difference in the
printing pattern creates the consolidation artifacts marked by the regions A, B, C, D, and E.
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Figure 5. Effect of printing pattern over consolidation degree in similar geometry. Note: The two
geometries are the same, where the difference lies only in the printing pattern.The first column
depicts the distribution of the consolidation degree while the rest of the figure demonstrates the
printing pattern. Panels (a–h) depict the details of printing pattern used. The blue lines represent the
individual roads and the orange arrows direct the deposition progress (view in color). The difference
in the printing pattern creates the consolidation artifacts marked by Regions A–E.

5.2. Nontrivial Behavior for Relatively Simple Geometries

Before explaining the training process, we explain the nontrivial material behavior
associated with our part geometries and printing patterns. An example distribution of
the consolidation degree is depicted in Figure 5. We use two digits (two and five) to
demonstrate the nontrivial behavior of the deposition pattern and consolidation for the
seemingly similar geometries. Although the geometry of these two digits is very similar
(rotational symmetry), the printing pattern is significantly different. This has implications
on the distribution of the bonding degree.

Figure 5 depicts the distribution of the consolidation degree for a representative
layer (Layer 5) along with the deposition pattern. For both digits, the printing process
starts from the left bottom corner and proceeds right. Blue lines mark the sequence of the
road depositions, while orange arrows indicate the changes in the printing pattern. The
bonding degree is neither uniform nor continuous over the geometry. This occurs due to
the nontrivial printing pattern that induces discontinuities in deposition that result in the
discontinuous distribution of the consolidation.

In the left panel of Figure 5, five zones with a low consolidation degree are marked as
A–E. The location of poorly consolidated zones in digit two (Zones A–C) is not consistent
with that of digit five (D–E). The difference in the distribution of the low consolidation
regions is a direct consequence of the difference in the deposition pattern. For example, in
digit two, Segment A (as shown in the figure) has a low consolidation due to a delayed
deposition of the adjacent subsequent road (next road). Specifically, the poor consolidation
is attributed to tool-path, specifically the long time lag between the adjacent depositions and
the associated heat transfer, resulting in the lower temperatures and reduced consolidation.
As depicted in Figure 5a–c, after the deposition of material in Section A, the liquefier moves
to the bottom and right part of digit two. The changes in the deposition are marked in the
panels of Figure 5 with orange arrows to facilitate tracing of the changes in the deposition.
A similar situation occurs for Segments B–E. A discontinuity in the printing pattern (time
lag in deposition) translates to the discontinuity in the consolidation degree. Even though
the low consolidation zones do not occur at the same position of the two similar geometries,
the reason behind the phenomena is the same.
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On the other spectrum of the consolidation degree, the higher consolidation regions
are found in the areas with narrower breadth than the broader ones. Even though points in
the narrower regions are potentially affected more by the cooling surfaces, the rate of heat
introduction due to the next road deposition is relatively higher than the heat loss. The
positive balance results in higher heat retention, and, consequently, higher consolidation.
In the regions of broader breadth, we observe an alternating high and low consolidation
due to an alternating print direction.

Moreover, the low consolidation regions occur due to the low thermal energy at
temperature below Tg. Only above that temperature is the consolidation initiated. These
characteristics pose challenges for the regressive models. To address this challenge, we
build the surrogate model in two steps. In the first step, we first classify the data into two
categories: unconsolidated points (σ(t) = 0) and partially consolidated points (σ(t) > 0).
In the second step, the regressor model is used to predict the degree of consolidation only
for the points with partial consolidation.

5.3. Technical Details

The data from the numerical model were generated on a 20 CPU system (Intel® Xeon®

E5645 @2.40 GHz with 48 GB RAM). For the classification, decision trees were used to
classify points that are fully consolidated and unconsolidated. Decision trees demonstrated
the highest accuracy among other classifiers that were tested (e.g., SVM, LDA, QDA, and
Gaussian SVM). The training was done on a four-core processor (Intel® core i7-4790 CPU
@ 3.60 GHz) with 12 GB RAM in parallel for 95 s. For partially consolidated points, the
regression model was constructed. Here, a single-layered shallow neural network was
constructed due to its low training time and high speed while reporting a high accuracy of
prediction. The final designed neural network was trained on a 20-core processor (Intel®

Xeon® E5645 @2.40 GHz with 48 GB RAM) and required only 10 s. Our training time is
significantly lower than other models (see Introduction).

5.4. The Architecture of Our Surrogate Model

The architecture of the SM is based on the problem definition and performance. The
design of the model is depicted in Figure 6. Our model consists of two steps. In the
first step, we build the decision tree-based classifier to distinguish the consolidated and
unconsolidated points, as shown in the figure. The xi are the branch condition and 0 and
1 are the output corresponding to unconsolidated points and consolidated points. In the
second step, we train the artificial neural network (ANN) regression model predicting
the degree of consolidation of the consolidated points. As depicted in the figure, the
ANN is trained with the same input set as the regression tree. The figure depicts the
schematics of the ANN, where χi is the weighted sum of the input set and σ is the output
(consolidation degree). The SM is trained and tested following the pipeline described
below. First, the output is generated through a numerical model described in Section 3. The
input to our SM is generated by using the Gcode, as described in Section 4. The repeated
entries are removed from the training dataset. To train the decision tree (Step 1), we use
both consolidated and unconsolidated data points since the aim is to differentiate between
consolidated and unconsolidated points. However, to train the neural network (Step 2),
only the data corresponding to the consolidated points are used.
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Figure 6: Structure of the surrogate model. The surrogate model consists of a decision tree followed by a single
layer shallow artificial neural network.

This is due to excessive cooling and non-optimal deposition pattern. For the selected geometries, the printing
pattern plays a major role in the consolidation degree. Even though some sections of the parts achieve higher
consolidation, it is still far from the ultimate strength (maximum 20% of the �UTS is achieved). Such behavior
is associated with the large size of the part. Nevertheless, the data exhibit a wide range of thermal behavior
and constitutes a good testing set for the feature engineering analysis.

The surrogate model was built to augment the speed of the numerical model while maintaining a certain level
of accuracy. While the accuracy of the surrogate model is visualized qualitatively in Figure 7, a quantitative
evaluation is presented in Table 3. We evaluate the capabilities of the surrogate model in terms of both speed
and accuracy with respect to the numerical model for both testing and training geometries.

The model was tested with the data from the digits three, five, seven, nine, and zero. Each row of the table
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Figure 6. Structure of the surrogate model. The surrogate model consists of a decision tree followed
by a single layer shallow artificial neural network.

The neural network was chosen with the following parameters:

• Type: Single layer shallow neural network (Figure 6).
• Regularizer: Bayesian regularization
• Loss function: Bayesian loss function [31]
• Optimizer: Levenberg–Marquardt
• Number of hidden nodes: 25
• Target training NMSE: 10−5

The parameters are chosen in an iterative fashion to accommodate faster convergence
in training while avoiding over-fitting.

5.5. Testing

We trained a series of surrogate models for different configuration of features (see
next subsection) and then utilized each model to predict the consolidation degree for each
layer of the tested geometries. Figure 7 reports the consolidation degree of an internal
layer (Layer 5) predicted through the physics-based numerical model (the first column),
surrogate modeling (the second column), and the associated normalized error (the third
column) for testing geometries nine, five, and three. The results of SM correspond to the
final selection of the features (see Table 2).

Figure 7 depicts the distribution of the consolidation degree with the nontrivial pattern
across the layer of the print. The distribution is consistent between the numerical model
and our surrogate-based predictions. The surrogate model predicts the consolidation
degree for test geometries with high accuracy, as shown in the figure. Error distribution
over the cross-section is random with reported error below 5%. In the studied geometries,
several sections exist with unconsolidated points. For example, in Figure 5, a few such
sections are marked. This is due to excessive cooling and non-optimal deposition pattern.
For the selected geometries, the printing pattern plays a major role in the consolidation
degree. Even though some sections of the parts achieve higher consolidation, it is still
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far from the ultimate strength (maximum 20% of the σUTS is achieved). Such behavior is
associated with the large size of the part. Nevertheless, the data exhibit a wide range of
thermal behavior and constitute a good testing set for the feature engineering analysis.

Our surrogate model is built to augment the speed of the numerical model while
maintaining a certain level of accuracy. While the accuracy of the surrogate model is
visualized qualitatively in Figure 7, a quantitative evaluation is presented in Table 3. The
capabilities of the surrogate model are evaluated in terms of both speed and accuracy for
the numerical model for both testing and training geometries.

Table 3. Accuracy and speed of the surrogate model.

Geometry
Time (s)

% AccuracyNumerical
Model SM

One (G1) 45,780 5.9 96.4
Two (G2) 122,210 5.8 95.5

Three (G3) 121,494 4.3 91.4
Four (G4) 74,701 6.0 95.0
Five (G5) 121,029 8.1 95.2
Six (G6) 171,000 7.3 93.6

Seven (G7) 49,646 2.4 89.0
Eight (G8) 239,931 4.4 93.1
Nine (G9) 172,732 3.9 91.9
Zero (G0) 186,496 4.0 92.4

Note: The surrogate model is on an average 25,000 times faster in predicting the bond strength than the
numerical model.

The model was tested with the data from the digits three, five, seven, nine, and zero.
Each row of the table provides the run-time for both the numerical model and the SM, and it
provides the accuracy of the SM. The models were executed in parallel in a 20 CPU system,
and the prediction time was recorded for each geometry. The time of computation for the
numerical model consists of the cumulative time from the thermal model and the reptation
theory, whereas the surrogate model can predict the consolidation degree directly from the
input parameters. We observe the higher average accuracy (Equation (13)) in the training
geometries than the testing geometries, which is typical for machine learning models.

σerror =





(σp−σa)
σa

σa > 0
1 σa = 0 and σp 6= σa

0 σa = 0 and σp = σa

(13a)

error =
1
N

√√√√ N

∑
i=1

(σerr(i))2 (13b)

accuracy = (1− error)× 100 (13c)

Equation (13) provides the details of the error calculation. Here, σp is the bonding
degree predicted by the model and σa is the bonding degree derived from the physics
based analysis.
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(a) FEM (b) SM (c) Error

(d) FEM (e) SM (f) Error

(g) FEM (h) SM (i) Error

Figure 7: Comparison of the predictive power of the SM for complex geometry. The left panel depicts the
distribution of the consolidation degree predicted using physics based simulation. The right panel depicts the
consolidation degree predicted by the SM.
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Figure 7. Comparison of the predictive power of the SM for complex geometry: (left) the distribution
of the consolidation degree predicted using physics based simulation; and (right) the consolidation
degree predicted by the SM.

Among testing geometries, the highest accuracy is recorded for digit five (95%), and
the lowest accuracy is recorded for digit seven (89%). The surrogate model required
only few seconds to compute the consolidation degree for the entire part (see Table 3).
Collectively, our surrogate model is four orders of magnitude faster than the numerical
model while maintaining about 90% accuracy. It is noted that the execution time of the
numerical model is exponentially increasing, but the SM is linear in nature. The statistics
summarized in Table 3 showcase the computational superiority of the surrogate model.

5.6. Feature Engineering Analysis

The results presented in the previous subsection were predicted using the final set of
features. In this subsection, we analyze the accuracy and complexity of the SM for several
configurations of the features. This analysis and the gradual change in the features lead to
the final model with high accuracy.

We perform a series of seven experiments, which we marked as E0–E6. In each
experiment, we increase the complexity of the features (e.g., by adding the weighting
function of the feature) or change the complexity of the data used in the model and
quantify the accuracy of the model for the testing geometries (G3, G5, and G9). The details
of the gradual evolution of the features is presented in Columns 2–4 of Table 4. The
representation of the features corresponding to the distance from the cooling surfaces and
the base is given in the second column. The size of the HIZ is varied to verify the initial
assumption of its extent (0.8 mm), and it is given in the third column. Additional features
are added in later experiments to represent the deposition pattern, which is given in the
fourth column. The complexity of the dataset in terms of the boundary points and the
unconsolidated (σ = 0) points is given in the fifth and the sixth columns, respectively. The
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complexity of the shallow ANN is measured in terms of the number of hidden nodes and
is given in the seventh column. The corresponding testing error is also reported in the last
three columns. The testing errors are measured for the testing geometries three, five, and
nine, denoted as G3, G5, and G9, respectively. The accuracy of the given surrogate model
is measured with respect to the numerical model.

We performed the reference experiment (‘E0’) for the simplest set of features where
the effect of cooling from the surface is captured directly through the distances without
any weighing function:

Is =

Nsur f

∑
i=1

di

Ib = db

(14)

where di are the distances of the ith points on the free surfaces from the point of interest
and Nsur f is the number of points on the surface. We selected this feature set based on
our previous work, where we tackle simpler geometries of increasing length [17]. The raw
distances are also used in other SMs in AM [12]. Nevertheless, for our set of geometries,
these features were insufficient for the model to converge, given the medium size of data.
The neural network-based surrogate model did not converge within a reasonable range
of the hyper-parameters (i.e., epochs < 300 and number of hidden nodes < 100). In this
reference experiment, we used all data—including boundaries and unconsolidated points.

In the first experiment (‘E1’), we simplified the training data by excluding the part
boundaries and unconsolidated points. These two types of data may be challenging as
their behaviors are significantly different and it may be difficult to capture the pattern in
the single SM. In ‘E1’, we additionally modified the features related to the distances from
the cooling surfaces. We added the weighting function: (∑ exp(−d2)). With these two
modifications, we report the ANN to converge. The resulting ANN consists of 50 nodes
on a single hidden layer. However, the average testing error is relatively high, 15% across
three geometries (G3, G5, and G9).

Table 4. Engineering the features.

Runs

Features Data Set

A
N

N
Si

ze Testing Error

Distance
Related
Features

Size
of

HIZ
(mm)

Extra
Feature

Bound-
ary

Uncon-
soli-

dated
Points

G3 G5 G9

E0 ∑ d 0.8 - included included - - - -

E1 ∑ exp(−d2) 0.8 - excluded excluded 50 0.17 0.12 0.16

E2 ∑ exp(−d2/4α)∑ exp(−d2/4α)∑ exp(−d2/4α) 0.8 - excluded excluded 25 0.072 0.058 0.094

E3 ∑ exp(−d2/4α) 0.8 - included excluded 45 0.068 0.056 0.087

E4 ∑ exp(−d2/4α) 1.6 - included excluded 40 0.056 0.045 0.073

E5 ∑ exp(−d2/4α) 1.6 1/tlayer1/tlayer1/tlayer included excluded 25 0.058 0.042 0.065

E6 ∑ exp(−d2/4α) 1.6 1/tlayer included classifier 25 0.088 0.048 0.082
Note: ‘Runs’ correspond to the experiments conducted serially to improve the features. ‘ANN Size’ corresponds
to the number of hidden nodes in the single hidden layer shallow neural network. ‘G#’ represents the testing
geometries corresponding to the digits.

In experiment ‘E2’, we introduced the normalization factor 4α, which has a unit of
m2/s and is inspired by the closed-form solution of the heat equation. As a result of this
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change, we observe an improvement in training and testing in ‘E2’ with a simpler ANN.
In this case, only 25 hidden nodes are required to attain an average testing error of 7.5%
across three tested geometries.

Encouraged by results from ‘E2’, in the next experiment—‘E3’—we increased the
complexity of the data by including the boundary points. The resulting error (7.0%) did
not significantly change, but the number of hidden nodes increased to 45.

To mitigate this effect, we tested two approaches. In the first approach, ‘E4’, we
doubled the size of HIZ and increased it from 0.8 to 1.6 mm. This change was motivated by
capturing more local information and the associated thermal signature. However, we did
not notice any significant improvement in the testing error (5.8%) or the number of hidden
nodes, which remained similar (40). This experiment increased our confidence that our
features are capturing sufficient information about the thermal signature from the cooling
surfaces. In the second approach, we introduced an additional feature that captures more
temporal information (as opposed to more spatial information as in the first approach,
‘E4’). We include one more feature that computes the relative time of layer deposition.
This configuration is marked as ‘E5’. In this case, we observe the number of hidden nodes
reduced to 25 as well as reduced testing error (by 5.5%). Although the improvement is not
significant, we can achieve better results with a smaller sized ANN compared to ‘E3’.

In the final iteration (‘E6’), we included the unconsolidated points through a classifier.
Using the same set of features, we train the decision trees to determine if the point exhibits
a lack of consolidation or not. With such setup, overall error slightly increased (7.3%).
However, in this experiment, the model handles the complete set of points. In particular, the
model is comprehensive to predict the consolidation degree for all points in the geometry.
Altogether, we demonstrate that physics-inspired feature engineering not only reduces the
number of required inputs for the model but also helps the learning process and improves
model accuracy.

6. Conclusions and Future Work

In this paper, the features capturing the effect of the geometry and the printing pattern
are presented and evaluated with a good performance of the corresponding SM. The
performance of the SM was evaluated based on the series of geometries with high accuracy
of 90%. Our good performance highlights the importance of feature engineering for robust
surrogate model construction. The key observation from this study is that, when data are
not readily available, one can build a reliable model by embedding more physics-based
aspects in the set of features while avoiding a more complex model. Apart from high
accuracy, our model offers four orders of magnitude faster prediction in comparison with
the numerical methods. Such excellent performance opens avenues for real-time prediction.
Finally, although this work focused on the FFF process, it can be transferred to other
thermally driven processes in AM family.
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Appendix A. Dimensions of the Digits

All of the specimen consist of eight layers, each layer being 0.2 mm thick with dimen-
sions given in Figure A1. The layers are built by depositing roads of 0.2 mm height and
0.4 mm thickness. All Gcodes are included in the data section.

(a) (b) (c) (d)

(e) (f)

(g) (h) (i) (j)

Figure 8: Schematic diagram of the digits (not to scale). All the dimensions are in mm scale.

24

Figure A1. Schematic diagram of the digits (not to scale), panels a–j depict digits 0–9. All the
dimensions are in mm scale.
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