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Abstract: This study analyzes the buckling behavior of 8-node IsoTruss® structures with outer
longitudinal members. IsoTruss structures are light-weight composite lattice columns with diverse
structural applications, including the potential to replace rebar cages in reinforced concrete. In the
current work, finite element analyses are used to predict the critical buckling loads of structures with
various dimensions. A dimensional analysis is performed by: deriving non-dimensional Π variables
using Buckingham’s Π Theorem; plotting the Π variables with respect to critical buckling loads to
characterize trends between design parameters and buckling capacity; evaluating the performance of
the outer longitudinal configuration with respect to the traditional, internal longitudinal configuration
possessing the same bay length, outer diameter, longitudinal radius, helical radius, and mass.
The dimensional analysis demonstrates that the buckling capacity of the inner configuration exceeds
that of the equivalent outer longitudinal structure for the dimensions that are fixed and tested herein.
A gradient-based optimization analysis is performed to minimize the mass of both configurations
subject to equivalent load criteria. The optimized outer configuration has about 10.5% less mass than
the inner configuration by reducing the outer diameter whilst maintaining the same global moment
of inertia.

Keywords: IsoTruss structures; lattice structures; buckling; dimensional analysis; mass minimization

1. Introduction

Composite lattice trusses are high strength, lightweight structures that are being
developed and implemented in disciplines including aerospace structures, automotive
bodies, and civil infrastructure [1–3]. In addition to an excellent strength-to-weight ratio,
these structures demonstrate substantial damping, stiffness, flexural capacity, and corrosion
resistance [4]. Possessing adaptable geometries, these structures can be reconfigured to
serve as beams, struts, columns, shells, and the cores of sandwich composites [5].

IsoTruss® structures are a distinct variation of open-lattice composite grid columns.
The general structure is comprised of longitudinal and helical members that are aligned
with anticipated load criteria to maximize strength-to-weight [6]. Longitudinal members
are straight, continuous members that span the overall length, whereas helical members
wind piece-wise linear around the structure to form a continuous helical-like member.
All members are made of fiber tows encased in resin, and consolidated with external
wrapping techniques such as braided sleeves, coiled sleeves, Kevlar wrapped sleeves, or
polyester shrink-tape sleeves [7]. Various fiber and resin constituents have been used,
including graphite, fiber-glass, and basalt tows with diverse epoxy resins [8]. Structural
properties such as the number of nodes (i.e., the number of longitudinal members), the
number of carbon tows in each member, and the materials are selected according to the
distinct design criteria.

The structural performance of composite grid columns, including IsoTruss structures,
has been widely studied to identify and understand the governing failure modes. Loaded

Materials 2021, 14, 2079. https://doi.org/10.3390/ma14082079 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-0282-8330
https://orcid.org/0000-0003-1805-8713
https://doi.org/10.3390/ma14082079
https://doi.org/10.3390/ma14082079
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14082079
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14082079?type=check_update&version=1


Materials 2021, 14, 2079 2 of 19

in axial compression, these columns generally fail in material failure, global buckling, local
buckling modes, and strut crushing [9–11]. Buckling is a prevalent failure mode that has
been studied using experimental, numerical, analytical, and optimization methods.

Finite element (FE) methods are a prevalent numerical approach that is broadly
used to assess and compare the structural proficiency of diverse configurations with
various material properties [12–16]. Buckling models of composite structures have been
developed within FE applications to capture both the linear and nonlinear modes. Linear
eigenvalue buckling models are used to predict critical buckling loads of global and
localized buckling [17,18]. Nonlinear models are enhancing the fidelity of buckling analyses,
facilitating greater understanding of post-buckling capacities and the influence of shear
deformations [19–22].

Analytical methods such as mathematical expressions are often used to verify exper-
imental data and validate results predicted by numerical models. While the fidelity of
these expressions are limited by the corresponding assumptions, the expressions provide a
baseline to characterize interrelations between design parameters (e.g., material properties
and structural geometry) and performance criteria (e.g., ultimate capacity or structural
efficiency) [23,24]. Such expressions have been derived for composite structures using
traditional mechanics principles including strain energy formulation or classical lami-
nate theory, and are being augmented to account for transverse curvature and individual
member strains [25–27].

Optimization methods are often used in the preliminary design phase of compos-
ite structures to maximize strength-to-weight and other desirable characteristics [28–30].
The optimization objectives and constraints are defined with various methods, includ-
ing the use of analytical expressions that demonstrate sufficient fidelity [23,26,31]. Both
gradient-free and gradient-based frameworks have been employed in preceding studies
to maximize structural efficiency. Gradient-free methods, such as the non-sorting genetic
algorithm II (NSGA-II), are used frequently to optimize structural configurations and
facilitate multi- or single-objective optimization of both discrete and continuous design
variables [32,33]. Gradient-based methods are used in other studies to perform sensitivity
analyses in addition to mass minimization [26,31].

In preceding research studies, many configurations of IsoTruss structures with inner
longitudinal members have been analyzed by manufacturing experimental specimens
and performing physical testing [34,35]. Implementing numerical methods such as FE
analysis and optimization studies has expedited the design process, facilitating the pre-
liminary assessment of alternative configurations [24,26,36–39]. This study is part of a
broad research initiative to develop and implement numerical and optimization methods
for the preliminary design of IsoTruss structures. The following studies by Opdahl et
al. preceded the current work to develop numerical techniques for analyzing IsoTruss
structures with inner longitudinal members: a linear eigenvalue buckling FE model was
validated with experimental testing and verified with analytical expressions [24]; an ana-
lytical expression was derived to predict the local/shell-like buckling mode [26]; trends
between design parameters (i.e., outer radius, radius of longitudinal members, radius of
helical members, and bay length) and the shell-like buckling mode were characterized
in a dimensional analysis [39]; the mass of an inner longitudinal configuration was mini-
mized in an optimization study using both gradient-based and gradient-free optimization
algorithms [26].

The purpose of the current study is to adapt the aforementioned numerical, dimen-
sional, and optimization methods (developed for inner longitudinal configurations [26]) to
the design of IsoTruss structures with outer longitudinal members. The outer longitudinal
configuration (OLC) possesses the same geometric characteristics as the inner longitudinal
configuration (ILC) except that the longitudinal members are placed at the outer diameter
of the structure, spanning between the nodes. Figure 1 is the end view of an IsoTruss
structure. A side view of the OLC is shown in Figure 2. Refer to the works presented by
Kesler and Opdahl for more explanation of IsoTruss orientation and geometry [26,40].
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Figure 1. End view of IsoTruss structure [26].

Figure 2. Side view of IsoTruss structure with outer longitudinal members (i.e., OLC) [26].

OLC and ILC structures of equal bay length, outer diameter, and member radii are
equivalent in mass. By pushing the longitudinal members to the outer diameter, the global
moment of inertia of the structure is increased without increasing the mass. Hence, the OLC
is inherently more resistant to global buckling than the ILC of equal dimensions. On the
other hand, the placement of the longitudinal members in the OLC increases the span of
the longitudinal struts, thereby increasing the susceptibility to local buckling.

Due to inherent manufacturing complexity, experimental testing has not been widely
performed on the OLC, therefore, there is limited physical data to demonstrate the struc-
tural performance and buckling behavior. The current study produces data from dimen-
sional analysis (akin to that performed by Opdahl and Jensen [39]), FE modeling, and opti-
mization techniques (based on the framework presented in [26]) to explore four subtopics.
First, the data are used to characterize trends between the OLC design parameters and the
buckling capacity. Second, FE predictions are plotted with analytical predictions to verify
the accuracy of an analytical expression presented herein. Third, the relative performance
of the OLC with respect to the ILC is analyzed via dimensional analysis. Finally, the OLC
and ILC are optimized with respect to mass (via gradient-based techniques) to indicate the
distinct advantages of each configuration under the same loading criteria.

2. Methods

Three methods of analysis are implemented in the current study to analyze the buck-
ling behavior of the OLC and compare its relative performance to the ILC. First, a di-
mensional analysis is performed to characterize the interrelations between the governing
design parameters and the critical buckling load. The parameters are reduced to three
non-dimensional independent Π variables via Buckingham’s Π Theorem (BPT). Likewise,
the critical buckling load is also reduced to a non-dimensional term via BPT. Next, FE
methods are used to predict critical buckling loads for diverse structural configurations. FE
analyses are performed in ANSYS WorkBench based on the validated methods discussed
by Opdahl and Jensen [24]. The predictions are used to assess the relative accuracy of
analytical expressions for local buckling in the OLC. Finally, the optimization techniques



Materials 2021, 14, 2079 4 of 19

presented by Opdahl [26] are implemented to optimize the OLC and ILC with respect to
mass. These methods are expounded in the subsequent sections.

2.1. Dimensional Analysis
2.1.1. Buckingham’s Π Theorem

The governing design parameters of the OLC are the same as those identified by
Opdahl and Jensen [39] to govern the buckling behavior of the ILC (i.e., longitudinal
radius [rL], helical radius [rH], bay length [b], outer radius [R], and Young’s modulus [Ez]).
Therefore, the three independent Π variables derived therein are used in the current study,
and are provided in Equation (1) for reference. Kesler and Opdahl provide additional
figures and description of these governing design parameters [26,40]. In the current study,
both global and local buckling modes are considered, hence, the critical buckling load, Pcr,
is selected as the dependent variable of interest in place of the shell-like buckling load used
by Opdahl and Jensen. While the global length, L, is not explicitly defined as a design
parameter in BPT, it is implicitly incorporated in the FE predictions of the critical buckling
load of the global buckling mode.

Π1 =
rL
R

Π2 =
rH
R

Π3 =
b
R

Π0 =
Pcr

Ez · R2

(1)

2.1.2. Trend Analysis

Trend analyses are performed for the OLC in the same manner as those presented
by Opdahl and Jensen [39] for the ILC. That is, a trend analysis is performed for each
independent Π variable with respect to the dependent Π variable. Each trend analysis
consists of three sets of FE analyses, and each set of FE analyses has different design
parameters to demonstrate how the interrelations may vary with respect to different
geometric dimensions. Each set of geometric dimensions is distinguished by the ratios
Π3-to-Π2, Π3-to-Π1, or Π1-to-Π2 for the trend analyses of variables Π1, Π2, and Π3,
respectively. The independent Π variables and the Π ratios of each FE set are presented
in Table 1. The values of the variables were selected to provide Π ratios that are round
numbers within the design space of the long, light-weight IsoTruss structures typical of the
Rackliffe et al. [34] specimens.

Table 1. Fixed Π Variables of Dimensional Analyses.

Π Variable Set (1) Set (2) Set (3)

Π1 1.29 × 10−2 1.13 × 10−2 1.00 × 10−2

Π2 8.72 × 10−3 6.50 × 10−3 4.82 × 10−3

Π3 1.31 1.30 1.21
Π3/Π2 150 200 250
Π3/Π1 100 115 120
Π1/Π2 1.5 1.75 2

Trend analyses are also used in the current study to compare the relative performance
of the OLC and the ILC. A trend analysis is performed for each independent Π variable of
the ILC configuration using the design parameters of Set 2. The results of each ILC analysis
are plotted with the corresponding results of the Set 2 OLC analysis.



Materials 2021, 14, 2079 5 of 19

2.2. Finite Element Models

The FE analyses consist of static structural analyses and eigenvalue buckling analyses
to predict the critical buckling load and mode of each distinct configuration. The bound-
ary conditions were defined as fixed-free at the ends of the IsoTruss structure, and the
compression load was defined as 500 N (112 lb.). The density of the FE mesh was 10 m−1

(0.25 in.−1). The fixed design parameters that correspond with each set of trend analyses
(i.e., number of tows per longitudinal or helical member [Nt], number of bays [Nb], and
overall length [L]) are summarized in Table 2.

Table 2. Fixed Design Parameters of FE Analyses.

Parameter Units Set (1) Set (2) Set (3)

NtL N/A 11 12 13
rL [mm (in.)] 0.821 (0.0323) 0.859 (0.0338) 0.893 (0.0351)
NtH N/A 5 4 3
rH [mm (in.)] 0.554 (0.0218) 0.495 (0.0195) 0.429 (0.0169)
b [mm (in.)] 83.1 (3.27) 99.1 (3.90) 107 (4.22)
R [mm (in.)] 63.5 (2.50) 76.2 (3.00) 88.9 (3.50)
Nb N/A 30 25 23
L [m (in.)] 2.49 (98.1) 2.48 (97.5) 2.47 (97.1)
Ez [GPa (106 psi)] 161 (23.3) 161 (23.3) 161 (23.3)

The FE models demonstrate two general buckling modes: global buckling and local
buckling. The global buckling mode follows the typical model and expression of Euler-
buckling of a cantilever column. Figure 3 shows the global buckling mode of an IsoTruss
with inner longitudinal members, produced from an FE model. The local buckling mode
occurs over the longitudinal members such that the struts buckle either inward or outward
symmetrically with a wavelength of two bays. Figures 4 and 5 demonstrate the local
buckling mode of an outer longitudinal IsoTruss, shown from the side and end of the
structure, respectively. The models have a mesh density of 200 m−1 (5.08 in.−1).

Figure 3. Global buckling of an inner longitudinal IsoTruss structure [26].

Figure 4. Local buckling of an outer longitudinal IsoTruss structure (side view) [26].
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Figure 5. Local buckling of an outer longitudinal IsoTruss structure (end view) [26].

2.3. Optimization Techniques

The gradient-based techniques presented by Opdahl are implemented in the current
study to optimize the OLC with respect to the same bounds and constraints as those
imposed on the ILC by Opdahl [26]. The code employs the built-in optimizer ‘fmincon’ to
minimize mass using a gradient-based algorithm. The framework executes the optimiza-
tion in two stages. First, the optimizer minimizes the mass, treating all design variables
as continuous. Second, the discrete variables (i.e., the number of bays and the number of
longitudinal tows) are rounded to integer values, fixed as input variables, and the outer
diameter is re-optimized as a continuous variable. Algorithmic differentiation is imple-
mented within the analysis to supply the gradients of the objective and constraint functions
to the optimizer. The sensitivity derivatives and Lagrange multipliers are produced with
the optimized solution.

The problem definition therein includes a constraint for the eigenvalue of the lon-
gitudinal strut buckling mode, λl , and shell-like buckling mode, λsb, that are typical for
the ILC. Contrary to the shell-like buckling mode exhibited by the ILC, the local bay-
level buckling of the OLC demonstrates complete radial symmetry, with the longitudinal
struts all buckling either outward or inward at a given point along the longitudinal axis.
The shell-like buckling equation for the ILC local buckling mode was replaced with an
equation that predicts local buckling in the OLC. This local buckling mode, defined by
the bay buckling load, Pb, is implemented to replace Pl and Psb of the ILC. The analytical
expression that is used to predict local buckling in the OLC is shown in Equation (2). The
boundary constraints imposed by the helical struts are approximated as pinned joints with
the effective length factor, µb, of one.

Pb = N · π2 · Ez · IL

(µb · b)2

µb = 1.0

λb =
Pb
P

(2)

While the constraining influence of the nodes on the local buckling mode is approxi-
mated in the current work as a pinned joint, other studies explore the boundary constraint
as a function of design parameters such as member radius, material properties, and/or the
inclination angle [34,36,41,42]. Opdahl documents the derivation of a boundary constraint
coefficient, µsb, for the ILC that is a function of the geometry and material of the longitudi-
nal members [26]. As the stiffness of the longitudinal members increases, the rotational
stiffness of the node increases, decreasing the validity of the pinned-joint assumption.
The influence of the helical members at the nodes is expounded in the discussion section
based on the results of the analyses performed herein. Additional exploration should be
performed in a subsequent study to enhance the fidelity of the analytical expression shown
in Equation (2).
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The global buckling load, Pg, is predicted using the Euler-buckling equation for a
cantilever column. The moment of inertia coefficient, c, is selected based on the derivation
by Winkel [36] for outer longitudinal members (see Equation (3)).

Pg =
π2 · Ez · Ig

(µg · L)2

µg = 2.0 (for fixed-free column)

Ig = c · AL · R2

c = 4.0 (for 8-node IsoTruss with outer longitudinal members)

λg =
Pg

P

(3)

The adjusted problem definition of the optimization analysis performed in the current
study is summarized mathematically in Equation (4).

Minimize M

with respect to Nb, NtL , D

subject to 1.0 − λg < 0

1.0 − λb < 0

σ − σu < 0

[Nb NtL D] > [20 9 4]

[Nb NtL D] < [100 13 8]

(4)

3. Results

The results from the FE analyses and analytical predictions are presented as four
subtopics in the subsequent sections. The first two subtopics focus on characterizing the
buckling behavior of the OLC. First, the FE analyses of the OLC are used in trend analyses
to assess the interrelations between each independent Π variable and the dependent Π
variable. Second, the analytical predictions of the OLC critical buckling loads are plotted
with the FE predictions. The plots indicate the extent to which the analytical expression
adequately predicts critical buckling with respect to the FE results. The next two subtopics
compare the performance of the OLC with that of the ILC. First, data collected for the
OLC and ILC trend analyses are plotted together to indicate the relative performance of
the configurations within the design space of the trend analyses. Second, the analytical
expression for bay-level buckling in the OLC is implemented in the gradient-based opti-
mization routine presented by Opdahl [26] to compare the OLC and ILC structures that are
optimized for mass.

3.1. Trend Analyses of OLC

Data from the OLC trend analyses are first used to characterize trends between the
non-dimensional, independent Π variables. The independent Π variables Π1, Π2, and Π3
are plotted against Π0 in Figures 6–8, respectively. Local buckling loads are represented in
the plots by solid markers, whereas global buckling loads are represented by markers that
are unfilled. The dotted lines represent the best-fit curves.

Figure 6 indicates that increasing Π1 induces a quadratic increase in Π0. It follows
that increasing the radius of the longitudinal members induces a quadratic increase in the
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critical buckling load. Figure 6 also indicates that the Π0 vs. Π1 curve shifts downward
as the ratio of b-to-rH increases. The general quadratic expression that relates Π1 to Π0 is
provided in Equation (5). The coefficients of the quadratic expressions (i.e., α and β) vary
with the ratio of Π3-to-Π2. The coefficients and R-squared values that correspond to the
curves shown in Figure 6 are provided in Table 3. The expressions are derived such that
the ordinate intercept is set to zero.

Figure 7 indicates that Π0 increases with respect to increases in Π2. It follows that
the critical buckling load, Pcr, increases with respect to increases in the radius of the
helical members, until global buckling becomes the governing buckling mode. Once global
buckling occurs, the curve flattens with respect to Π2, as shown in the curve b/rH = 100
where Π2 is approximately 0.015. As the b-to-rL ratio increases, the Π0 vs. Π2 curve shifts
downward. The generalized quadratic expression that relates Π2 to Π0 is provided in
Equation (6). The coefficients of the expression (i.e., α and β) vary with the ratio of Π3-to-Π1.
The coefficients that correspond to the curves shown in Figure 7 are provided in Table 4.
The expressions are derived such that the ordinate intercept is zero. The corresponding
R-squared values are also provided in Table 4.

Π0 = α · Π2
1 + β · Π1 (5)

Π0 = α · Π2
2 + β · Π2 (6)

Figure 6. OLC Π0 vs. Π1 [26].

Figure 7. OLC Π0 vs. Π2 [26].
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Table 3. Coefficients relating Π0 to Π1.

Π3/Π2 α β R2

150 1.81 × 10−2 −1.02 × 10−4 0.99
200 1.28 × 10−2 −6.70 × 10−5 0.99
250 1.11 × 10−2 −5.59 × 10−5 0.98

Table 4. Coefficients relating Π0 to Π2.

Π3/Π1 α β R2

100 5.60 × 10−3 1.44 × 10−4 0.99
115 3.71 × 10−3 1.03 × 10−4 0.99
200 3.68 × 10−3 8.89 × 10−5 0.99

Figure 8 presents the interrelations of Π0 and Π3 for three values of the ratio rL-to-rH .
As the rL-to-rH ratio increases, the Π0 vs. Π3 curve shifts downward. The curve of best-fit
that characterizes the trends between Π0 and Π3 is a power curve, provided in general
terms in Equation (7). The coefficients, α and ξ, of the power curves vary with respect
to the rL-to-rH ratio. The coefficients are provided in Table 5 with the corresponding
R-squared values.

Π0 = α · Πξ
3 (7)

Figure 8. OLC Π0 vs. Π3 [26].

Table 5. Coefficients relating Π0 to Π3.

Π1/Π2 α ξ R2

1.5 2.55 × 10−6 −1.73 1.00
1.75 1.26 × 10−6 −1.78 1.00

2 7.19 × 10−7 −1.85 1.00

3.2. Analytical vs. FE Predictions of OLC

In this section, the analytical predictions of the critical buckling loads of the OLC,
Pcranal , are compared with the FE predictions, PcrFE . Figure 9 plots the analytical predictions
and FE predictions of Π0 vs. Π1. The corresponding percent deviation (calculated via
Equation (8)) of the analytical predictions with respect to the FE predictions is plotted
against Π1 in Figure 10. Similarly, Figures 11 and 12 compare the predictions of Π0 vs. Π2
and illustrate the corresponding percent deviation, respectively; and, Figures 13 and 14
compare the predictions of Π0 vs. Π3 and illustrate the corresponding percent deviation,
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respectively. Solid lines represent the FE predictions whereas the dashed lines indicate the
analytical predictions.

Percent Deviation =
Pcranal − PcrFE

PcrFE

· 100 (8)

Figure 9. OLC Π0 vs. Π1 Analytical and FE predictions [26].

Figure 10. OLC Π0 vs. Π1 Percent deviation of analytical predictions from FE predictions [26].

Figure 11. OLC Π0 vs. Π2 Analytical and FE predictions [26].
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Figure 12. OLC Π0 vs. Π2 Percent deviation of analytical predictions from FE predictions [26].

Figure 13. OLC Π0 vs. Π3 Analytical and FE predictions [26].

Figure 14. OLC Π0 vs. Π3 Percent deviation of analytical predictions from FE predictions [26].

3.3. Trend Analyses of OLC vs. ILC

In this section, the buckling capacity of the OLC and ILC are compared to assess the
relative performance of the two configurations. The independent Π variables of the OLC
and ILC Set 2 configurations are plotted with respect to Π0 in Figures 15–17.

Figure 15 demonstrates the interrelation of Π0 and Π1 of both the ILC and OLC, where
the b-to-rH ratio is 200. Both configurations demonstrate a quadratic relation between Π1
and Π0. While the ILC curve indicates a greater buckling capacity than the corresponding
OLC curve, the difference of the OLC curve relative to the ILC curve decreases dramatically
from −60% to −4% as Π1 increases from approximately 0.006 to 0.015.
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Figure 15. Π0 vs. Π1 of OLC and ILC [26].

Figure 16. Π0 vs. Π2 of OLC and ILC [26].

Figure 17. Π0 vs. Π3 of OLC and ILC [26].

Figure 16 demonstrates the interrelation of Π0 and Π2 of the ILC and OLC structures,
where the b-to-rL ratio is 115. The plot once again demonstrates that the ILC possesses
greater buckling capacity than the OLC for the Set 2 design space. As rH increases, the
critical buckling load of the ILC increases quadratically, whereas the critical buckling load
of the OLC increases more proportionally. At approximately Π2 of 0.010, the ILC buckling
mode transitions from local to global buckling, and the critical buckling load plateaus.
Conversely, the OLC continues to be controlled by local buckling. This can be attributed to
the placement of the longitudinal members at the outer diameter. With the longitudinal
members at the outer diameter, the unbraced length of the longitudinal struts is increased
compared to the ILC equivalent. In addition, the global moment of inertia of the OLC is
greater than that of the ILC when both IsoTruss structures have the same number of nodes
and outer radius (see Winkel [36]). Thus, the OLC is more susceptible to bay-level buckling
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and less susceptible to global buckling than the ILC equivalent. The difference of the OLC
curve relative to the ILC curve decreases to less than −1% when Π2 approaches 0.014.

Figure 17 demonstrates the interrelation of Π0 and Π3 of the ILC and OLC, where
the rL-to-rH ratio is approximately 1.75. The critical buckling load of the ILC once again
exceeds that of the OLC in each case. The difference between the OLC design point and
the ILC design point increases from −2% to −17% as Π3 increases from 0.88 to 1.83.

3.4. Optimization of OLC vs. ILC

This final section incorporates the analytical expressions for the OLC in the gradient-
based optimization routine. The OLC structure is optimized for mass with the same bounds
as the ILC structure presented by Opdahl [26]. The constraints are also maintained the
same, with the exception of local bay-level buckling. With the longitudinal members placed
at the outer diameter of the structure, the OLC is not susceptible to shell-like buckling.
The local bay buckling shown in Figure 4 is the same failure mode as longitudinal strut
buckling in the OLC.

Table 6 presents the dimensions and mass of the optimized OLC and ILC structures.
The optimized OLC has about 10.5% less mass than the optimized ILC for the prescribed
constraints and bounds. The OLC optimum has more bays than the ILC optimum, however,
the outer diameter of the OLC optimum is approximately 16% smaller than that of the ILC
optimum. Even though the outer diameter has been reduced, the global moment of inertia
is the same between structures. The Lagrange multipliers, λm, are shown with respect
to the lower bound, upper bound, and structural failure constraints (λg, λsb, λl , and σu,
respectively).

A local sensitivity analysis of each optimized configuration was performed by calcu-
lating the sensitivity derivatives of the mass and the constraints with respect to each design
variable. The Jacobian matrices of the optimized OLC and ILC structures are presented in
Equations (9) and (10), respectively.

JOLC =


∂M
∂Nb

∂M
∂NtL

∂M
∂D

∂λg
∂Nb

∂λg
∂NtL

∂λg
∂D

∂λb
∂Nb

∂λb
∂NtL

∂λb
∂D

∂σ
∂Nb

∂σ
∂NtL

∂σ
∂D

 =


0.0177 0.0135 0.0205

0 −0.1000 −0.4553
−4.018 −0.2049 0

0 −0.0105 0

 (9)

JILC =



∂M
∂Nb

∂M
∂NtL

∂M
∂D

∂λg
∂Nb

∂λg
∂NtL

∂λg
∂D

∂λsb
∂Nb

∂λsb
∂NtL

∂λsb
∂D

∂λl
∂Nb

∂λl
∂NtL

∂λl
∂D

∂σ
∂Nb

∂σ
∂NtL

∂σ
∂D


=


0.0215 0.0135 0.0184

0 −0.0834 −0.3820
−0.508 −0.191 0.0083
−4.50 −1.69 0

0 −0.0073 0

 (10)

Row 1 of Equarions (9) and (10) indicate that the design variables of both config-
urations are positively correlated with the mass of the overall structures. Row 2 of
Equarions (9) and (10) imply that the outer diameter has the greatest relative effect (i.e., in-
versely) on the global buckling load, while the number of bays is negligible. Row 3 of
Equation (9) and Row 4 of Equation (10) indicate that the longitudinal buckling load of
each configuration (manifest in the OLC as local bay-level buckling) is inversely related to
the number of bays and number of longitudinal tows (i.e., positively correlated with the
bay length). The sensitivity of the ILC with respect to the number of longitudinal tows
is steeper than that of the OLC. Row 4 of Equation (9) and Row 5 of Equation (10) imply
that the ultimate material stress is only affected by the number of longitudinal tows, and
is inversely related. The sensitivity of the material stress of the OLC optimum is much
steeper than that of the ILC optimum with respect to the number of longitudinal tows (for
these particular optima).
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Table 6. Results of OLC and ILC Multi-modal Optimization Analysis.

Property OLC Minimum ILC Local Minimum 1 OLC-to-ILC Ratio

Mass [kg (lb.)] 0.124 (0.273) 0.138 (0.305) -
Nb 51 45 1.13
NtL 10 12 0.833
NtH 3 3 1.00
D [mm (in.)] 112 (4.39) 133 (5.24) 0.84
b [mm (in.)] 57.4 (2.26) 65.0 (2.56) 0.882
Ig [cm4 (in.4)] 2.39 (5.75 ×10−2) 2.40 (5.76 ×10−2) 0.999

λm (lower) 5.22 ×10−8 1.62 ×10−8 -
λm (upper) 5.53 ×10−9 7.22 ×10−9 -
λm (gb) 4.5 ×10−2 4.8 ×10−2 -
λm (sb) N/A 1.2 ×10−7 -
λm (b and l) 8.2 ×10−7 2.2 ×10−9 -
λm (σ) 6.3 ×10−14 6.3 ×10−14 -

4. Discussion
4.1. Influence of Helical Members

One of the most prominent themes from the analyses of the current study is the
unprecedented contribution of the helical members to the critical buckling load of the
OLC structures. The influence of the helical members can be assessed by the OLC inter-
relation curves, the plots comparing the analytical and FE predictions, and the percent
deviation curves.

Figures 9, 11 and 13 demonstrate the extent to which the independent Π variables
influence the dependent Π variable predicted from both analytical and FE predictions.
The shapes of the curves shown in Figures 9 and 13 indicate that the independent Π
variables, Π1 and Π3, induce similar effects in Π0 whether predicted using analytical or
FE methods. Figure 9, conversely, indicates that changes in Π2 affect the analytical and FE
predictions differently. While the analytical predictions are not affected by changes in Π2,
the FE predictions indicate that increasing Π2 increases the FE prediction of Π0.

Likewise, the percent deviation curves indicate that the radius of the helical members
has significant effect on the deviation between analytical and FE predictions. Figure 10
demonstrates that as the ratio b/rH decreases, the percent deviation curve is shifted
downward, indicating an increase in the percent deviation. Thus, if all design parameters
are fixed, and the helical radius is increased, the percent deviation will also increase.
Figure 12 demonstrates that as Π2 increases along each curve, the percent deviation also
increases until global buckling is induced, at which point the critical buckling load is not
changed with respect to the helical radius.

These results indicate that the analytical expression Equation (2) can be improved
by incorporating the helical radius. One method would be to include the helical radius
in the calculation of the boundary constraint coefficient, µb. The analytical expressions
for ILC strut buckling and ILC shell-like buckling both include derivations for boundary
constraint coefficients as shown by Opdahl [26]. The strut buckling derivation calculates the
flexural rigidity of the helical struts at the nodes, whereas the shell-like buckling derivation
incorporates the bending energy from the intersecting helical members.

Figures 18 and 19 are images produced from FE Models of OLC Set 2 structures.
The figures have the same design parameters except the helical radius. Figure 18 has two
carbon tows in the helical members, whereas Figure 19 has thirteen carbon tows in each
helical member. By increasing the number of carbon tows, the rotation at the IsoTruss
nodes is noticeably decreased, thereby increasing the flexural rigidity and localizing the
deflection to the buckled longitudinal strut. The colors of the figures represent deflection.
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Figure 18. Local buckling of Set 2 OLC with two carbon tows in helical members [26].

Figure 19. Local buckling of Set 2 OLC with thirteen carbon tows in helical members [26].

While the boundary constraint of Figure 18 acts similar to a pinned connection, the
boundary constraint of Figure 19 approaches the behavior of a fixed connection. The ro-
tation of the helical constraints at the nodes of the OLC are magnified for clarity in
Figures 20 and 21.

Figure 20. Rotation at the nodes of an IsoTruss structure with two carbon tows per helical mem-
ber [26].

Figure 21. Rotation at the nodes of an IsoTruss structure with thirteen carbon tows per helical
member [26].
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Note that the helical members with two carbon tows (Figure 20) show enough rotation
at the nodes to resemble a smooth inflection point, whereas the nodes of the thirteen-tow
helical members (Figure 21) do not rotate as much, and flatten the longitudinal member
at the nodes. Figures 20 and 21 were reproduced with legends that indicate the total
deformation corresponding to the buckling mode. The main purpose of the image is to
indicate the reduced rotation at the nodes due to the increase in helical radius, hence, a color
bar of the stress cloud diagram was not included in the current work. It is recommended
that a boundary constraint coefficient be derived for bay buckling of OLC structures that
incorporates the flexural rigidity demonstrated in the images.

4.2. OLC vs. ILC Performance

The relative performance of the OLC and ILC with respect to buckling is assessed from
the comparative trend analyses and the optimization study. The trend analyses presented
in Figures 9, 11 and 13 each demonstrate that the buckling capacities of the ILC structures
exceed that of the corresponding OLC structures that possess the same outer radius, and are
not independently optimized. Furthermore, Figure 11 demonstrates that the Π0 of the ILC
structure increases quadratically with respect to Π2 until it transitions to global buckling.
Conversely, the Π0 of the OLC structure increases at a more shallow rate. The curves meet
at approximately Π2 = 0.014 where the OLC local buckling load corresponds with the ILC
global buckling load.

While the design space of the trend analyses favored the ILC, the optimization anal-
ysis favored the OLC where both configurations were optimized with respect to mass.
The optimized OLC has a shorter bay length, which increases the total mass due to the
longer helical member length, but the OLC also has a smaller outer diameter and fewer
longitudinal tows. The bottom line is that the OLC strength-to-weight exceeds that of the
ILC, in part, by reducing the outer diameter. The outer diameter is approximately 16%
smaller than the ILC configuration, and the overall weight is reduced by about 10.5%.
The influence of the outer diameter in the ILC and OLC buckling behavior could have been
manifest in the dimensional analysis if a trend analysis had been performed with respect
to the outer diameter. One such analysis could be performed by plotting the Π variables
Pcr/(E · r2

L) versus R/rL where R varies for a fixed value of rL.

5. Conclusions

The purpose of the current study is to characterize the buckling behavior of 8-node
IsoTruss structures with outer longitudinal members. A dimensional analysis is performed
to analyze the interrelations between the governing design parameters and the critical
buckling load. The critical buckling loads of diverse geometric dimensions are predicted
using finite element (FE) modeling in ANSYS WorkBench. The best-fit curves that indirectly
relate the longitudinal radius, the helical radius, and the bay length to the critical buckling
load are characterized as quadratic and power expressions. The FE predictions are also
plotted with analytical predictions to assess the accuracy of the analytical expression for
bay-level buckling with respect to FE methods. Changes in the longitudinal radius and the
bay length induce similar trends in the FE and analytical predictions. Increasing the helical
radius, however, does not induce the same trends in the analytical and FE predictions.
While increasing the helical radius increases the FE prediction, there is no change in the
prediction from the analytical expression.

Trend analyses are also performed on corresponding 8-node IsoTruss structures with
inner longitudinal members. The buckling data of the inner longitudinal configurations
(ILC) are plotted with the data of the outer configurations (OLC) to analyze the relative
performance of the configurations with respect to buckling resistance. Each plot indicates
that the ILC has greater buckling resistance than the outer longitudinal counter-part within
the design space of the trend analysis where the dimensions of the ILC and OLC are
equivalent. The relative performance of the OLC and ILC is also analyzed by optimizing
both configurations with respect to mass. The optimized structures are subject to the same



Materials 2021, 14, 2079 17 of 19

bounds, and the constraints are defined by analytical expressions that predict the relevant
buckling modes of each configuration. The optimized OLC has about 10.5% less mass than
that of the optimized ILC.

Recommendations

First, a boundary constraint coefficient should be derived for the analytical expression
that predicts local buckling in the OLC. The coefficient should incorporate the flexural
rigidity of the helical members at the nodes, thereby capturing the effect of the helical
radius on the buckling stability. Once derived, another trend analysis of Π2 can be per-
formed to determine if the analytical expression and FE model predict similar trends
in the local buckling load by varying rH . The improved analytical expression could be
re-implemented in the gradient-based optimization code to improve the accuracy of the
bay-level buckling constraint.

Second, additional research should be performed to delineate the design spaces where
the ILC and OLC are preferred. While the results of the trend analyses indicate that the
ILC has greater resistance to buckling than the OLC counter-part, the optimization analysis
indicates that the optimized OLC has less mass than the optimized ILC. The advantage can
be attributed to the fact that the OLC has a greater global moment of inertia than the ILC
of equivalent outer radius. The design space could be delineated by performing a trend
analysis with respect to the outer radius and the bay length.
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