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Abstract: In recent years, many seismic retrofitting methods have been performed to improve the
structural performance and prevent the brittle failure of structural members. In the case of steel
structures, slender seismic braces have been widely used for buildings, towers, and bridges. The brace
connections should resist the full plastic axial tension load to ensure adequate plastic deformation
performance for vibration energy absorption. However, certain connections do not satisfy these
requirements. Recently, carbon fiber reinforced plastic (CFRP) has been used extensively to strengthen
existing structures because of its high-strength, high elastic modulus, and light-weight characteristics.
In this paper, we investigate the applicability of CFRP strengthening for brace connections and gusset
plates with stepped surfaces using the vacuum-assisted resin transfer molding technique as a pilot
demonstration. Stepped surfaces can be eliminated by using alternative CFRP layers to straighten
the structural CFRP layers in order to effectively transfer the axial stress. Eventually, it is shown
that CFRP strengthening can improve the connection strength and plastic deformation with 3%
elongation, even if the CFRP is molded on the stepped surface.

Keywords: carbon fiber; preform; VaRTM; CFRP; strengthening; steel structure

1. Introduction
1.1. Research Background

Steel structures have excellent ductile performance due to their plastic deformability,
in addition to having good seismic resiliency and energy absorption. Thus, steel materials
have been widely used for building structures, latticed towers, large span bridges, high-
rise buildings, and spatial structures. On the other hand, to prevent structural damage
caused by severe earthquakes [1,2], seismic retrofitting has been rapidly applied to existing
structures [3,4]. In the case of steel structures, it has been reported that several seismic brace
members lack the connection strength—especially in terms of the load-carrying capacity
of the net area at the bolt hole and the gusset plate connection—needed to reach axial full
plastic capacity [5]. Although energy absorption via plastic deformation is considered in
the seismic design of steel braces, brittle failure in the net area without plastic deformation
of the gross sectional area often occurs. Therefore, several strengthening methods have
been proposed to prevent brittle failure in the net area [6]. Member ductility of 8.5 is
recommended to satisfactory perform seismic energy absorption.

To ensure the seismic performance of steel structures, several approaches can be
taken. Sarno et al. [3] investigated the effects of concentrated bracing, mega-brace systems,
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and buckling restrained braces (BRBs) using nonlinear time history response analyses.
Tena-Colunga and Vergara [7] suggested that BRBs have better seismic retrofitting effects
compared with traditional bracing systems; however, the installation costs for BRBs are
increased, as shown by comparing studies of the effects and costs of bracing systems and
BRBs for seismic retrofitting. Usami et al. [4] showed the performance of BRBs experi-
mentally, and their effective seismic retrofitting effects for arch bridge were represented
analytically. Many studies have pointed out that bracing systems can provide higher seis-
mic resistance through their effective horizontal resistance. However, sufficient connection
strength is required to ensure the strength and ductility of the brace member. Cui et al. [5]
experimentally and analytically reviewed the strength of gusset plate connections with
several different geometry plates under axial tension load. They suggested that the design
recommendation by the Architectural Institute of Japan (AIJ) [8] can be used to evaluate
the connection strength within safe value ranges. Tremblay [9] experimentally investigated
the seismic behavior of bracing systems with various cyclic loads, brace member shapes,
and compressive strengths, whereby post-buckling resistance and design equations were
proposed. Additionally, the Japan Building Disaster Prevention Association (JBDPA) estab-
lished evaluation guidelines for seismic performance for the inspection and retrofitting of
existing steel structures [6] to protect them from severe seismic damage [1]. Kasai et al. [10]
developed repair methods for existing beam–column connections using bolted connections
to prevent failure of welded connections at the edges of beams.

Almost all retrofitting methods for existing steel structures require bolted or welded
connections in order to install the alternative members. However, the welding of steel
plates requires high-temperature tools, and certain industrial plants, chemical plants, and
factories cannot allow the use of high-temperature tools because of the risk of fire. The
additional of bolt holes requires heavy tools, and there is often of a lack of space to set up
such tools. Moreover, strengthening using steel increases the weight of structures and its
related increasing seismic loads.

On the other hand, strengthening and repair methods using carbon fiber reinforced
plastic (CFRP) have been gradually applied to existing steel structures [11–13] with insuffi-
cient structural performance in aging or deteriorating structures. CFRP has good mechani-
cal and physical characteristics, e.g., high-strength, high elastic modulus, lightweight, and
good corrosion resistance performance. Moreover, CFRP can be conveniently connected to
steel using adhesive bonding, which can reduce the need for heavy, high-temperature tools.
Thus, CFRP can be easily used in construction without requiring any heavy machines and
can minimize the weight of the resulting strengthened member. Almost all on-site CFRP
strengthening methods use adhesively bonded connections on steel surfaces in order to
apply CFRP, either by adhesively bonding CFRP plates [11–15] or hand-layup molding
and bonding of carbon fiber cloth [11,16–20]. However, CFRP plates can only be applied to
planar surfaces because CFRP cannot be deformed so as to adjust it to curved and bumpy
surfaces. Additionally, the on-site hand-layup molding method can be applied to various
surface conditions; however, it requires lengthy construction time because the resin must
be injected into carbon fiber cloth layer-by-layer, with the time increasing exponentially as
the number of carbon fiber layer increases.

Based on the above, the authors developed an alternative CFRP strengthening method
using an on-site vacuum-assisted resin transfer molding (VaRTM) technique with adhesive
bonding for steel structures [21]. This technique the authors proposed can adhere and
mold at the same time to strengthen existing steel structures. VaRTM methods have been
used for the manufacture method of FRP products, without bonding to other materials,
in blades of wind power generation facilities, in aerospace structures, and civil structures
because of their excellent mechanical properties and short molding times. In this paper,
we focus on steel brace connections for CFRP strengthening to meet seismic retrofitting
requirements by VaRTM bonding. First, we clarify the strength requirements for steel
brace connections. Next, a CFRP strengthening design method using VaRTM is proposed.
Then, we demonstrate the proposed CFRP strengthening method and investigate the
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strengthening effects. Finally, it is shown that the proposed CFRP strengthening method
can be successfully applied to steel brace connections, even for stepped and bumpy bonding
surface, showing that the load-carrying capacity of the connections and ductility of the
brace members can be effectively improved.

1.2. Strengthening Method Using CFRP by VaRTM

VaRTM has been applied to mold large FRP products, such as the blades of wind
turbines and monocoque automobiles and footbridges [22], because of its productivity,
quality, and usability. The authors have developed an adhesively bonding and strength-
ening method by VaRTM through the modification of the VaRTM technique. Figure 1
shows a simplified diagram of the adopted CFRP strengthening method using VaRTM that
the authors developed [21]. Usually, metallic frames are used to mold FRP products by
VaRTM, and the frames are dismounted after curing. On the other hand, the adopted CFRP
strengthening method using VaRTM uses existing steel surface as a molding frame. First,
the steel surface is treated to remove paint and make a rough surface for adhesive bonding.
It has been recommended that the surface roughness should be higher than 20 micro-strain
of ten-point mean roughness [21]. Second, primer resin is applied to the steel surface to
avoid galvanic corrosion by carbon fiber and steel. After curing of the primer resin, carbon
fiber cloth ais set up onto the steel surface. Next, the molding utilities for VaRTM (peel
ply, resin flow material, seal, and bagging film) are attached. Finally, vacuuming and resin
injection are carried out. By using this method, carbon fiber cloth can be molded and
bonded directly onto various steel surfaces, even if many carbon fiber cloths are required
for strengthening. Thus, the molding time can be greatly shortened, and stable mechanical
performance can be obtained compared to the hand-layup molding method. Additionally,
carbon fiber cloth can be easily molded for vertical surfaces, such as steel brace connections.
Moreover, pre-formable carbon fiber cloth has been developed in recent years to allow
molding with a large number of carbon fiber cloth layers and to reduce the imperfections
caused by cloth slippage. To make the pre-formable carbon fiber cloth, thermoplastic
powder was applied onto carbon fiber cloth, as shown in Figure 2. Thus, the cloth can be
tentatively formed by heating because thermoplastic can be remolded easily by heating.
In this study, we stacked carbon fiber cloth in layers and unified them by heating to ease
the setup of the carbon fiber cloth on the steel surface. The details of the strengthening
procedure for the targeted structure in this research are introduced in Section 2.3.
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2. Experimental Methods

This section shows the design requirements for seismic resisting steel braces, not only
in terms of load-carrying capacity, but also in terms of ductile performance. The calculation
method was used to predict of the number of layers of carbon fiber cloth needed to avoid a
stepped surface and to transfer axial force.

2.1. Seismic Resisting Steel Braces and Its Seismic Performance Evaluation

The Japan Building Disaster Prevention Association (JBDPA) established an evaluation
guideline for the seismic performance of existing steel structures [6]. According to their
method, the load-carrying capacity Pu of a seismic brace for existing steel structures under
tensile force can be evaluated using the following equations:

Pu = min{P1, P2, P3, P4} (1)

• (1) Ultimate shear strength of bolts:

P1 = 0.6×m× n× Ab × f Fu (2)

where,
m is a total number of shear planes;
n is a total number of bolts;
Ab is sectional area of bolt;
f Fu is tensile strength of bolt (1000 N/mm2).

• (2) Tensile strength of brace in net area:

P2 = Ae × Fu = (A− d0t2 − hnt1)nB × Fu (3)

where,
Ae is a net area of brace;
Fu is tensile strength of brace (400 N/mm2 for SS400 steel);
A is sectional area of brace;
d0, t2, hn, and t1 are shown in Figure 3 (hn = 0.7 for n = 2);
nB is a total number of braces.

• (3) Shear-out strength of brace or gusset plate:

P3 = {e + (m− 1)p}n× t× Fu (4)

where,
e is end distance;
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m is a number of bolts on axial direction;
p is bolt pitch;
n is a number of bolts on transverse direction;
t is thickness of brace or gusset plate;
Fu is tensile strength of brace or gusset plate (400 N/mm2 for SS400 steel).

• (4) Ultimate strength of gusset plate in net area:

P4 = Ag × Fu (5)

where,
Ag is net area of gusset plate.

On the other hand, the JBDPA requires that the connection strength satisfies the
following strength to resist the full plastic axial load-carrying capacity and large plastic
deformation with hysteresis energy absorption:

Pu ≥ Preq = 1.2× A× F (6)

where,
A is sectional area of brace;
F is nominal yield stress of steel (235 N/mm2 for SS400 steel).
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area of gusset plate.

However, several existing steel brace connections designed using older Japanese
seismic design codes do not satisfy the JBDPA requirements, especially in terms of the
tensile strength of the brace in net area P2. This is because satisfaction of Equations (1)–(6)
was not required for structural design of the brace connections. In the case of a lack of
tensile strength of the brace in the net area, breakage occurs without ductile behavior,
as shown in Figures 4 and 5a. Therefore, extensive brittle failure has been reported
in severe earthquakes [23]. On the other hand, although sectional loss from bolt holes
occurs at the connections, yielding in gross sectional areas can be observed when the
breakage load in the net area is higher than the yielding load at the gross sectional area,
as shown in Figures 4 and 5b. Thus, several retrofit methods have been proposed, and
seismic retrofitting for net areas has been rapidly applied according to the evaluation and
retrofitting guidelines [6]. However, previous retrofitting method have required welding or
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alternative bolt holes being added on site to connect additional steel elements. This means
that heavy materials and tools must be used, especially as welding cannot be conducted in
certain factory buildings due to fire risks.
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2.2. Specimens

Based on the above, we adopted a steel-bolted connection with a lack of tensile strength
in the net area, as shown in Figure 6. We adopted SS400 angle steel with a 50 × 50 × 4 mm3

sectional size as a brace and SS400 steel plates of 16 mm thickness and 100 mm width as
gusset plates. Several punch marks of 100 mm pitch were created on the steel brace to
evaluate plastic deformation after testing, as shown in Figure 6. M16 high-strength steel
bolts were used to connect the brace and gusset plates. The minimum yield stress and
tensile strength values for SS400 steel is 245 N/mm2 and 400 N/mm2, respectively [24].
The steel plate around the bolt holes was welded to prevent failure in the net area at
the right-side connection. Table 1 shows the load-carrying capacity as evaluated using
Equations (2)–(6). Thus, the specimen will break in the net area without plastic deformation
in the gross section.
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Table 1. Evaluated load-carrying capacity values.

Failure Mode Load-Carrying Capacity Equation

Ultimate shear strength of bolts 241 kN (2)
Tensile strength of brace in net area 70.8 kN (3)
Shear-out strength of gusset plate 144 kN (4)

Ultimate strength of gusset plate net area 576 kN (5)
JBDPA requirement 110 kN (6)

Table 2 shows the experimental parameters—without CFRP strengthening specimen
(namely NS) and two type of CFRP strengthening specimens (namely CFS-full and CFS-
loss). We adopted two types of CFRP strengthening—the gross sectional strengthening
model and sectional loss strengthening model. The total number of CFRP layers for the
gross sectional strengthening model was calculated by the strength of the gross sectional
area of steel brace, while the sectional loss model multiplied the sectional area of the
bolt hole by the strength of the steel. Thus, CFRP of the gross sectional strengthening
model has an equivalent strength of steel brace, while the CFRP strength of the sectional
loss strengthening model corresponds to the strength of lost area of steel by bolt hole.
Equations (7) and (8) show the calculation method of total number of CFRP layers for stress
transfer layer.

Gross sec tional strengthening model; nST ≥
A× Fu

tUM × bCFRP × FUM
(7)

Sectional loss strengthening model; nST ≥
t2 × Fu

tUM × FUM
(8)

FUM: tensile strength of carbon fiber (2400 N/mm2)
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Table 2. Experimental parameters.

Specimen Name Strengthening Number of Specimens

NS N/A 1
CFS-full-1, -2 Gross sectional strengthening model 2
CFS-loss-1, -2 Sectional loss strengthening model 2

We adopted a unidirectional, medium-elasticity carbon fiber cloth designated as
UM46-40P (Toray Industries, Tokyo, Japan) and a bi-directional, high-strength carbon fiber
cloth, BT70-20 (Toray Industries, Tokyo, Japan), to strengthen steel connections. UM46-40P
carbon cloth was used for removing steps and bumps, and for stress transfer. The BT70-20
bi-directional carbon cloth was used for improvement of the bonding area on the gusset
plate because the gusset plate is usually wider than the brace. UM46-40P carbon fiber cloth
is a commercial product, which has an adhered thermoplastic powder on the surface to
enable preliminary forming by heating, as shown in Figure 2.

Table 3. shows the specifications for the steel and carbon fiber cloths.

Table 3. Material properties.

Material Elastic Modulus Yield Point Tensile Strength

Steel (angle steel) 200 GPa *1 370 Mpa *2 457 Mpa *2

UM46-40P [25] 440 Gpa - 2400 Mpa
BT70-20 [25] 230 GPa - 2900 MPa

*1 Assumption (general value), *2 From manufacturer certificate.

In the steel bolted connection, stepped surfaces are commonly found, as shown in
Figure 7. To strengthen a steel connection with a stepped surface, the step between the
gusset plate and brace surface should be minimized to reduce the bending force applied to
the CFRP layer. Additionally, the CFRP should transfer the axial force to prevent strain
concentration around the bolt hole. Thus, we decided on the number of carbon fiber layers
needed to minimize step e using Equation (9). Next, the axial and bending stress values for
CFRP under axial force N were evaluated by Equation (10). The variables in Equations (9)
and (10) are also shown in Figure 7. To determine the number of carbon fiber layers with
fiber volume content Vf variation, we assumed that the fiber volume content Vf would
vary by 45% to 55% based on the previous research [21]. BT70-20 bi-directional carbon
cloth is used on outermost layers to expand the width of the bonding area and effectively
transfer the stress widely because the gusset plate is usually wider than the brace.

e =

∣∣∣∣∣tbrace −
tUM

(
nstep − nbolt

)
Vf

∣∣∣∣∣ (9)

σCFRP =
N

bCFRPtCFRP
+

Ne
bCFRPtCFRP

2/6
=

N
bCFRPnSTtUM/Vf

+
Ne

bCFRP

(
nSTtUM/Vf

)2
/6

(10)

where,
e is remaining step after CFRP strengthening;
tbrace is thickness of steel brace;
tUM is thickness of carbon fiber cloth UM46-40P;
nstep is a total number of carbon fiber layers required for step minimization;
nbolt is a total number of carbon fiber layers required for bump minimization;
Vf is carbon fiber volume content;
bCFRP is width of CFRP;
tCFRP is thickness of CFRP;
nst is a total number of carbon fiber layers for required axial force transfer.
Eventually, the total number of carbon fiber layers needed to minimize step nstep was

determined as 33 layers (9 layers to adjust the brace thickness, and 24 layers to adjust the
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height of the bolt head). The total number of carbon fiber layers needed to transfer the
axial force nST was determined as 13 layers for the gross sectional strengthening model
and 4 layers for the sectional loss strengthening model. Figure 8 shows the lamination
conditions. Bonding length is important to perform the strengthening effect and to avoid
debonding failure. However, only a few hundred-millimeter bonding length can be used
for the bonding on gusset plate. Thus, we decided the bonding length should be 150 mm
for the gusset plate area because the actual brace connections lack the applicable surface
area to adhesively bond the CFRP. However, gusset plates are wider than the brace width,
so we applied wider carbon fiber cloth for the step adjustment and alternative bi-directional
high-strength carbon fiber cloth on the outermost layer to expand the width of the bonding
area shown in Figure 7. On the other hand, the brace members have sufficient length to
allow for bonding, while it is known that the bonding capacity will peak with increasing
the bonding length [18]. Thus, we decided the bonding length should be 300 mm for the
brace side with a 150 mm uniform carbon fiber layer length and a 150 mm taper length
based on the previous fundamental bonding test results [21].
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2.3. Specimen Preparation

Figure 9 shows the molding process. First, the steel surface was treated to make a
rough surface using a blast surface forming power tool (Bristle Blaster®, G-TOOL Co., Aichi,
Japan), as shown in Figure 9a. We set the minimum surface roughness as 20 micro-strain
with ten-point mean roughness using a surface roughness tester SJ-210 (Mitsutoyo, Tokyo,
Japan). Second, E258R room temperature curable primer epoxy resin (Konishi, Tokyo,
Japan) was applied on the steel surface to improve the bonding strength between the steel
and CFRP, as shown in Figure 9b. After curing the primer resin, preformed carbon fiber
cloth (shown in Figure 9c) and molding materials were attached, and the molding area
was covered by vacuum film, as shown in Figure 9d,e. Finally, AUP40T1 low-viscosity,
room temperature curable epoxy resin for VaRTM bonding and molding (Toray Building
Materials, Tokyo, Japan) was injected after the vacuum pressure and absence of leakage
were confirmed. The conditions in Figure 4 correspond to the situation shown in Figure 9e.
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Figure 9. Molding and bonding process: (a) surface treatment; (b) application of primer resin; (c)
cutout of carbon fiber cloth; (d) pre-formed carbon fiber cloths; (e) setup of preformed carbon fiber
cloth; (f) setup of peel ply and resin flow media; (g) setup of bagging film around the specimen for
vacuuming and resin injection.

Figure 10 shows the specimen with CFRP strengthening applied. The average fiber
volume content was 50.4% with a 4.97% coefficient of variation, as measured by a SWT-9000
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vortex current coating thickness meter with an Fe-20 probe (Sanko Electric Laboratory Co.,
Tokyo, Japan) after demolding.
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3. Experimental Results

Figure 11 shows the experimental setup, while Table 4 shows the maximum load
and failure modes. All specimens were monotonically tested in a 1000 kN Shimadzu
universal testing machine, as shown in Figure 11. A load cell built in the testing ma-
chine was used to measure the applied load. Displacement transducers were mounted to
measure crosshead displacement, and the longitudinal strain in specimens was measured
by strain gauges attached directly to the steel and CFRP in several positions shown in
Figure 6. It was demonstrated that CFRP strengthening could effectively increase the
load-carrying capacity. Figure 12 shows the load-crosshead displacement relations, with
the evaluated strength calculated using Equation (6). CFRP strengthening could increase
not only the load-carrying capacity, but also the elongation, because the displacement just
before breakage in the net area could be significantly increased (shown in Figure 12) in all
CFRP strengthening specimens. This means that ductile deformation behavior occurred
because CFRP strengthening could cause yielding of the gross section earlier than the net
area. On the other hand, a lack of plastic deformation and brittle failure occurred without
energy absorption due to hysteresis if the full plastic axial load after hardening in the
net area was lower than the yielding load in the gross section, as seen in specimen NS.
Thus, the performance of CFRP strengthening reached previously established steel-welded
strengthening methods [6] without fire risk and use of heavy tools. Furthermore, no signifi-
cant changes in elastic stiffness could be found, as shown in Figure 12b. Figure 13 shows
load–strain relations at position g1, which is close to the bolt hole. In the case of specimen
NS, yielding was observed around 80 kN due to stress concentration, while plastic strain
grew rapidly. However, in the case of the CFRP-strengthened specimen, elastic behavior
could be maintained until 110 kN, without causing large plastic strain. Thus, it can be
confirmed that the CFRP strengthening can effectively decrease the strain nearby the bolt
hole and delay the yielding in the net area to perform yielding load in the gross area. After
reaching the maximum load, the plastic strain grew due to CFRP debonding, and breakage
in the net area finally occurred. Additionally, the loading required for ductility shown in
Equation (6) was satisfied without yielding in the net area. Loadings in the breakage section
of the net area stayed almost constant for all specimens, because the CFRP was debonded
by the plastic strain. This is because the primer resin cannot resist large strains. Thus, there
was no difference in mechanical conditions just before breakage in the net area between the
NS and CFRP-strengthened specimens. Figure 14 shows load–average strain relations at
positions g2 and g3. Slight plastic strain occurred in specimen NS because the loading was
decreased by the stress concentration in the net area and the associated necking. On the
other hand, values of more than 35,000 micro-strain were observed in CFRP strengthening
specimens. This means that the gross section position of the steel brace can be elongated
due to prevention of the stress concentration in the net area using CFRP strengthening until
debonding, as also shown in Figure 13b. Figure 14b shows the yielding behavior of the
brace in the gross area. In the case of the specimens CFS-full-1 and CFS-loss-2, yielding was
observed at 80kN loading, while specimens CFS-full-2 and CFS-loss-1 yielded at 115 and
100 kN, respectively. This variation of behavior was affected by the strain gauge position,
because Figure 13 shows a strain of quite a local position. Eventually, CFRP strengthening
specimens resisted almost the same load carrying capacity of 125 kN, as shown in Table
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4. Additionally, it was estimated that the CFRP strengthening effect vanished due to
plastic strain measuring 35,000–450,000 micro-strain by the CFRP debonding. Thus, it is
thought that elongation of the CFRP strengthening steel brace can account for 3% plastic
deformation without debonding. Figure 15 shows the typical failure mode of the CFRP
strengthening specimen. And Figure S1 (supplementary material) is an experimental video
of CFRP strengthening specimen. It was observed that debonding began from the edge of
the CFRP on the brace, and the debonding area was gradually grown.

Figure 16 shows the ductility factor, as calculated by the following equation:

µ =
L1 − L0

L0
/

σYP
E

+ 1 (11)

where,
L1 is gage distance after experiment;
L0 is gage distance before experiment;
σYP is yield stress of the steel brace (370 N/mm2);
E is elastic modulus of the steel brace (200 kN/mm2).
In the case of the NS specimen, the maximum value of the ductility factor was only

3.3 at position A5, as shown in Figure 6. On the other hand, the maximum ductility
factor was 28 in specimen CFS-full-1, and the ductility factor values for all positions were
larger than 11. In the case of CFRP-strengthened specimens, the ductility factor values
decreased as the position approached the bolts. The ductility factor at the positions without
CFRP strengthening (A4, A5, B4, and B5) reached 20–28. Thus, the total elongation can
be calculated (including safety considerations) using the steel length Lsteel evaluated by
subtracting the CFRP strengthening length LCFRP from the brace length Lbrace, showing a
maximum of 3% plastic deformation.
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Figure 11. Experimental setup: (a) NS specimen; (b) CFS-loss specimen.

Table 4. Maximum load and failure mode.

Specimen Name Maximum Load Failure Mode

NS 102 kN Yielding and breaking at net area.

CFS-full-1 125 kN
(1) Yielding in gross sectional area; (2) debonding

of CFRP; (3) yielding at breakage in net area.
CFS-full-2 127 kN
CFS-loss-1 126 kN
CFS-loss-2 127 kN
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Figure 12. Load–crosshead displacement relations: (a) a range of 0–50 mm with experimental
observation; (b) a range of 0–10 mm.
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Figure 13. Load–strain (g1) relations: (a) a range of 0–10% strain; (b) a range of 0–1% strain.
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0–1% strain.
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4. Conclusions

This paper proposed a CFRP strengthening method for steel brace connections using
the VaRTM technique and demonstrated the effects of the proposed method. The VaRTM
technique was improved as an adhesion and molding method to strengthen existing steel
structures on site. The following findings were obtained:

1. We proposed a strengthening method using carbon fiber cloth for steel brace connec-
tions with steps and demonstrated that molding and bonding can be successfully
conducted using VaRTM.

2. The load-carrying capacity of the connection and the ductility factor of the steel brace
were significantly improved using CFRP strengthening.

3. The total elongation of the steel brace can be estimated using 3% plastic deformation
of the length of bare steel position.

This method cannot cover all type of steel brace connections, because the various
geometrical condition can be found on the connection. Thus, we will evaluate the applica-
bility of these strengthening methods for the actual structures by finite element analysis
and experiment, and the applicability, strengthening effects, strengthening design method,
as well as experimental variation and stability will be clarified for the typical connection
geometries in the future.
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