
materials

Article

Annealing of Al-Zn-Mg-Cu Alloy at High Pressures: Evolution
of Microstructure and the Corrosion Behavior

Chuanjun Suo 1, Pan Ma 1,*, Yandong Jia 2,*, Xiao Liu 1, Xuerong Shi 1, Zhishui Yu 1

and Konda Gokuldoss Prashanth 3,4,5

����������
�������

Citation: Suo, C.; Ma, P.; Jia, Y.; Liu,

X.; Shi, X.; Yu, Z.; Prashanth, K.G.

Annealing of Al-Zn-Mg-Cu Alloy at

High Pressures: Evolution of

Microstructure and the Corrosion

Behavior. Materials 2021, 14, 2076.

https://doi.org/10.3390/ma14082076

Academic Editor: Andrey Belyakov

Received: 17 March 2021

Accepted: 14 April 2021

Published: 20 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Materials Engineering, Shanghai University of Engineering Science, 333 Longteng Road,
Shanghai 201620, China; s13115413752@163.com (C.S.); lx18845130767@163.com (X.L.);
shixuer05@mails.ucas.ac.cn (X.S.); yu_zhishui@163.com (Z.Y.)

2 Laboratory for Microstructures, Institute of Materials, Shanghai University, 99 Shangda Road,
Shanghai 200444, China

3 Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5,
19086 Tallinn, Estonia; kgprashanth@gmail.com

4 Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12,
A-8700 Leoben, Austria

5 CBCMT, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
* Correspondence: mapan@sues.edu.cn (P.M.); yandongjia@shu.edu.cn (Y.J.)

Abstract: Extruded Al-Zn-Mg-Cu alloy samples with grains aligned parallel to the extrusion direction
were subjected to high-pressure annealing. The effects of annealing pressure on the microstructure,
hardness, and corrosion properties (evaluated using potentiodynamic polarization (PDP) and elec-
trochemical impedance spectroscopy (EIS)) were investigated. Phase analysis showed the presence
of MgZn2 and α-Al phases, the MgZn2 phase dissolved into the matrix, and its amount decreased
with the increasing annealing pressure. The recrystallization was inhibited, and the grains were
refined, leading to an increase in the Vickers hardness with increasing the annealing pressure. The
corrosion resistance was improved after high-pressure treatment, and a stable passivation layer was
observed. Meanwhile, the number of corrosion pits and the width of corrosion cracks decreased in
the high-pressure annealed samples.

Keywords: high-pressure annealing; Al-Zn-Mg-Cu alloy; microstructure; corrosion behavior

1. Introduction

Al-Zn-Mg-Cu-based alloys are widely applied in the aerospace and automobile sectors
due to their excellent properties, such as high specific strength, formability, and corrosion
resistance [1–3]. As a liquid-phase process, casting is capable of producing lightweight bulk
components and is conventionally used to fabricate Al-Zn-based alloys [4,5]. Casting is a
simple and relatively low-cost process. However, it may lead to large dendritic microstruc-
tures, shrinkage during solidification, etc. [6,7], which severely retard the application of this
alloy. To improve the performance of Al-Zn-Mg-Cu-based alloys, strategies such as alloy
modification [8,9] and homogenization treatment [10,11] have been adopted. According to
our knowledge, the drawback of employing the conventional casting process is that the Zn
content is restricted to 8 wt.% due to the presence of possible solidifying problems, such as
microstructural coarsening, the macrosegregation of elements, and cracking [12–14].

As one of the advanced rapid solidification technologies, spray forming possesses the
following advantages, i.e., increased solid solubility of alloy elements (due to rapid cool-
ing), elimination of macrosegregation, reduced oxide content, and refined grains [15–17].
Currently, the spray forming technique is widely used to synthesize Al-Zn-Mg-Cu alloy,
and the percentage of Zn element can be higher than 8 wt.%, unlike the conventional
casting process [18]. For example, Li et al. prepared the Al-Zn-Mg-Cu-based alloy with
a Zn content up to 11 wt.% by the spray deposition technique [19]. However, due to the
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characteristics of the spray deposition technique, a certain number of pores are inevitably
introduced into the spray deposited alloy, which leads to crack initiation and subsequent
failure of the component [20]. Extrusion is usually used to further increase the relative
density of spray deposited alloys [14,21]. On the other hand, due to extrusion, the closed
pores and the second phase are distributed in a chain along the extrusion direction to
form a weak surface, and the alloy displays obvious structural anisotropy. Hence, further
secondary processing is required to improve the properties of the Al-Zn-based alloys.

It is well known that the second phase particles [22], annealing temperature [23], and
annealing time [24] are key parameters that can remarkably affect the recrystallization
behavior. However, the effect of pressure on the recrystallization process is often under-
mined/overlooked. Recently, the use of high pressure on material processing has attracted
considerable attention. The application of high pressure is characterized by a refined mi-
crostructure, increased chemical homogeneity, and the extension of solid solubility [25–27].
The material after extrusion may be annealed at high pressures to overcome the extrusion-
based anisotropy. However, systematic work on such a topic has not been reported, and
accordingly, in this study, the Al-Zn-Mg-Cu-based alloy prepared by spray deposition and
extrusion was selected as raw material and was further subjected to high-pressure anneal-
ing. The effects of pressure on microstructure, mechanical properties, corrosion properties,
and corrosion mechanisms were investigated systematically. The aim of this present study
is to better understand the effects of annealing pressure on the recrystallization process
along with the microstructural changes and corresponding properties of alloys.

2. Materials and Methods
2.1. Materials and Experimental Procedure

In this study, a spray-deposited and -extruded (with an extrusion ratio 16:1) Al-Zn-
Mg-Cu-based alloy of 20 mm diameter cylinders and 18 mm in length was supplied as the
raw material. The nominal composition of the alloy used in the present study is listed in
Table 1. The experiment was carried out using an HTDS-032F high-pressure six-sided top
hydraulic press (Shenyang Scientific Instrument Co., Ltd., Chinese Academy of Sciences,
Beijing, China). Six top hammers were moved up and down, left and right, and the cavity
of the cube was squeezed to achieve quasi-static pressure. The pressures used were (a)
atmospheric pressure, (b) 2 GPa, and (c) 3 GPa, respectively. The samples were heated in a
graphite-based furnace inside the high-pressure solidification equipment. Pyrophyllite, the
classic material, was used as an encapsulant and transmitting medium. In the experiment,
the pressure was slowly increased up to the target value, and then the sample was heated
to 833 K. The samples were kept at the target pressure and temperature for 15 min before
being cooled down to room temperature by switching off the power supply. Finally, the
samples were taken out for testing after releasing the pressure. A schematic diagram
of high-pressure equipment and the cell assembly sample for high-pressure synthesis is
shown in Figure 1.

Table 1. Chemical composition of the Al-Zn-Mg-Cu alloy.

Elements Zn Mg Cu Al

Wt.% 10.81 2.10 1.52 Bal.

2.2. Structural and Microstructural Analysis

The phase identification was carried out using a Rigaku D/max-2550 X-ray diffrac-
tometer (Rigaku Corporation, Tokyo, Japan) fitted with a monochromatic Cu-Kα radiation.
The software JADE 6.5 was used for the analysis of the XRD data and calculation of the
lattice parameters. Morphology and compositional homogeneity were examined using
optical microscopy (OM) and scanning electron microscopy (SEM) after carrying out con-
ventional polishing and etching. The etching was performed using Keller’s reagent (2 mL
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HF, 3 mL HCl, 5 mL HNO3, and 190 mL distilled H2O) for about 45 s. The volume fraction
of the secondary phase was calculated using the Image-Pro Plus 6.0 software.
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Figure 1. A schematic diagram showing (a) high-pressure equipment and (b) cell assembly sample
for high-pressure synthesis: 1—pyrophillite, 2—conducting ring, 3—graphite crucible, 4—BN (clad),
5—sample, and 6—Top ram.

2.3. Corrosion Behavior and Microhardness

Both electrochemical impedance spectroscopy (EIS) and the potentiodynamic po-
larization (PDP) tests were conducted using an electrochemical workstation AUTOLAB
PGSTAT302 (Metrohm, Herisau, Switzerland) and controlled by Nova 2.1 software. In this
setup, the specimen was taken as the working electrode, the platinum sheet was used as
the counter electrode, and the reference electrode used was a standard calomel electrode
(SCE). The electrolyte used herein was quiescent 3.5 wt.% NaCl solution at ambient tem-
perature. The samples were polished using standard metallographic practices. Above all,
the open circuit potential (OCP) was measured for 30 min prior to the commencing of
the polarization tests in order to achieve an approximately stable rest potential. Then, the
impedance (Z) measurements were taken in the frequency range from 0.01 to 100 kHz with
10 mV set superimposed AC signal amplitude. Finally, each specimen was scanned at a
rate of 1 mV·s−1 from the initial potential of −2 V, to a final potential of 1 V. The surface
morphologies of the Al-Zn-Mg-Cu-based alloys after electrochemical experiments were
investigated by using SEM to explore the corrosion behavior and to further understand
the corrosion mechanisms. The microhardness test uses a Vickers hardness tester (Laizhou
Huayin Test Instrument Co., Ltd., Yantai, China.) to test 10 points evenly on each sample.
After removing the obtained maximum and minimum values, the average value was
calculated as the microhardness of the sample.

3. Results and Discussion
3.1. Structural and Microstructural Characterization

Figure 2 shows the XRD patterns of the extruded Al-Zn-Mg-Cu-based alloys annealed
at different pressures. As observed, the diffraction peak of MgZn2 phase was the strongest
after extrusion, whereas after annealing at different pressures, all the peaks corresponding
to the presence of MgZn2 phase decreased significantly in intensity. The peaks of (111)α-Al
changed from 38.440◦ of the alloy annealed under atmospheric pressure to 38.343◦ of
annealed under 2 GPa; finally, the angle was 38.265◦ with increased annealed pressure, the
lattice parameter of α-Al was calculated as 0.40176, 0.40669 and 0.41835 nm correspond-
ing to annealing pressure from low to high, whereas the peak intensity of the (111)α-Al
increased remarkably.
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Figure 2. The X-ray diffraction patterns of the (a) extruded Al-Zn-Mg-Cu-based alloys annealed at different pressures
(atmospheric pressure 1 and 2 GPa) and (b) plot showing the presence of MgZn2 phase.

The Arrhenius relationship (involving the pressure (P) and diffusion coefficient (D) of
the atoms [28]) with Q as the activation energy for diffusion can be expressed as [29]:

D = D0·e−(Q/RT) = D0·e−(PV/RT) (1)

where R is the gas constant, T is the temperature of the melt (K), P is pressure, and no
change in V. When high pressure is applied (at the GPa level), the ratio between Dp and D0
(i.e., the diffusion coefficients under high and atmospheric pressures) can be expressed as:

Dp

D0
= e(101,325−P)V0/RT (2)

The Dp/D0 was calculated to be 0.11 and 0.04 for the alloy annealed at 2 and 3 GPa,
respectively. The diffusion coefficient decreased drastically with increasing annealing
pressure. Therefore, the diffusion of the Mg and Zn atoms would be hindered, and the
growth of the both the atoms (Mg and Zn) would be suppressed. Hence, more Mg and Zn
atoms would dissolve into the α-Al matrix. When the pressure reached 3 GPa, almost all
of the Mg and Zn dissolved into the α-Al matrix. The number and intensity of diffraction
peaks of the MgZn2 phase disappeared at 3 GPa annealing pressure. Therefore, in this study,
the solid solubility of Mg and Zn atoms increased with the increase in annealing pressure.

The optical microscopy images of the Al-Zn-Mg-Cu-based alloys are shown in
Figures 3 and 4. Figure 3 presents the microstructures of the extruded alloy. Figure 3a
shows the microstructure along the extrusion direction; obvious directionality and elon-
gated grains can be observed. Figure 3b shows the microstructure perpendicular to the
extrusion direction; it can be seen that the grain boundaries were all irregular shape.
Figure 4a shows the microstructure of alloy annealed under atmospheric pressure, where
it is obvious that the grains were almost uniform equiaxed grains as a result of dynamic
recrystallization. Figure 4b,c illustrate the microstructure of the alloy annealed under 2
and 3 GPa; it is clear that recrystallization grains formed, and most of the grain boundaries
presented arched and serrated features. It can be seen that the grain boundaries of the alloy
annealed at 2 GPa were sleeker than those of the alloy annealed at a pressure of 3 GPa.
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At the same time, some larger grains were found in the samples annealed at a pres-
sure of 3 GPa; there was a large size gap with some recrystallized grains. The partially
recrystallized grains could be observed along with some larger grains that may not have
undergone the recrystallization process. Based on these results, it can be inferred that
incomplete recrystallization was observed in the samples annealed at 3 GPa pressure. In
this case, the diffusion was severely suppressed, and the growth of the recrystallized grains
was hindered, in the case that they were not fully grown. Secondary recrystallization
occurred, and some large irregular grains showed secondary recrystallization. The grain
size distribution of the alloy after annealing at different pressures is shown in Figure 5.
The grain size of the alloy after atmosphere pressure annealing was generally larger, and
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the alloy after 2 GPa annealing decreased to some extent. The alloy after 3 GPa annealing
was mainly composed of smaller grains; moreover, there were some larger secondary
recrystallized grains. The average grain size for the Al-Zn-Mg-Cu samples was observed
to be ~95, ~90, and ~72 µm, for the alloys annealed at atmospheric pressure, 2 GPa, and
3 GPa, respectively. The recrystallization phenomenon can be ascribed to the high stacking
fault energies associated with Al and its alloys, which is prone to dynamic recovery during
hot working [30–33].
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The driving force for dynamic recrystallization is derived from the strain energy
during plastic deformation, i.e., hot extrusion. The elongated deformed grains become
equiaxed grains, eliminating lattice distortion in the structure, and simultaneously, the
dislocations become annihilated (dislocation density reduces in number). Under high
pressure, the solid solubility of solute atoms in the solvent increases, and hence, both
the supercooling degree and the nucleation rate increase. According to the John Meir
recrystallization grain size equation [34]:

d = K(
G
.

N
)

1
4

(3)

where d is the average recrystallized grains diameter,
.

N is the nucleation rate, G is the linear
growth rate, and K is the proportionality constant. Obviously, the smaller the ratio, the
finer the grains. The nucleation rate (

.
N) increased under high pressure, the interface energy

decreased, and the growth rate (G) decreased, so the grain size (d) was reduced. Under
the action of high pressure, the atomic diffusion/chemical potential gradient in the crystal
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decreased. The grain boundary was no longer the preferential channel for diffusion under
high pressure. Bakker and Manning reached similar conclusions by studying the ordered
binary alloys and the diffusion kinetics of atoms in crystals, respectively [35,36]. This also
reduces the migration rate at the interface, and the high-pressure recrystallization grain
growth rate is slower than that observed under atmospheric pressure. Hence, the higher the
pressure during annealing, the stronger the barrier for grain boundary migration/diffusion;
a smaller grain size leads to a lower rate of sub-grain boundary migration and grain growth.
Krawczynska obtained similar results in the study of stainless steel [37].

The dislocation polygonalization occurred during the high-pressure annealing treat-
ment, and the interface where the dislocation cells were located was destroyed to form
sub-grain boundaries. At this time, the system produced a large number of sub-grains,
resulting in an increase in the nucleation rate. In addition, the high-pressure suppressed
the movement of dislocations, the interface migration rate, and the orientation difference
between the small-angle sub-grain boundaries, resulting in slower grain growth rates. Lo-
jkowski reached similar conclusions by studying the grain boundary migration mechanism
of aluminum twin crystals and the influence of high pressure on the mobility of grain
boundary atoms [38,39]. High pressures during annealing increase the free energy of the
system; the intragranular diffusion increases; the grain boundary diffusion rate relatively
decreases; and hence, the interface migration is again hindered [25,27,35–40]. Hence, under
high-pressure annealing, a reduction in grain size was obtained, and substituting the pa-
rameters into the John Mayer equation, it may be evidently observed that the recrystallized
grain size became smaller under annealing at high pressure.

Figure 6 shows the SEM images of the Al-Zn-Mg-Cu-based alloy annealed as a function
of pressure. It can be clearly seen in Figure 6a that the white phase accumulated along the
grain boundaries of the α-Al matrix. Combined with the XRD analysis, it can be confirmed
that the white phase corresponded to the MgZn2 phase. The MgZn2 particles were unevenly
distributed in the matrix, and the directionality caused by extrusion disappeared with
annealing. Figure 6b,c show the microstructure of the alloy annealed at 2 and 3 GPa
pressure, respectively. It can be observed from the microstructure that the directionality
induced by the extrusion process still existed, and the MgZn2 phase was observed to
be distributed along the extrusion direction. The area fraction of the MgZn2 phase was
observed to be ~0.63% and ~0.40%, corresponding to Al-Zn-Mg-Cu alloy annealed under
2 and 3 GPa, respectively. The small broken MgZn2 phase was dissolved into the α-Al
matrix, and the edges of the relatively large ones became passivated after high-pressure
annealing. These results are consistent with the XRD data, where almost no peaks of the
MgZn2 phase were observed.

The Vickers hardness of the Al-Zn-Mg-Cu-based alloys is shown in Table 2. Obvi-
ously, the hardness of the alloy after high-pressure annealing was much higher than its
counterpart annealed at atmospheric pressure. In contrast to the alloy annealed at atmo-
spheric pressure, the hardness of the alloy increased by ~34% and ~37%, respectively, with
increasing annealing pressure to 2 and 3 GPa. The strengthening effect owing to the size
reduction in MgZn2 along with solid solution strengthening contributed to such increment
in the hardness values. Lang et al. reported a fine-grained Al-Zn-Mg-Cu alloy produced
by strain-induced precipitation (a two-step deformation process), which exhibited signifi-
cantly increased tensile ductility compared to the conventional hot-deformed alloy [31]. As
analyzed in Section 3.1, the grain size decreased with increasing annealing pressure. The
finer the grain size, the larger the grain boundary areas, leading to a more tortuous grain
boundary path. A more torturous grain boundary path is not conducive to a further slip
of dislocation, and hence improves the mechanical properties of these materials [32,33].
The movement of the dislocations was blocked along the grain boundaries, leading to
dislocation pileups, where dislocation movement was hindered at the grain boundaries.
With increasing applied stress, dislocation accumulation took place at the grain boundaries,
and a larger number of dislocation pileups could be observed [5].
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Table 2. The Vickers hardness data observed for the Al-Zn-Mg-Cu-based samples.

Pressure Extruded Atmospheric Pressure 2 GPa 3 GPa

HV0.2 146 ± 3 131 ± 3 176 ± 2 180 ± 3

In addition, the solid solubility of both Mg and Zn in the α-Al matrix increased
(Figure 4). Hence, it may be presumed that solid solution strengthening takes place when
the Mg and/or Zn form a solid solution with the α-Al matrix, as the size and/modulus
of the solute atoms may vary with the matrix, resulting in strain field variations. Local
strain field variations are developed due to the presence of the precipitates, and they will
readily interact with the dislocations. This can lead to the impedance of dislocation motion,
leading to the increased strength of the material, thereby contributing to the increased
hardness of the Al-Zn-Mg-Cu alloy [31,41].

3.2. Corrosion Behavior and Mechanisms

Figure 7 shows the Nyquist impedance plots of the Al-Zn-Mg-Cu-based samples
annealed as a function of pressure in a 3.5% NaCl solution. The OCP of each sample was
−0.802, −0.788, −0.643, and −1.0193 V. The equivalent circuit was fitted by NOVA2.1, and
the analysis was executed with different numbers of circuit models. The minimum chi-
square value was calculated for the best fit from the provided equivalent circuit model. The
equivalent circuit was proposed using the impedance (Z) spectra. The Nyquist impedance
plot along with the equivalent circuit model used for impedance data fitting of Al-Zn-Mg-
Cu alloys is shown in Figure 8.
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The Al-Zn-Mg-Cu-based alloys annealed under 2 and 3GPa produced similar Nyquist
impedance plots. The medium–low-frequency capacitive reactance arc corresponds to
the formation of the electric double layer between the oxide film and the solution, and
the high-frequency capacitive reactance arc corresponds to the self-dissolving process of
the oxide film. The Nyquist curve for Al-Zn-Mg-Cu alloys represents the two capacitive
loops, and the diameter of the loop increases with increasing annealing pressure. A lower
current density and higher resistance to corrosion are indicated by a bigger capacitive loop
diameter [42].

An equivalent circuit, as shown in Figure 8, can express the interface state between the
Al alloy substrate and the NaCl solution. The EIS results for the Al-Zn-Mg-Cu-based alloys
are presented in Table 3, where R1 represents the charge transfer resistance, and a small R1
value indicates poor corrosion resistance (more corrosion). R2 is the inductor resistance, Q
is the constant phase angle element, and L is the inductance. C1 and C2 correspond to the
capacitance values of Q1 and Q2, respectively, and N1 and N2 are dispersion indices.
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Table 3. EIS fitting results for the extruded Al-Zn-Mg-Cu alloy annealed at different pressures.

Pressure Extruded Atmospheric Pressure 2 GPa 3 GPa

Circuit a a b b
Rs/Ω 19.5 61.8 18.7 18.0
R1/Ω 7506.2 4923.2 25,298 34,458
R2/Ω - - −1.1 T −1.1 T

C1/µMho·sN 2.94 41 1.99 2.16
N1 0.7921 0.8052 0.9790 0.8564

C2/µMho·sN - - 23.7 37.9
N21 - - 0.815 0.736

L2/µH - - 3.46 3.85

The charge transfer resistance of the alloy after extrusion was 7.5 kΩ, and samples
annealed at atmospheric pressure, 2 GPa, and 3 GPa were 5, 25, and 35 kΩ, respectively.
The increase in charge transfer resistance demonstrated the formation of a thick protective
oxide layer on the sample surface that decreased the corrosion rate of the Al-Zn-Mg-Cu-
based alloy. The charge transfer resistance increased with increasing annealing pressure,
where the transmission was suppressed, and the charge transfer became very difficult.
Accordingly, the oxide film integrity of the electrode surface became stronger and could
not be easily damaged, thereby remarkably increasing its corrosion resistance. This is
consistent with the previously obtained Nyquist impedance plots. Therefore, it can be
deduced that the corrosion resistance of the Al-Zn-Mg-Cu-based alloy in 3.5 wt.% NaCl
solution is improved with increasing annealing pressure.

The potentiodynamic polarization plots for the Al-Zn-Mg-Cu-based annealed under
different pressures in 3.5 wt.% NaCl solution for about 50 min are shown in Figure 9. The
four Tafel curves corresponding to the four different samples (extruded and annealed at
atmospheric pressure, 2 GPa, and 3 GPa) show a similar trend. The results of polarization
experiments of Al-Zn-Mg-Cu alloy in 3.5% NaCl solution are shown in Table 4, where
Ecorr is the corrosion potential, and Icorr is the corrosion current. In general, an excellent
corrosion resistance was demonstrated by higher Ecorr and lower Icorr values.
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Table 4. Results of the polarization experiments for the extruded Al-Zn-Mg-Cu alloy annealed at different pressures
measured in 3.5% NaCl solution.

Pressure Icorr (A/cm2) Ecorr (Ω/cm2) Rp (Ω/cm2) Eb (Ω/cm2) Ipass (A/cm2)

Extruded 0.3024 × 10−5 −1209 2324 −781 3.039 × 10−5

Atmospheric pressure 0.1724 × 10−5 −1244 4640 −776 3.131 × 10−5

2 GPa 0.8127 × 10−5 −1094 5930 −629 1.512 × 10−5

3 GPa 0.5981 × 10−5 −1055 9225 −627 0.853 × 10−5

According to Figure 9 and A, from the perspective of corrosion thermodynamics, the
lower the corrosion potential, the easier it is for the material to corrode. Hence, the alloy
annealed at 3 GPa pressure showed more corrosion followed by the material annealed
at 2 GPa pressure, and finally, the sample annealed at atmospheric pressure. From the
perspective of corrosion kinetics, the larger the corrosion current, the higher the corrosion
rate, where material annealed at 3 and 2 GPa pressure showed similar behavior, and the
sample annealed at the atmospheric pressure showed the worst corrosion rate among the
four. It may be observed from the polarization resistance (RP) that the sample annealed at
3 GPa pressure showed the highest resistance followed by the sample annealed at 2 GPa
pressure, and the sample annealed at atmospheric pressure showed the least resistance.
Aluminum alloy is a passivation alloy. The information of the passivation zone can be
obtained from the polarization curve. When the voltage increased, the current density
increased from almost stable to stable. The corresponding potential at this point is called
the pitting potential or the breakdown potential (Eb). The corresponding current is the
breakdown current (Ipass); higher Eb and lower Ipass indicate excellent corrosion resistance.
In this study, the Eb of the alloy after high pressure annealing (−629 and −627 Ω/cm2)
was lower than that of the extruded alloy (−781 Ω/cm2) and the atmospheric pressure
annealed state (−776 Ω/cm2). At the same time, the Ipass of 3GPa (0.853 × 10−5 A/cm2)
was smaller than that of 2 GPa (1.512 × 10−5 A/cm2). It can be considered that 3 GPa has
the best corrosion resistance. In this study of electrochemical corrosion, the main factors
that affected the corrosion performance of the alloy were the solid solubility of Mg, Zn
atoms, and grain size. In the high-pressure annealed samples, the MgZn2 phase gradually
dissolved in the Al matrix with increasing annealing pressure, suggesting that the reduction
in the volume of the second phase led to an increase in the corrosion resistance of the alloy
due to reduced potential difference between the matrix and the reinforcement [43].

The sample annealed under atmospheric pressure underwent complete recrystalliza-
tion and hence exhibited a relatively larger grain growth after recrystallization as compared
to the samples annealed at 2 and 3 GPa pressure. Relatively larger grains lead to accelerated
corrosion. With increasing the annealing pressure, a large amount of the MgZn2 phase dis-
solved in the Al-matrix, and at the same time, complete recrystallization was not observed
with the application of pressure. Hence, the subsequent grain growth was also avoided
due to sluggish diffusion conditions, and a finer grain size was retained. Hence, for the
alloy annealed with pressure, the corrosion resistance was observed to be better [44]. For
high-pressure annealed alloys, the average grain size decreased with increasing pressure,
and the corrosion resistance increased. The protective film formed on the metal surface was
susceptible to permeation damage in the chloride ion (Cl−) environment, Cl− adsorbed
on the surface of passivation film, and the passivation process of the aluminum alloy was
inhibited. The adsorption of Cl− on the surface of the alloy caused the electric field effect
and accelerated the dissolution rate of the metal surface. Moreover, the Cl− formed a
coordination compound with the metal successively, and the dissolution rate of the metal
ion was accelerated. As aluminum alloy is an active metal, the surface of the sample was
inclined to form a passive film after polishing and degreasing. However, the passivation
film was not dense and was susceptible to Cl− damage, causing Al to be exposed and to
react with Cl− [45–47].
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According to these above analyses, the application of high pressure can improve the
corrosion resistance of the Al-Zn-Mg-Cu alloy. On one hand, high-pressure treatment can
improve relative density and reduce the number of pores in the Al-Zn-Mg-Cu-based alloy
matrix, effectively prevent the penetration of Cl− and other atoms into the surface of the
sample, and reduce the corrosion rate [48]. On the other hand, the volume of the MgZn2
phase and the grain size after high pressure were reduced. The electrochemical corrosion
caused by the local potential difference of the alloy due to the second phase was reduced,
thereby reducing the overall corrosion process.

Figure 10 demonstrates the autocatalytic mechanism of pitting corrosion. Pitting
corrosion is a corrosion phenomenon caused by the local accelerated dissolution of the
protective passivation film of the alloy [49,50]. Generally, the initiation of pitting corrosion
is related to the heterogeneity of the surface structure of the metal or the discontinuity
of the passivation oxide film. For example, the initiation of pitting corrosion is normally
related to inclusions, second phase particles, grain boundaries, defects, mechanical damage,
or dislocation [51–53]. Existing studies have shown that in this aluminum alloy system,
intermetallic compound MgZn2 will act as an anode particle with a higher potential than
the substrate [54,55]. The intermetallic compound plays an important role in affecting
the electrochemical corrosion process of alloys [56,57]. In this study, the second phase
MgZn2 was first oxidized as the anode particle, and then resulted in a micropit, which
initiated the pitting process [58]. Pitting corrosion is a self-catalytic process and will expand
once initiated and change the local environment to further promote the growth of pitting
corrosion. The relevant redox reactions during this process are described as follows: oxygen
in water acts as a reducing agent; the reduction reaction that occurred outside the pitting
pit is as follows:

O2 + 2·H2O + 4·e− → 4·OH− (4)
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Figure 10. Autocatalytic mechanism of pitting corrosion.

The oxidation reaction that occurred in the pit is as follows:

Al→ Al3+ + 3·e− (5)

With the increase in the number of metal cations (Al3+) in the pit, the resulting electric
field promoted the movement of the number of anions (Cl−), forming aluminum chloride
at the bottom, and maintaining electrical neutrality. Due to the hydrolysis of Al3+, the
reaction equation can be given as:

Al3+ + 3·H2O→ Al(OH)3 + 3·H+ (6)

It can be seen from Equation (6) that the increase in acidity at the bottom of the
corrosion hole promoted a further development of corrosion.
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Figure 11 depicts the surfaces of specimens after electrochemical corrosion tests. It
can be seen that the Al-Zn-Mg-Cu alloy underwent local corrosion; the degree of corrosion
was different in different samples annealed as a function of pressure. The most corrosion
products were observed in the sample after extrusion; this means that it suffered the
strongest corrosion, as shown in Figure 11a. A large number of studies have shown that the
corrosion products are mainly Al(OH)3 [59–62]. The surface was uneven, and less corrosion
products were observed in the sample that was annealed under atmospheric pressure, as
shown in Figure 11b. The corrosion surfaces became smooth, and fewer corrosion products
were observed on the surface of the samples annealed at 2 and 3 GPa atmospheric pressure
Figure 11c,d. It is obvious that many coarse corrosion cracks were observed along the
surface of the Al-Zn-Mg-Cu sample annealed under atmospheric pressure (Figure 12a).
Moreover, severe corrosion at the grain boundaries could be observed. After high-pressure
annealing treatment, the width of corrosion cracks decreased remarkably (Figure 12b–d),
and at the same time, the corrosion at grain boundaries became weak.
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Corrosion cracks promote the diffusion of ions through them, and the surficial corro-
sion layer cannot effectively protect the underlying metal. Hence, a further propagation
of corrosion damage beyond the surface layer forming a partially corroded region was
realized. The situation greatly improved after high-pressure annealing treatment, which
indicates that the application of high pressure can effectively prevent the formation and
growth of corrosion pits and microfractures.

As described in Section 3.1, the grains were dramatically refined after high-pressure
treatment; meanwhile, more grain boundaries were generated. Wang et al. found that
during the corrosion stage, grains predominantly bear the crack-driving force, and grain
boundaries resist the microcrack propagation along or across the grain boundaries so that
the corrosion rate is delayed [63]. The mechanism of electrochemical corrosion is that a
corrosion potential exists (due to the potential difference between the intermetallic com-
pounds and the Al-matrix), which leads to the formation of corrosion microcell, accelerated
corrosion dissolution between intermetallic compounds and the Al-matrix. Combined
with the previous analysis, the percentage of the second phase, such as η (MgZn2), had
a considerable effect on the corrosion process, and the corrosion degree increased with
the increase in the second phase content. The potential of the η phase (MgZn2) is negative
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compared to that of the Al matrix, so it will be dissolved as an anodic phase in the process
of local corrosion of the alloy. Under the action of the active anion Cl−, the inherent
equilibrium of the alloy is disturbed. In other words, the competitive adsorption of chlo-
ride ion and oxygen ion occurs, so that the chloride ion gradually replaces the original
oxygen adsorption point on the metal surface [64,65]. It has been reported that more grain
boundaries would facilitate the formation of an effective passive layer. This enhances the
reaction of Al and O ions at the interface. Hence, the passage of metal ions from the surface
is restricted towards the solution [66].
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As a result, there is preferential pitting corrosion, and the etched nucleus can be
produced at any part of the alloy surface (preferentially along with the surface defects). In-
tergranular deposition will be formed first. After pitting corrosion, intergranular corrosion
will start, where regions with pitting corrosion act as the starting point. The intergranular
corrosion follows the grain boundaries and gradually expands to all directions of the alloy.
Based on the above analysis, high-pressure treatment can effectively reduce the corrosion
rate and enhance the corrosion resistance of the alloy dramatically by (1) grain refinement
and (2) solid solution strengthening.

4. Conclusions

The effect of annealing pressure on the microstructure and corrosion performances of
the Al-Zn-Mg-Cu-based alloy was investigated; the following conclusions can be drawn:

1. The Al-Zn-Mg-Cu alloy consists of α-Al and MgZn2 phases, and the grain size and the
percentage of MgZn2 phase decrease with increasing annealing pressure. Moreover,
the degree of recrystallization decreases with increasing annealing pressure.

2. Strengthening due to grain refinement and solid solution strengthening leads to an
increase in the Vickers hardness of the Al-Zn-Mg-Cu alloy from 132 (annealed at
atmospheric pressure) to 180 HV (annealed at 3 GPa pressure).

3. Eb increases and Ipass decreases with the increases in the annealing pressure. In
addition, a higher impedance level of the Nyquist plot is the proof for the formation
of a protective oxide layer on the surface of the Al-Zn-Mg-Cu-based alloy annealed
under high pressures, suggesting that high-pressure annealing could effectively
improve the corrosion resistance of the Al-Zn-Mg-Cu alloy.
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4. The scanning electron microscopy analysis reveals the presence of localized corrosion
on the Al-Zn-Mg-Cu alloy, and it takes place mainly due to the formation of pits. The
number of corrosion pits and the width of corrosion cracks decreases due to increased
annealing pressure.
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