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Abstract: Frenkel’s model for the late stage of coalescence of viscous particles has been extended to
describe pore collapse in a viscoelastic melt during polymer sintering. The shrinkage of a pore in
a polymer melt driven by surface tension is extended by taking into account the effects of trapped
gas and gas transport out of the pore. Viscoelasticity has been shown to have a considerable impact
on the time scale of the coalescence process. In addition, gas diffusion modifies the coalescence
dynamics. Based on a parameter study, different regimes for the pore collapse have been identified.
At the beginning of pore collapse, surface tension is considerably stronger than gas pressure within
the pore. In this time interval (surface-tension-driven regime), the pore shrinks even in the absence
of gas diffusion through the matrix. In the absence of gas transport, the shrinkage dynamic slows
down and stops when the surface tension balances the gas pressure in the pore. If gas transport out
of the pore is possible, surface tension and gas pressure are balanced while the gas pressure slowly
decreases (diffusion-controlled regime). The final phase of pore collapse, which occurs when the gas
pressure within the pore decreases sufficiently, is controlled again by surface tension. The limitations
of the model are discussed. To analyze the interplay between different mechanisms and process steps
during selective laser sintering, the respective time scales are compared using experimental data.

Keywords: polymer sintering; pore collapse; coalescence dynamics; viscoelastic flow; surface tension;
gas transport

1. Introduction

Due to the viscoelastic nature of polymeric materials, polymer sintering differs signifi-
cantly from the sintering of metals or simple viscous materials. Polymer sintering can be
described as a process where polymer particles are fused together by heat or pressure. It
plays an important role for several polymer-manufacturing processes, such as rotational
molding, additive manufacturing (AM) or the powder coating process. In the last decade,
sintering of polymer powder attained an increasing interest due to the advances of addi-
tive manufacturing processes (see, e.g., [1] and references therein), such as selective laser
sintering (SLS). Sintering is also a key mechanism in latex film formation from colloidal
aqueous dispersions [2]. For the understanding of these applications, a model including
viscoelasticity on the microscopic level, which has a considerable impact on the time scale
of the coalescence process, is essential. A serious problem of polymer sintering is the
formation of trapped gas bubbles (also named pores or voids), because it can reduce the
mechanical performance of the parts. Moreover, bubbles and pit holes at the surface pose
problems to the part or coating appearance and aesthetics.

As early as 1945, Frenkel [3] gave two analytical solutions for the limiting cases of
particle coalescence by a Newtonian viscous flow driven by surface energy minimization:
(i) early stage of coalescence describing the coalescence of two spherical particles and (ii)
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late stage, which described the collapse of a spherical pore inside a (infinite) surrounding
melt. Frenkel´s description was based on a balance between the work done by surface
tension and the work by viscous dissipation. For the early stage model by Frenkel, various
extensions exist; most notably the one by Bellehumeur et al. [4] modeling a viscoelastic
surrounding melt by using the convected Maxwell model [5]. This model was expected
to predict the general features of the coalescence of spherical polymeric particles [6].
Scribben et al. [7] continued the work of Bellehumeur et al. [4] by describing the transient
viscoelastic coalescence of two particles using the upper convected Maxwell constitutive
model. They compared their simulations using their model with experiments on isotactic
polypropylenes and showed that the model improves the accuracy at short time scales, but
does not decrease the error at long time scales. The deviations between using single- and
multimode relaxation times were found to be small [7].

For the late stage of pore collapse, Mackenzie and Shuttleworth [8] developed a model
extension accounting for the effect of trapped gas within the pore. This model considered
a Bingham solid or a Newtonian viscous melt as the surrounding medium, but did not
include viscoelasticity. A model for the sintering of polymer particles during rotational
molding from Kontopoulou et al. [9] considered the diffusion of the trapped gas through
the surrounding melt. In addition, there are various approaches for the description of
other technical problems based on the interplay of viscous flow and surface tension such
as foaming. A review of these papers can be found, e.g., in [10]. However, the parallels will
not be discussed here.

The objective of the current research is to present a study on pore collapse in vis-
coelastic polymer melts taking into account the gas in the pore and its release by diffusive
transport. Parts of the results have been presented before in two conference papers [11,12].
This paper extends the results by a more detailed discussion of the model, especially
considering the gas diffusion aspects and the inclusion of ambient pressure. The discussion
of transition times is considerably extended and analyzed over regions of the phase space.
The discussion of the approximations resulting in limitations of the model as well as the
discussion of the parameter values and time regimes of relevant processes is new. Based
on Frenkel’s late stage model, an attempt has been made to develop a rigorous model,
which includes the parameters relevant to the removal of bubbles from polymer melts,
such as surface tension, viscoelastic relaxations and gas transport. For this reason, the
viscoelastic constitutive equation used by Bellehumeur et al. [4] for description of the
particle coalescence in the early stage and Mackenzie and Shuttleworth’s modifications
for trapped gas [8] are combined. Motivated by the model of Kontopoulou et al. [9] and
Gogos [13], gas transport out of the pore is included into the viscoelastic late stage model.
By a parameter study, three different regimes of the gas pore collapse are identified.

The paper is organized as follows: after a short description of the existing models for
particle coalescence, the viscoelastic extension of the late stage model using a modified
Maxwell fluid is presented. Dimensionless variables and parameters allow scaling of
the results of the numerical simulation. The results are compared to Frenkel´s late stage
model [3] and with the limiting case of a single, gas-filled pore in a Newtonian liquid from
Mackenzie and Shuttleworth’s theory [8].

In a following section, effects of gas transport are included in the simulations by using
a simplified model for the gas transfer out of the pore. A full solution in the form of a
memory integral is given in Appendix A, while the main section focuses on the solution
and analysis of a transfer coefficient approximation.

Subsequent to the numerical results, the approximations contained in the model and
its resulting limitations are discussed. Moreover, the time and temperature regimes of
different relevant physico-chemical processes during polymer laser sintering are gauged
based on experimental data. The article is concluded with a summary and outlook.
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2. Models

In Section 2.1, the models of Frenkel as well as Mackenzie and Shuttleworth are re-
viewed and a short outline of their ideas is given. A viscoelastic extension of the Mackenzie
and Shuttleworth model for the pore collapse is presented in Section 2.2. In Section 2.3,
dimensionless variables are introduced to facilitate numerical analysis, and the solutions
to the models of Frenkel and Mackenzie and Shuttleworth are provided in these vari-
ables. This allows for a comparison of different models, including the viscoelastic model
presented in this paper. In Section 2.4, an extension of the viscoelastic model to include
diffusive gas transport out of the inclusions is presented.

2.1. Models of Frenkel and Mackenzie and Shuttleworth

Frenkel’s idea [3] was to idealize the sintering of a mixture of small metallic particles
as the sintering of an array of spheres (Figure 1a). In the first stage, the relevant process
is the sintering of adjoining spherical particles (Figure 1b). Frenkel described this as the
sintering of two spheres initially in contact at exactly one point. The dynamics is driven
by the minimization of surface energy—since two spheres have a larger surface than one
sphere of equal volume—and slowed down by the viscosity of the melt. In an intermediate
stage, which is not described by Frenkel, the spherical particles have coalesced so much
that they form trapped voids in between them (Figure 1c). These voids become spherical in
order to minimize surface energy. In the final stage of Frenkel’s model, the spherical pores
trapped inside the metallic melt collapse (Figure 1d). This is described by the modeling of
one spherical pore in an infinite viscous melt.

Materials 2021, 14, x FOR PEER REVIEW 3 of 22 
 

 

different relevant physico-chemical processes during polymer laser sintering are gauged 
based on experimental data. The article is concluded with a summary and outlook. 

2. Models 
In Section 2.1, the models of Frenkel as well as Mackenzie and Shuttleworth are 

reviewed and a short outline of their ideas is given. A viscoelastic extension of the 
Mackenzie and Shuttleworth model for the pore collapse is presented in Section 2.2. In 
Section 2.3, dimensionless variables are introduced to facilitate numerical analysis, and 
the solutions to the models of Frenkel and Mackenzie and Shuttleworth are provided in 
these variables. This allows for a comparison of different models, including the 
viscoelastic model presented in this paper. In Section 2.4, an extension of the viscoelastic 
model to include diffusive gas transport out of the inclusions is presented. 

2.1. Models of Frenkel and Mackenzie and Shuttleworth 
Frenkel’s idea [3] was to idealize the sintering of a mixture of small metallic particles 

as the sintering of an array of spheres (Figure 1a). In the first stage, the relevant process is 
the sintering of adjoining spherical particles (Figure 1b). Frenkel described this as the 
sintering of two spheres initially in contact at exactly one point. The dynamics is driven 
by the minimization of surface energy—since two spheres have a larger surface than one 
sphere of equal volume—and slowed down by the viscosity of the melt. In an intermediate 
stage, which is not described by Frenkel, the spherical particles have coalesced so much 
that they form trapped voids in between them (Figure 1c). These voids become spherical 
in order to minimize surface energy. In the final stage of Frenkel’s model, the spherical 
pores trapped inside the metallic melt collapse (Figure 1d). This is described by the 
modeling of one spherical pore in an infinite viscous melt. 

 
Figure 1. Schematic representation of coalescence of an array of spheres (a). In the first stage (b), 
the spherical particles coalesce and form trapped voids in between them (c). These voids become 
spherical and finally collapse (d). 

The driving mechanism of this process is again the minimization of surface energy. 
At the same time, the incompressible, infinite, homogeneous, Newtonian viscous melt 
surrounding the pore needs to flow in a radial direction and this flow dissipates the 
energy gained by surface reduction. The pore collapses linearly in time. 

Frenkel already remarks that trapped gas inside the pore prevents the pore from 
collapsing completely. The final equilibrium radius of the pore can be deduced from a 
force balance between surface tension and gaseous pressure. However, Frenkel’s model 
does not take into account the effect of trapped gas in his late stage model. This is done 
by Mackenzie and Shuttleworth [8] by calculating the necessary work done onto the gas 
to compress it under the assumption of ideal gas behavior. In their model, the energy 
gained by surface reduction is now split between the work necessary to compress the gas 
and the energy dissipated by viscous flow. This leads to a nonlinear time dependence of 
the process. Mackenzie and Shuttleworth [8] further used an effective contribution 
volume approach to account for the effect of multiple trapped pores. This approach is not 
followed here. The model proposed below considers the case of a single trapped pore. 

Figure 1. Schematic representation of coalescence of an array of spheres (a). In the first stage (b),
the spherical particles coalesce and form trapped voids in between them (c). These voids become
spherical and finally collapse (d).

The driving mechanism of this process is again the minimization of surface energy.
At the same time, the incompressible, infinite, homogeneous, Newtonian viscous melt
surrounding the pore needs to flow in a radial direction and this flow dissipates the energy
gained by surface reduction. The pore collapses linearly in time.

Frenkel already remarks that trapped gas inside the pore prevents the pore from
collapsing completely. The final equilibrium radius of the pore can be deduced from a
force balance between surface tension and gaseous pressure. However, Frenkel’s model
does not take into account the effect of trapped gas in his late stage model. This is done by
Mackenzie and Shuttleworth [8] by calculating the necessary work done onto the gas to
compress it under the assumption of ideal gas behavior. In their model, the energy gained
by surface reduction is now split between the work necessary to compress the gas and
the energy dissipated by viscous flow. This leads to a nonlinear time dependence of the
process. Mackenzie and Shuttleworth [8] further used an effective contribution volume
approach to account for the effect of multiple trapped pores. This approach is not followed
here. The model proposed below considers the case of a single trapped pore.
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2.2. Viscoelastic Model

The model considers a gaseous spherical pore surrounded by an infinite, homoge-
neous, isotropic viscoelastic melt under isothermal conditions. Assuming incompressibility
(and thus volume conservation), the radial velocity profile in the melt is given by:

.
r =

r2
p

.
rp

r2 ⇒
.
ε =

∂
.
r

∂r
= −2

r2
p

.
rp

r3 . (1)

Here rp is the radius of the pore,
.
rp the radial velocity of the pore surface and r the

canonical radial coordinate of spherical coordinates within the surrounding melt.
For volume conservation to hold, the strain rate tensor D needs to have a vanishing

trace [14]. Therefore, two additional flows of half magnitude and opposite sign in the
angular directions are assumed. This is called the Eshelby correction [15] and is used
throughout all later works based on Frenkel’s model, e.g., [4,8]. This yields for D:

D =

 −
.
ε
2 0 0

0
.
ε 0

0 0 −
.
ε
2

. (2)

As a constitutive equation to model the polymeric behavior of the melt, the convected
Maxwell model (CM) used by Bellehumeur et al. [4] is applied also in this work.

λ
�
τ + τ = 2ηD (3)

Here, τ is the stress tensor, λ the relaxation time and η the viscosity.
�
τ is a generalized

objective time derivative as defined in [5].

τ =
Dτ

Dt
−Wτ + τ − α(Dτ + τD);α ∈ {0; 1;−1} (4)

The different values of α in Equation (4) correspond to the upper, lower and co-
rotational derivative, which are equal to −1, 1 and 0, respectively. The upper convected
Maxwell model (UCM) is usually applied in rheology, because it can be derived from the
Rouse theory and it gives a more realistic prediction for the normal stresses in shear flow,
than the lower convected Maxwell model (LCM). Since extensional flow is dominating in
sintering, both UCM and LCM will be included in the following derivations. Due to the
scale separation of characteristic material times and those of the process, quasi-steady flow
is assumed as a first approximation following Bellehumeur et al. [4] and the time derivative
Dτ/Dt is thus set to zero. The work dissipated by viscoelastic flow per time can then be
calculated to be:

.
Wv =

∫
dV ∑3

i,j=1 τijDji =
8π

3

η
.

rpr2
p

αλ
ln

1 + 4αλ
.

rp
rp

1− 2αλ
.

rp
rp

. (5)

The work rate done to compress the gas inside the pore can be calculated according to:

.
Wp = −pS

.
rp. (6)

Here, p is the gaseous pressure and S the surface of the pore. Neither the models by
Frenkel nor the one by Mackenzie and Shuttleworth consider the infinitely extended melt
to be at nonzero pressure. In this paper, this assumption is retained even if it is not fulfilled
for real technical processes. The inclusion of ambient pressure that is assumed to be equal
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to the initial gas pore pressure can however be shown to have a small effect for interesting
parameter ranges, see below. The change in surface energy can be obtained according to:

.
Ws = σ

.
S = 8 πrp

.
rpσ. (7)

σ is the surface tension at the gas–melt interface.
For energy conservation to hold, the work rates need to add up to zero

( .
Wv +

.
Wp +

.
Ws = 0

)
.

For more compact notation, the abbreviation G
(
rp
)

is defined as:

G
(
rp
)
= exp

(
−3

αλ

ηrp

(
σ−

p0rp(0)
3

2r2
p

))
. (8)

Assuming ideal gas behavior, energy conservation yields a differential equation for rp:

.
rp =

rp

2αλ

G
(
rp
)
− 1

2 + G
(
rp
) (9)

2.3. Dimensionless Variables

A dimensionless variable can be obtained by dividing the original variable by a char-
acteristic value, such as the initial pore radius or a characteristic time for the pore collapse.
Analyzing a model in terms of dimensionless variables has the benefit of identifying pa-
rameter sets that lead to the same generalized behavior. Here, the following dimensionless
variables are introduced to facilitate numerical analysis of the model:

r̃p =
rp
r0

t̃ = 1
2

σ
r0η t = t

τFrenkel

r̃p,eq =
√

p0r0
2σ

λ̃ = − αλσ
2r0 η = − αλ

τFrenkel
.

(10)

The dimensionless pore radius r̃p is the ratio of the actual pore radius rp(t) divided
by its initial value r0 = rp(t = 0) before sintering.

The dimensionless time t̃ is defined via the Frenkel model. Using Frenkel’s solution
for the pore collapse [3], which is given by

rp(t) = r0 −
1
2

σ

η
t, (11)

one can define a characteristic time τFrenkel = 2 r0 η/σ, at which a pore embedded in a sim-
ple Newtonian fluid disappears

(
rp = 0

)
in the Frenkel model (neglecting the embedded

gas). Dividing the actual time t by τFrenkel , a dimensionless time t̃ can be introduced.
Gas inside a shrinking pore needs to be compressed for the pore to shrink. This will

result in an increase in gas pressure inside the pore. Assuming ideal gas behaviour, the
pressure increase can be predicted and the radius at which gas pressure balances surface
tension can be derived from a simple balance of forces. This (dimensionless) equilibrium
radius is called r̃p,eq. This equilibrium radius is a steady state value for any isotropical
incompressible viscoelastic melt [16].

Finally, a dimensionless relaxation time λ̃ is defined as the characteristic time of
the viscoelastic relaxation (αλ) divided by the time of a simple viscous pore collapse
(τFrenkel). Consequently, λ̃ is a measure of the relation between the time needed for the
rearrangements or disentanglements of the polymeric chains and an idealized pore collapse
in Newtonian liquid (neglecting the pressure of trapped gas). As an approximation for the
relaxation time λ, often the longest relaxation time in the distribution is taken. In analogy
to Balemans et al. [17], who reported on a computational approach for the sintering of two
viscoelastic particles, λ̃ can be considered a Deborah number (De). A Deborah number is
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the ratio of the time scale of the fluid response to that of the considered process. The former
is here the viscoelastic relaxation time, whereas the latter is assumed to be the viscous pore
collapse (for details see Section 3.3, below).

Using these quantities, the prediction of the Eshelby-corrected Frenkel model shows a
universal behavior:

r̃p
(
t̃
)
= 1− t̃. (12)

The model by Mackenzie and Shuttleworth [8] for one single pore in dimensionless
variables yields the following differential equation:

dr̃p

dt̃
= −1 +

r̃p,eq
2

r̃p2 . (13)

The differential equation for the viscoelastic (VE) model presented in this work reads
in the dimensionless variables:

dr̃p

dt̃
=

r̃p

2 λ̃

1− exp
(

6 λ̃
r̃p

(
1− r̃p,eq

2

r̃p2

))
2 + exp

(
6 λ̃

r̃p

(
1− r̃p,eq2

r̃p2

)) (14)

2.4. Gas Transport into the Polymer Matrix

If gas is trapped in a pore surrounded by a polymer melt, the gas will also be able to
diffuse into the surrounding polymer matrix. For this effect to be included in the model,
the gas pore pressure needs to be considered as a new time dependent variable. The rate of
compression work (compare Equation (6)) now needs to be written as:

.
Wp = −4πr2

p p(t)
.

rp. (15)

We will below express this work rate in terms of dimensionless variables. For this
purpose, the dimensionless pressure is introduced as p̃ = p(t)/p0, where p0 is the initial
pressure inside the pore at t = 0.

Assuming that diffusion and diffusive transfer across the liquid–gas boundary can be
described by Fick’s law with diffusion coefficient D, the mass balance for the gas yields a
differential equation for the pore pressure (Equation (16), compare [9]). T stands for the
temperature and R for the universal gas constant.

4
3 π d

dt

(
p(t)r3

p
RT

)
=
(

4πr2
p

)
D
(

∂c(r,t)
∂r

)
r=rp

⇒ dp(t)
dt = 1

rp

(
3RTD

(
∂c(r,t)

∂r

)
r=rp
− 3p(t)

.
rp

) (16)

The concentration of the gaseous species inside the melt can be described using the
equations of Fickian diffusion in moving media (compare [18]):

∂c̃
∂t̃

+
dr̃p

dt̃
r̃p

2

r̃2
∂c̃
∂r̃

=

(
dt̃
dt

)−1 D
r02

1
r̃2

∂

∂r̃

(
r̃2 ∂c̃

∂r̃

)
(17)

r̃ and c̃ are the dimensionless radial coordinate and concentration, defined via r̃ = r/r0
and c̃ = c/ci. ci is the initial gas concentration of the melt. The dimensionless radial
coordinate is in units of the initial pore radius.

The concentration at the gas–liquid interface can be obtained using Henry’s law (with
dimensionless Henry constant K̃h and dimensionless pressure p̃ = p/p0) [9]. If the normal
Henry constant relating concentration and pressure is given by Kh, the reduced constant is
given by K̃h = Kh · p0/ci.

c̃
(
r̃p, t̃

)
= K̃h p̃

c̃(r̃, 0) = 1 for r̃ > r̃p
(18)
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The analytical solution to this problem can be found in Appendix A. In the following,
for the sake of simplicity and a lower computation time for the study of the parameter-
dependent behavior of the model, an effective gas transfer coefficient approximation is
used instead of a full solution of Fick’s law. The assumptions of this approximation are that
the species transfer out of the gas pore is proportional to the product of interface surface, a
gas transfer coefficient (dimensionless coefficient: k̃trans) and the concentration difference
between both phases. The concentration in the melt is further assumed to be at a negligible
concentration (approximately zero), therefore the concentration difference is given by
Henry’s law. A diffusive concentration profile is not simulated—it is assumed that all the
gas diffusing across the boundary is transported into the melt sufficiently fast such that
there is no concentration buildup around the pore. This means that the diffusion-related
transport term in Equation (16) is approximated according to Equation (19).

3RTD
rp

(
∂c(r, t)

∂r

)
r=rp

≈ r0

r̃p
· k̃trans · K̃h p̃ = g̃ · p̃

r̃p
(19)

In Equation (19), a new dimensionless parameter g̃ is defined as g̃ = k̃transK̃h
r0

. The
magnitude of g̃ is a measure for how quickly gas will diffuse out of the pore.

Using this approximation, the differential equation for the gas pore pressure (Equation (16))
is considerably simplified and reads:

dp̃
dt̃

= − p̃
r̃p

(
3

dr̃p

dt̃
+ g̃
)

. (20)

The differential equation for the dimensionless pore radius results again from im-
posing energy conservation

( .
Wv +

.
Wp +

.
Ws = 0

)
using the modified expression for

.
Wp

(Equation (15)).
dr̃p

dt̃
=

r̃p

2λ̃

1−G2(r̃p , p̃(t̃))
2+G2(r̃p , p̃(t̃))

G2
(
r̃p, p̃

(
t̃
))

= exp
(

6λ̃
r̃p

(
1− r̃p r̃p,eq

2 p̃
(
t̃
)))

.
(21)

3. Modelling of Pore Collapse—Numerical Results

In Section 3.1, the numerical results of our viscoelastic model are presented in com-
parison to the models of Frenkel and Mackenzie and Shuttleworth. The numerical results
for the inclusion of gas diffusion into the viscoelastic model are presented in Section 3.2.
In Section 3.3, characteristic time regimes for the pore collapse are defined and presented
on “collapse mechanism maps”. The dependence of the duration of these regimes is dis-
cussed in terms of the dependence of the control parameters, such as viscoelastic relaxation
time, gas transfer coefficient and equilibrium pore radius. Section 3.4 extends this dis-
cussion by simulations and the representation of the duration of the diffusion-controlled
regime depending on parameter settings. This regime is intermediate between two surface
tension-controlled regimes.

3.1. Viscoelastic Model

The dimensionless radius r̃p as a function of dimensionless time for the Frenkel model
(F), the (modified) Mackenzie and Shuttleworth model (M–S) and the viscoelastic model
(VE) are compared in Figure 2. Equations (13) and (14) were solved numerically using
Wolfram’s Mathematica [19].

For most of the simulations presented in this study, α was set to −1, which refers in
rheology to the upper convected Maxwell (UCM) model. The linear decrease in Frenkel’s
model shows a pronounced difference from the dynamics shown by the other two models.
Both the model developed in this work and the Mackenzie and Shuttleworth model show
an equilibrium radius r̃p,eq. The model of Mackenzie and Shuttleworth does however
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collapse to this equilibrium radius more quickly due to the Newtonian viscous character of
the melt.
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Figure 3 shows solutions of the model described in this work for different dimen-
sionless relaxation times λ̃. It can be seen that a higher relaxation time leads to longer
process dynamics.
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If the ambient pressure of the surrounding melt is included, the energy work rate
against the gaseous pressure (Equation (6)) is modified:

.
Wp = −(p− pmelt)S

.
rp. (22)

Here, pmelt is the ambient pressure of the surrounding melt.
As a result of the inclusion of ambient pressure, the model exhibits a different equilib-

rium radius. A comparison between equilibrium radius with and without ambient pressure
can be seen in Figure 4a. For low values of r̃p,eq, the deviation is not drastic. When the
pore becomes compressed, the gas inside the pore also becomes compressed, and thus the
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inner gas pressure raises. For low equilibrium radii, and thus considerable compression
of the pore, this increase in gas pressure is substantial, and the ambient pressure becomes
negligible in comparison. Only if there is little compression, and thus little increase in
gas pressure inside the pore (thus for high values of r̃p,eq), the deviation is non-negligible.
Figure 4b shows that the time evolution is not influenced considerably by the ambient
pressure—again for the case of a relatively low r̃p,eq.
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Figure 4. Comparison of the equilibrium radius r̃p,eq (at t→ ∞ ) as a function of the equilibrium value of the pore diameter
(a) and the pore collapse dynamics (b), with and without consideration of the hydrodynamic ambient pressure acting on the
surrounding melt pmelt. The parameters for both plots are r̃p,eq = 0.5 and λ̃ = 5.

3.2. Viscoelastic Collapse with Gas Transport (Transfer Coefficient Model)

A plot of a solution of Equations (17) and (18) for the dimensionless gas pressure
p̃ = p/p0 and the radius r̃p is shown in Figure 5a,b. The axis for r̃p is rescaled in Figure 5b.
The plot in Figure 5a includes a dotted line for the limiting (maximum) gas pressure p̃max,
above which the pore will expand due to the inner gas pressure. This maximum pressure
is the pressure at which the local force exerted by pressure and surface tension cancel. It
can be calculated to be p̃max = 1/(r̃p r̃p,eq

2). Three distinct regimes are recognizable, which
are separated by vertical lines in Figure 5. The regimes are denoted from left to right as
regimes I, II and III. In regimes I and III, the surface tension is considerably larger than the
gas pressure, and even in the absence of diffusion, the pore would shrink. These regimes
are surface-tension-driven regimes. In regime II, surface tension and gas pressure are of
almost equal magnitude. In the absence of gas diffusion in the surrounding polymer melt,
the pore collapse dynamics would thus slow down and stop. Therefore, regime II is called
the diffusion-controlled regime. The exact transition times between the regimes are to some
extent arbitrary. In this work, the condition p̃max = 1, 10 p̃ is used to distinguish the two
surface-tension-driven regimes (I and III) and the diffusion-controlled regime (II).
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3.3. Collapse Mechanism Maps

Using the approach described above, it is possible to generate parameter maps that
visualize which of the collapse regimes apply for a given set of parameters. In these maps,
the different collapse mechanisms are separated by characteristic transition times between
the regimes.

The collapse mechanism map in Figure 6 shows exemplarily the transition times
t̃I,I I (blue lines) between regimes I and II, as well as the time t̃I I,I I I (black lines) between
regimes I and II as a function of the rate of gas transfer g̃ for different values of r̃p,eq. The

quantities in the legend are arranged as
(

λ̃, r̃p,eq

)
, with a fixed value of λ̃ = 1. Since r̃p,eq is

proportional to
√

p0 (compare (10)), it is proportional to the initial amount of gas inside the
pore. Thus, for constant values of g̃, the duration of the diffusion-controlled regime II (time
difference: ∆t̃I I = t̃I I,I I I − t̃I,I I) increases with increasing values of r̃p,eq. The reason for this
is that the diffusive transport of the gaseous species into the melt takes, for the same of
value g̃, less time for a smaller initial amount of trapped gas.

Since gas pore pressure and surface tension are balanced in regime II, the gas pressure
in the pore reduces faster if the gaseous species are transported more quickly from the pore
into the liquid matrix. Faster diffusion, which is related to a higher value of g̃, shortens
the duration of the diffusion-controlled regime II, which is indicated by a smaller time
difference ∆t̃I I for increasing values of g̃.

For all three combinations of λ̃ and r̃p,eq in Figure 6, the duration of the diffusion-
controlled regime II, which is expressed by ∆t̃I I , becomes smaller for increasing values
of the gas transfer rate g̃. Above a certain upper value of g̃ , the diffusion-controlled
regime II disappears for all combinations of λ̃ and r̃p,eq completely (see, e.g., g̃ > 0.17 for
r̃p,eq = 0.4), becomes zero and the diffusion-controlled regime II disappears. This upper g̃
value depends on λ̃ and r̃p,eq and exhibits the characteristics of a critical point. This “upper
critical value” of g̃ has, however, not been above 0.2 for any combination of r̃p,eq and λ̃ in
the simulations of this study (see also Figure 7).
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quantities in the legend are arranged as
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. The three pore collapse regimes are indicated by I,

II and III.

Figure 7 shows the dimensionless transition times t̃I,I I and t̃I I,I I I as functions of
the gas transfer rate g, for different values of the relaxation time λ̃ for a fixed value of
r̃p,eq = 0.8. The quantities in the legend are arranged as in Figure 6 as

(
λ̃, r̃p,eq

)
. For values

of λ̃ ≤ 1 in Figure 7a, the λ̃ values mainly influence the shape of the contour, i.e., the
exact beginning and end times of the different regimes. For values of λ̃ ≥ 1 (see Figure 7b)
the parameter range for which the pore collapse dynamics show three distinct regimes
becomes smaller, since viscoelastic collapse is slower for higher relaxation times. As the
diffusion sets in from the beginning, the surface-tension-driven viscoelastic pore collapse
and the diffusion-controlled regime overlap more and more until no difference is visible.
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quantities in the legend are arranged as
(

λ̃, r̃p,eq

)
.

3.4. Gas Diffusion-Controlled Region

The time difference between both dimensionless transition times (∆t̃I I = t̃I I,I I I − t̃I,I I),
which is the time duration of the diffusion-controlled regime II, can be plotted as a two-
dimensional contour plot by selecting two of the three parameters g̃, λ̃ and r̃p,eq, (such as(
r̃p,eq, g̃

)
,
(

λ̃, g̃
)

or
(

λ̃, r̃p,eq

)
) as variables. This permits study of the interdependence of

the parameters in a compact way, as shown in Figure 8a–c.
Figure 8a shows that for low values of the gas transfer rate g̃, the duration of the

diffusive regime is almost independent of the value of λ̃. Due to the low diffusion rate,
there is always enough time for the surface-driven dynamics to reach an equilibrium point.
This changes with larger values of g̃, i.e., with faster diffusion. It can be seen that the
smaller the value of the relaxation time λ̃, the more likely a distinct three regimes dynamics
is still to happen.

Figure 8b shows that the higher the value of the equilibrium radius r̃p,eq and the
smaller the value of g̃, the more likely the three regimes dynamics is to occur. It also shows
that a higher value of g̃ can be compensated for by a higher value of r̃p,eq. Since r̃p,eq is
proportional to the initial amount of gas inside the pore, this can be understood intuitively.
In other words, the more gas is inside the pore and the slower the transport of this gas into
the melt is, the more likely it is for the system to go into a steady state in which the only
change occurs by further diffusion out of the pore (regime II).

Figure 8c shows that the effect of higher relaxation time λ̃ to not produce discernible
three regimes dynamics can be counterbalanced by a higher equilibrium radius r̃p,eq. This
is due to the fact that a higher equilibrium radius means both that the compression which
can happen due to surface tension alone is smaller and thus needs less time, as well as that
there is more gas inside the pore which will need to be transported out of the pore in the
second diffusive regime.
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time 𝜆 and the gas transfer rate 𝑔 for �̃� , = 0.4 (𝐚), the dimensionless equilibrium radius �̃� ,  
and gas transfer rate 𝑔 for 𝜆 = 2 (𝐛), as well as �̃� ,  and 𝜆 for 𝑔 = 0.1 (𝐜). The values of Δ�̃�  are 
indicated at the contour lines. The white areas represent the absence of region II, i.e., the surface-
tension-driven regions I and III merge, without a diffusion-controlled regime in between. 
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laser sintering (SLS) or additive manufacturing (AM) in general, it is one of the objectives 
of this paper to identify properties and the parameter space, which control polymer 
sintering.  

The assumptions and limitations of our viscoelastic model of pore collapse are:  
(a) Single spherical inclusions with a defined initial sphere radius in an infinite melt. 
(b) Pore collapse under isothermal conditions. 
(c) Modified Maxwell fluid with one characteristic relaxation time. 
(d) Pseudo-steady flow approximation in the rheological equation (here, mainly UCM). 
(e) Description of the concentration at the gas–liquid interface by using Henry’s law. 
(f) Transfer coefficient approximation of the gas transfer into the polymer matrix. 

Figure 8. Time duration ∆t̃II of the diffusion-controlled regime II as a function of the relaxation time
λ̃ and the gas transfer rate g̃ for r̃p,eq = 0.4 (a), the dimensionless equilibrium radius r̃p,eq and gas
transfer rate g̃ for λ̃ = 2 (b), as well as r̃p,eq and λ̃ for g̃ = 0.1 (c). The values of ∆t̃II are indicated at
the contour lines. The white areas represent the absence of region II, i.e., the surface-tension-driven
regions I and III merge, without a diffusion-controlled regime in between.

4. Discussion with Respect to Laser Sintering

Section 4.1 summarizes the approximations of the viscoelastic model presented in this
paper. Section 4.2 discusses experimental values for the different parameters and the time
regimes of the different processes relevant to the technical application in the laser sintering
process. For comparison of technically-relevant time scales, different Deborah numbers
are proposed.

4.1. Limitations of the Model

The model presented above is formulated in dimensionless variables and deals with
some general aspects of the pore collapse of viscoelastic particles at the final stage of
sintering. Although the model is not limited to application-oriented questions of selective
laser sintering (SLS) or additive manufacturing (AM) in general, it is one of the objectives of
this paper to identify properties and the parameter space, which control polymer sintering.

The assumptions and limitations of our viscoelastic model of pore collapse are:

(a) Single spherical inclusions with a defined initial sphere radius in an infinite melt.
(b) Pore collapse under isothermal conditions.
(c) Modified Maxwell fluid with one characteristic relaxation time.
(d) Pseudo-steady flow approximation in the rheological equation (here, mainly UCM).
(e) Description of the concentration at the gas–liquid interface by using Henry’s law.
(f) Transfer coefficient approximation of the gas transfer into the polymer matrix.

The relevance of these limitations of the model for description of the SLS process of
polymeric materials will be discussed in the following text in detail.
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Related to (a), the distribution of the powder grain size and shape (see e.g., [6,20])
results, in the late stage of sintering, in a distribution of size and diameter of the pores.
Even deviations from spherical shape, such as elongated pores between the deposited fibers
in the fused deposition modeling (FDM) process, occur. In addition, there are irregular gas
inclusions at the boundary between the subsequently sintered layers and inhomogeneous
packing of the powder, which can be significantly larger than those resulting from the
interstices in between the grains. Due to the large shape and size distribution of particles
and the resulting inclusions, gas can escape to the surface through open paths between
them [21] before they close and form spherical bubbles. Furthermore, larger bubbles
can possibly grow at the expense of smaller ones by Ostwald ripening. All this leads
to great uncertainties with regards to the shape, dimension and size of the pores and
their distributions, as well as the gas pressure in the pores. The approximation of an
infinite melt should be reasonable as long as the pores are reasonably separated as the flow
profile scales with an inverse cubic law (see Equation (1)). Following the approximation
by Mackenzie and Shuttleworth [8], one can assume that each pore is surrounded by an
effective shell region, which represents the significant interaction region of each pore (i.e.,
that all significant contributions to the energy dissipation are in this region). Let this
effective shell have a radius r2 (dimensionless radius r̃2 = r2/r0). Then, the total dissipated
energy (compare Equation (5)) becomes:

.
Wv =

∫
dV ∑3

i,j=1 τijDji =
8π

3
dr̃p

dt̃
r̃2

p
ηr3

0
τ2

Frenkel
ln

1 + 2λ̃
dr̃p

dt̃

1− 4λ̃
dr̃p

dt̃

1− 4λ̃
r̃3

2

dr̃p

dt̃

1 + 2λ̃
r̃3

2

dr̃p

dt̃

. (23)

We obtain the same result as Mackenzie and Shuttleworth [8]: the additional term due
to the shell scales with r̃−3

2 , as the new term in the energy dissipation is a small perturbation
as long as r̃−3

2 is small. This means that, if each pore has an effective shell of, e.g., 2.5 times
its initial radius (corresponding to a pore-to-pore distance of five times its initial radius),
the contribution is at 6%. We expect that this will not alter the model dynamics significantly.
A full solution would be possible, but has not been attempted in this work.

In relation to (b), the most critical control parameter is the temperature. The strong
temperature dependence of the zero-shear rate viscosity (η0 = η) and the viscoelastic
relaxation times λ are of great importance for polymer sintering, because both quantities
control the coalescence and pore collapse kinetics. In polymer melts, the temperature
dependence of the viscosity and the relaxation times can be described by the Vogel–Fulcher
(VF) or William–Landel–Ferry (WLF) equation, which diverges when the (idealized) glass
transition temperature is approached. Well above the glass transition temperature, often
a simple Arrhenius law holds. By infrared heating of the powder, the temperature is
raised to about 10 K below the melting temperature. Although the temperature can be
controlled satisfactorily in the powder bed, the heating by the laser beam with the SLS is
highly non-isothermal and spatially inhomogeneous. For a laser power of 12.5 W with
0.83 m/s (equivalent to 1.4 J/cm2) and for 50 W with 2.5 m/s (equivalent to 2.86 J/cm2),
Franco et al. [22] obtained, for polyamide 12, temperature rises of approximately 30 and
46 K from model calculations. These values for the energy density are comparable to the
2.5 J/cm2 proposed by Dupin [6,23] to be a good choice for SLS processing with a low
degree of porosity. Therefore, modelling coupled temperature diffusion dynamics would
be an important extension of the model.

Related to (c), as a first approximation for the characteristic material time which the
viscoelastic polymer takes to adjust to the driving force of sintering, the longest time of the
relaxation time spectrum of the polymer melt can be taken. This is for entangled polymer
chains the reptation time, which is the time long polymer chains need to disentangle from
their topological restraints, represented in the model of Doi and Edwards [24] by a virtual
tube formed by the network of entangled chains that surround each polymer chain. Shorter
relaxation times are the normal mode spectrum predicted by the Rouse model, and “local
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modes” the short-time end. It is important to remember that the characteristic relaxation
times and the shape of the spectrum depend on temperature and molecular weight, as
well as on the chain architecture such as branches or crosslinks. The latter can change
significantly due to thermal aging by laser heating and during the long times at moderate
temperatures in the powder reservoir or bed. The relevant aging mechanisms are chain
scission, branching and/or crosslinking ([6,20] and references therein).

Related to (d), the limitations of the steady flow approximation become relevant if
the time of the pore collapse becomes shorter than the relaxation time for the viscoelastic
stress or creep. This relation can be expressed by the dimensionless Deborah number
(De), which is the ratio of the time it takes for a material to adjust to applied stresses or
deformations, and the characteristic time scale of the experiment or process. As a first
approximation for the pore collapse one can assume: De = λ/τFrenkel = λσ/(2 r0 η).
As stated by Scribben et al. in [7] the steady flow approximation may not be valid for
materials with large Deborah numbers, or at least in cases where the coalescence time
and the longest relaxation time in the distribution are similar. For these cases, a complete
transient representation is required. Possible approaches for this are discussed in [16]. Both
the neck growth during the coalescence of molten polymer particles and pore collapse
are very slow in a polymer melt. In processes such as SLS or rotational molding, they
are at least one order of magnitude longer than the characteristic material times (see also
Figure 9, below).

A full diffusion approach considering the gas absorption in the polymer melt and
the substitution of Henry’s law, related to (e) and (f), remains the subject of a subsequent
investigation. Some ideas for extension of the model can be found in [16].

4.2. Time and Temperature Regimes of Laser Sintering

As stated in the introduction, polymer sintering is inherent in industrial processes
such as powder coating, dispersion coating, cold compression and rotational moulding,
SLS or FDM. However, particle coalescence is only one of many mechanisms that are linked
together by the process steps. In the following consideration of relevant time regimes,
we concentrate on selective laser sintering. During SLS, processes such as radiative heat
transfer from the laser beam to the polymer particles, inter-particle heat diffusion, the
melting kinetics of grains, coalescence phenomena driven by surface tension and the release
of entrapped gases, crystallization kinetics of semi-crystalline polymers and polymer aging
determine the final properties of the sintered parts [6,20,21]. Each of these mechanisms has
its characteristics such as length scale, time regime or temperature dependence.

We wanted to estimate and compare the relevant time and temperature regimes for
SLS, exemplarily for polyamide 12 (PA12), which is until now the most common polymer
material for SLS. Therefore, we combined experimental results on characteristic times from
Dupin et al. [6,23] and some of our own data [20] in an overview (Figure 9). Similar data
for other polymers such as polyethylene, polypropylene and polystyrene from different
sources are collected in reference [16]. However, it is very difficult to find reliable data sets
for the same polymer at comparable conditions.

In Figure 9, the characteristic times are plotted as an example for PA12 in comparison
to the inverse absolute temperature (1000/T (K)) in an Arrhenius diagram. To give an
illustration of the process window, the melting temperature Tm = 186.5 ◦C from differential
scanning calorimetry (DSC) experiments [20] with 10 K/min for PA12 (PA 2200 Balance
1.0, EOS GmbH, Krailling, Germany) and a typical temperature for the powder reservoir
of Tp = 175 ◦C are indicated in the figure. The equilibrium melting temperature for PA12
was estimated by Dupin [6] to be T0

m = 190.7 ◦C and the recrystallization temperature for a
cooling rate of 10 K/min was found to be 145.5 ◦C [20].
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The characteristic times in Figure 9 are the Frenkel time (τFrenkel) for a pore to disap-
pear by neglecting the gas pressure in the pore [4], the half-time (tcoal

1/2 ) for the coalescence
of two individual particles from [4], the terminal relaxation time (λ) of the viscoelastic spec-
trum of the melt [6], the half-time of crystallization [6] and a characteristic gelation time due
to chain lengthening, branching and/or cross-linking by thermal aging tgel . tcoal

1/2 for particle
coalescence are estimated from the time dependence of the neck radius between particles
from [4]. Chain lengthening in PA12 is due to a post-condensation reaction (see [6,20] and
references therein).

Since the coalescence of polymer particles takes place for semi-crystalline materials at
temperatures above their melting point and well above their glass transition temperature,
the viscoelastic relaxations in the melt are highly relevant (see Section 3.3, above). For this
reason, the terminal relaxation time as a representative of the longest relaxation time of the
viscoelastic spectrum is also plotted in Figure 9 as a function of inverse temperature. The
data are taken from frequency-dependent rheological measurements from Dupin [6,23] on
PA12. They show an Arrhenius-type temperature dependence, which is typical for polymer
relaxations well above the glass transition temperature.

τFrenkel = 2 r0 η/σ is the characteristic time for a pore to disappear
(
rp = 0

)
in

Frenkel´s late stage model, assuming a pore embedded in a Newtonian fluid and neglecting
the gas pressure within the pore. For its calculation, a value for the surface tension σ
for PA12 (Innov Polyamide 12, Exceltec) of 25 mN/m [6] was taken. This value was
estimated from measurements from 300 to 395 K and then extrapolated linearly to process
temperatures [6]. Wudy et al. referred to a value for the surface tension of PA12 (Evonik) in
the melt of approximately 35 mN/m [25]. A literature survey [16] yields a value between
1·10−1 and 5·10−2N/m for different polymers, such as polyolefines or polystyrene, and
for different gases. For η, temperature-dependent values of the zero-shear viscosity η0
for PA12 were taken again from Dupin [6]. The η0 values are estimated in [6] from shear-
rate-dependent data fitted by the Carreau–Yasuda equation [26]. At sufficiently high
temperatures above the glass transition, the viscosity of most polymer melts follows—
similar to the terminal relaxation time—an Arrhenius dependency. The activation energy
was found to be Ea = 99 kJ/mol [6]. In [27] for PA12 (Vestamid L-1700, Evonik, Marl,
Germany) with a lower molecular weight an activation energy of Ea = 32.5 kJ/mol was
determined by a strain sweep test at 1 Hz in the linear viscoelastic regime. Related to
the lower molar mass, the viscosity at 210 ◦C in this study [27] was 125 Pa·s compared
to 3805 Pa·s in [6]. As stated in Section 3.3, it is difficult to define the initial pore radius
r0, and reliable experimental data could not be found. As a rough estimate, the average
particle size, which is about 100 µm (see, e.g., [6,22]), was taken to calculate τFrenkel . Since
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the spherical inclusions are formed by the gas entrapped in the intercepts between particles,
the individual radius will depend on the particle size and shape distribution as well as the
packing geometry. Therefore, the average pore radius is expected to be smaller than the
particle radius—in the order of 10 µm—with a broad size distribution. Thus, it is obvious
that the estimation of τFrenkel using r0 = 100 µm and the values from [6] in Figure 9 are a
rough approximation. As shown by our model, the inclusion of viscoelasticity, trapped
gas and its diffusion into the matrix extends this time significantly. On the other hand,
during the coalescence of all grains in the powder bed, the air present between the grains
may escape through even open paths to the surface of the powder bed [21]. This process
is expected to be much faster than predicted, by gas transfer into the matrix, sorption
and diffusion.

Based on Frenkel´s late and early stage models [3], the times for particle coalescence
and viscous pore collapse, neglecting gas transport, are in the same order of magnitude.
Even without gas in the pore [3] the early stage of particle coalescence is expected to be
somewhat faster than pore collapse, which is further slowed down by viscoelastic flow and
gas diffusion. For illustration, a half-time for particle coalescence tcoal

1/2 using experimental
data from the monitoring of the coalescence of two individual particles by Dupin [6] is
plotted in Figure 9. As expected, the characteristic times for two-particle coalescence
are faster than those proposed by Frenkel for viscous pore collapse. The semi-empirical
viscoelastic model by Mazur and Plazek [28] combining recoverable creep compliance
and the viscosity of the melt proposed even shorter times. Dupin [6] showed that the
coalescence of the polymer grains is very fast (a few seconds), relative to the holding time
in the polymer melt (a few tens of seconds) in the SLS process.

In Figure 9, tcryst
1/2 is the half-time of the crystallization from isothermal crystallization

experiments [6,23]. Since crystallization and coagulating kinetics during laser sintering are
coupled non-isothermal processes within a nonhomogeneous temperature profile and a
complex flow field, the straight line in the activation diagram represents, again, a rough
estimate of the temperature and time regime. To provide a deeper insight into the effects of
processing conditions on the development of microstructure during laser sintering, studies
with sufficient temporal and spatial resolution are required. Whereas for sintering of the
powder the particle coalescence and pore collapse are the relevant processes, for solidifi-
cation of the manufactured parts before extraction, the chamber is slowly cooled down
and crystallization becomes the relevant mechanism. In contrast, during the layer-by-layer
building process the surface of the part bed is heated to a temperature close to the melting
point in order to reduce uncontrolled crystallization and thus warping or deformation
of the parts. One can introduce a modified Deborah number for the characteristic crys-
tallization time with the pore collapse as the reference time scale: Decryst = tcyst

1/2 /τFrenkel .
For this convention Decryst has to be well above unity, if the unfinished parts are still in
the chamber, and well below one during cooling to allow solidification. The crossover
from the dominance of sintering (particle coalescence and pore collapse exhibit a similar
time scale [3]), on the one hand side, and the dominance of crystallization is indicated in
Figure 9 by the crossing of the extrapolated lines for particle coalescence or pore collapse
with the line for half-time of crystallization, on the other side.

It is well established that if polymer materials are maintained in a high-temperature
environment they will degrade. Usually there is an interplay of crosslinking or chain
branching and chain scission. In the case of many commercially available PA12 materials
used for laser sintering, a post-condensation reaction becomes dominant at the tempera-
tures of the powder bed, which increases molecular weight and thus increases the viscosity
and influences the crystallization of the unfinished parts. The rheological properties
show a gelation-like behavior which is attributed to chain lengthening (due to the post
condensation), branching and/or cross-linking (see [6,20] and references therein). Assum-
ing again the sintering (expressed by the Frenkel time) to be the relevant time scale of
the process, another Deborah number for the time scale of gelation may be introduced:
Degel = tgel/τFrenkel . Degel has to be sufficiently large to avoid changes in the chemical
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structure and the resulting rheological properties, and of the mechanical performance of
the final parts.

These considerations, which are exemplarily carried out for PA12, show the necessity
of the measurement of experimental data under realistic conditions at or close to the pro-
cessing conditions of relevant polymers in order to obtain reliable data for the comparison
of experiment and theory, as well as input quantities for modeling. An extended litera-
ture survey in [16], including, in addition to PA12, other polymers such as polyethylene,
polypropylene or polystyrene, yields rough estimates for the characteristic values of our
viscoelastic model. Based on this literature survey, the reduced parameters can be estimated
as λ̃ ≈ 10−3 and r̃p,eq ≈ 10. If these estimations can be confirmed by more precise measure-
ments, the gas diffusion becomes an even more relevant mechanism for the modelling of
pore collapse. A value of r̃p,eq larger than unity would not permit a volume reduction in the
pore by surface tension and viscoelastic flow alone, and gas diffusion would be needed [16].
Due to large uncertainties in the estimates for each single parameter, an uncertainty of
more than a factor of ten is feasible and has to be taken into account for interpretation.
However, if these values are close to the real ones, bubbles in polymer sintering might
initially grow after densification and would only slowly disappear by diffusion-controlled
phenomena. This would correspond to the surface-energy-driven viscoelastic collapse in
regime III, which is allowed to happen because of the lowered bubble pressure. Liu [21]
(including results from [6]) reported that, for an unsaturated polymer, the time for the
disappearance of inclusions (“bubbles”) with a radius of 10 to 265 µm varies from a few
milliseconds to fifty seconds. Liu further reported that surface tension had little influence
in that case. For a saturated polymer, Liu observed much longer times of 10 to 90 min for
the same bubbles. For the latter case, surface tension is assumed to govern the kinetics of
the disappearance time of bubbles. The large time differences for the disappearance of gas
bubbles [21] cannot be attributed to surface tension and viscoelasticity alone. Thus, the
evolution of the size of closed pores in the material can only be explained by the diffusion
and absorption of the gases in the surrounding molten polymer. Furthermore, the size
and shape distribution of the particles and the resulting gussets or inclusions, temperature
differences in powder bed and flow-field inhomogeneities, as well as the layer-by-layer
processing and gas escape through open paths has to be included. There are a number of
advanced finite element simulations (FEM) (see, e.g., [21,29]) which allow the inclusion of
more of these details than in an analytical model. There are even attempts to combine FEM
and machine learning techniques to evaluate the complexity of powder bed fusion and
optimize additive manufacturing process parameters [30]. An analytical model is however
still useful to gain insight into the general dependencies, the control variables and the
understanding of the underlying processes.

5. Conclusions and Outlook

Based on the sintering theory introduced by Frenkel [3], a model for the pore collapse,
which is the late stage of sintering of an array of polymer particles, has been developed.
For this late stage, the dynamics of a gas pore in a viscoelastic melt is modeled. The
viscoelasticity of the melt is represented by the convected Maxwell model. The crucial
parameters of the viscoelastic pore collapse model are: the viscoelastic relaxation time λ,
the ratio of surface tension and the product of initial radius and viscosity σ/(r0 η) and the
ratio of surface tension and the product of initial radius and pressure p0r0/σ. The first
two parameters determine the time scale of the pore collapse dynamics, while the latter
determines the equilibrium radius at long times for an idealized pore without gas transfer
to the surrounding melt.

As an extension of the viscoelastic model, gas transport into the polymer matrix was
included by gas diffusion. The latter is approximated by a gas transfer rate. This model
extension leads to a complete collapse of the pore at long times. The time-evolution of the
pore collapse and its dependence on surface tension, viscosity and gas transfer coefficient
becomes rather complex. Three time regimes of pore collapse could be distinguished:
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surface-tension-driven regime (I), diffusion-controlled regime (II) and surface-tension-
driven collapse (III). A parameter study showed that the occurrence and length of these
time intervals depend on the actual parameter sets and that not all parameter sets yield
all regimes.

Finally, some limitations of the proposed model with respect to polymer sintering are
discussed. The different time and temperature regimes of the process steps of selective
laser sintering are exemplarily depicted, described and discussed for polyamide 12 as a
typical polymer for laser sintering. It becomes obvious that, although embedded gas pores
are problematic for the final mechanical and optical performance of sintered polymeric
parts or coatings, the pore collapse is one of many mechanisms that are linked together in a
highly complex manner by the process steps of SLS or other polymer sintering processes.

Future works should first concentrate on a similar study of the parameter-dependent
behavior for the solution of the full diffusion problem to validate the predictions of this
approximate model. The next steps should include the solution without a quasi-steady flow
approximation and the use of more elaborate rheological models, potentially including
aging effects, which have been shown to be of importance in technical applications [6,23].
It would also be interesting either to model the intermediate stage not modeled in the
original Frenkel model, or to consider the effect that multiple gaseous pores in a melt have
on each other. Another necessity is the measurement of experimental data under realistic
conditions, which we have not been able to find published. This includes the measurement
of parameter values at processing conditions for relevant polymers.

Author Contributions: Conceptualization, I.A. and F.W.; methodology, F.W. and I.A.; software, F.W.
and D.L.; writing—original draft preparation, I.A. and F.W.; writing—review and editing, F.W. and
D.L.; visualization, I.A. and F.W.; project administration, I.A.; supervision, I.A. and D.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was part of a Master’s thesis at the Department of Physics at Technical
University Darmstadt (Germany) and at Fraunhofer LBF (Darmstadt, Germany) and received no
external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors want to thank the reviewers for very accurate and in-depth reviews,
which helped considerably improve the final version of the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Neglecting the convective term dr̃p

dt̃
r̃p

2

r̃2
∂c̃
∂r̃ in the diffusion equation (Equation (17)),

which is consistent with the quasi-steady flow approximation in Section 2.2 and motivated
by [9], the problem can be solved analytically following a method from one-dimensional
heat conduction calculations for semi-infinite one-dimensional media which can be found,
e.g., in the books by Carlslaw and Jaeger [31,32] (§2.4, §2.5). Details can be found in [16].
The full solution formula for the concentration profile reads:

r̃c̃ = 2√
π

∞∫
(r̃−1)/2

√
dt̃

K̃h p̃
(

t̃− (r̃−1)2

4dµ2

)
exp

(
−µ2)dµ

+ 1
2
√

πdt̃

∞∫
0

1
s+1

{
exp

(
− ((r̃−1)−s)2

4dt̃

)
− exp

(
− ((r̃−1)+s)2

4dt̃

)}
ds

(A1)

In this solution, d = 2Dη/(r0σ) is the dimensionless diffusion constant of Fickian
diffusion (with D being the diffusion constant itself).
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