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Abstract: We present a new focus for the Krieger–Dougherty equation from a probabilistic point
of view. This equation allows the calculation of dynamic viscosity in suspensions of various types,
like cement paste and self-compacting mortar/concrete. The physical meaning of the parameters
that intervene in the equation (maximum packing fraction of particles and intrinsic viscosity),
together with the random nature associated with these systems, make the application of the Bayesian
analysis desirable. This analysis permits the transformation of parametric-deterministic models into
parametric-probabilistic models, which improves and enriches their results. The initial limitations of
the Bayesian methods, due to their complexity, have been overcome by numerical methods (Markov
Chain Monte Carlo and Gibbs Sampling) and the development of specific software (OpenBUGS).
Here we use it to compute the probability density functions that intervene in the Krieger–Dougherty
equation applied to the calculation of viscosity in several cement pastes, self-compacting mortars, and
self-compacting concretes. The dynamic viscosity calculations made with the Bayesian distributions
are significantly better than those made with the theoretical values.

Keywords: cementitious suspensions; viscosity; Krieger–Dougherty equation; deterministic and
probabilistic models; Bayesian analysis

1. Introduction

The rheological behavior of a cement paste depends principally on the contents of
solid particles and their capacity to form flocs as a consequence of the particle interac-
tions, which can be modulated by adding adequate dispersing agents to improve the
dispersion state. As the particle contents increases, the value of dynamic viscosity, ηp,
also increases [1]. If these systems are considered homogenous suspensions, the Krieger–
Dougherty equation [1,2] gives the dynamic viscosity from the volume fraction of cement
particles, which may be obtained from the water/cementitious materials relationship,
w/cm [3]. The interest and application of the Krieger–Dougherty equation in these sus-
pensions are due, from a theoretical point of view, to its robustness and the fact that its
parameters have a physical significance [1,4–6]. The Krieger–Dougherty equation [1,2,6] is
defined as follows:

η

η0
=

(
1 − φ

φm

)−[η] φm

(1)

where,

η: dynamic viscosity of the suspension.
η0: dynamic viscosity of the fluid phase of the suspension.
φ: fraction in volume of the disperse solid phase of the suspension.

Materials 2021, 14, 1971. https://doi.org/10.3390/ma14081971 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-5862-8605
https://orcid.org/0000-0002-0352-0701
https://orcid.org/0000-0002-8570-0844
https://orcid.org/0000-0002-4826-5193
https://doi.org/10.3390/ma14081971
https://doi.org/10.3390/ma14081971
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14081971
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14081971?type=check_update&version=2


Materials 2021, 14, 1971 2 of 27

φm: maximum packing fraction of particles in the disperse solid phase.
[η]: intrinsic viscosity, which depends on the specific viscosity (ratio between the vis-
cosity of the suspension and the dispersion liquid) and the volume fraction of solids.

Much research has been performed on the rheology of the various types of cement
suspensions in which the suitability of this equation for the calculation of dynamic viscos-
ity has been verified [2,4,5,7,8]. In addition, a comparison has been made of the values
calculated with the experimental measures performed with rheometers, thereby obtaining
good results with cement pastes with and without superplasticizer admixtures [1,3]. The
Krieger–Dougherty equation [1,2,6] depends on two parameters: the maximum packing
fraction, φm, and the intrinsic viscosity, [η]. The first is a measurement of the maximum
packing that may be reached in a particle system, i.e., the maximum concentration of parti-
cles that can be added while maintaining some flowability. It depends on the dispersion
conditions, on the shape of the particles and, especially, on their distribution and size [3,6].
The second measures the individual effect of the particles on the viscosity and is secondary
to their form [1]. Moreover, both parameters are affected by the shear rate, γ̇, applied in
the system: as γ̇ increases, φm tends to increase while [η] shows the opposite effect [6].
Nevertheless, it is certain that the behavior of [η] is very dependent on the slenderness of
the particles [1,9].

Generally, in cement suspensions both φm as well as [η] may be determined from the
adjustment of a collection of experimental measurements, thereby assuming the hypothesis
of sphericity and rigidity of the particles [10–12] and the formation of monodisperse or
polydisperse systems that adapt geometric packing of known values (cubic, random, or
hexagonal compact packing) [7]. In such cases, it is common practice to consider values
ranging between 0.6–0.7 for φm, and equal to 2.5 for [η] (in monodisperse systems), and
greater than 0.7 for φm, and equal to 2.5 for [η] when polydispersion increases [1,13].
However, as the asymmetry of the particles increases, φm may reach values below 0.6, [η]
between 3 and 5 when the particles are sharp and approximately equal, and between 4
and 10 in particles with more acicular shapes [1,13]. Also, the trend in the behavior of both
parameters when shearing the system suggests that the product of the two, which appears
in the exponent of the Krieger–Dougherty equation, remains practically constant in any
case [7,8]. All the mentioned values for the parameters follow from the hypothesis on the
shape and type of arrangement of the particles, rather than from experiments. Besides,
the variations of these parameters due to the random shape and arrangement of the solid
phases are not known, which makes the application of the Bayesian analysis to know their
probability distributions desirable.

Since a physical system is not deterministic, but random, the models that simulate
its behavior should be probabilistic, if a good approximation to reality is sought. There-
fore, the application of parametric-deterministic models should be supplemented with
parametric-probabilistic models, which signifies added value within the field of modeling
in engineering practice. For this reason, it is adequate to identify the sources of randomness
that are associated with these systems, observe them, and perform trials and collect data
to establish processes for the construction of probabilistic models [14,15]. The transforma-
tion of parametric-deterministic models into parametric-probabilistic models is usually
performed using Bayesian analysis methods. Due to their complexity, these methods were
limited a short time ago to the conjugate family of functions, which were the only ones for
which expressions of posterior distributions functions could be easily determined. Never-
theless, the appearance of Markov Chain Monte Carlo methods and the Gibbs Sampling
has enabled the simulation of the posterior distribution directly, thereby generalizing its
application [16–19].

Within the scope of the study of the rheology of systems that are based on cement
materials, and more specifically, on suspensions of cement paste, the colloidal nature of
the particles that intervene, and the physical–chemical interactions that are adjusted as a
consequence of the inclusion of admixtures, make these suspensions especially attractive
for the rheology study from a probabilistic point of view, and they may be analyzed
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through Bayesian methods. In the same manner, more complex cement systems, like
self-compacting mortar and self-compacting concrete, show the same tendency insofar
as the relationship between viscosity and particle content, even with some differences
associated with the presence of larger size solids, such as aggregates.

These analyses are of great engineering relevance [20], since self-compactibility, pass-
ing ability, pumpability, etc. are properties that depend on the viscosity and, in general,
on the rheological properties of the mixture. In turn, these properties depend on the
composition of the suspension, particularly water (its hardness and contents, especially
metallic ions), and the geometry and compactness of cementitious and aggregate materials
in suspension. For these reasons, the principal objective of this research consists of the
transformation of the Krieger–Dougherty equation into a parametric-probabilistic model
using Bayesian analysis, and to apply it to cement pastes, self-compacting mortars, and
self-compacting concretes. We also want to use the new model to compute the probabil-
ity density functions that intervene in the Krieger–Dougherty equation applied to these
cementitious suspensions.

The article is structured as follows: Firstly, we define the characteristics of the Bayesian
analysis and its suitability for application to the Krieger–Dougherty equation. Next, the
paper describes the procedure performed with the methodology. Subsequently, there is
a description of the experimental campaign undertaken and the scientific literature data
used, which is followed by the results and its discussion. Lastly, the conclusions drawn
from the research are explained.

2. Probabilistic Model and Bayesian Analysis of the Krieger–Dougherty Equation

The models of probabilistic networks are an appropriate methodology for dealing
with problems in the engineering practice [15] since the reality is random, not deterministic.
When we deal with multivariate random variables, our aim is to obtain the multivariate
density or probability function, because if these functions are known we can answer any
probability question about this variable, for example, the marginal densities of any subset
of variables, the regression expressions, any conditional distributions, etc. However, the
definition of a multivariate random variable is neither trivial nor easy. Some definitions do
not guarantee the existence of multivariate distributions. For example, the conditionals
of x given y, and y given x can be incompatible. The best way of defining multivariate
distributions is by means of a Bayesian network, because they always guarantee the
existence of the joint multivariate density and, in addition, the definition of this density is
made locally, that is, in small pieces that always guarantee this existence.

The objective of the equation of Krieger–Dougherty [2] (Equation (1)) is the analytical
calculation and prediction of the viscosity as a function of the volume fraction of solids in
suspensions of different types. Within systems based on cement materials, this equation has
been used to calculate the viscosity of cement pastes [1] and self-compacting concrete [7].
In dealing with an equation in which two parameters (φm and [η]) intervene, they may be
adjusted to the experimental data [10], which exhibits variety in the values that they may
acquire and that depend on the characteristics of the suspensions. The physical-chemical
nature of the materials and the interactions that are produced among them, inherently
exhibit a collection of responses of a random nature. Thus, the parameters controlling such
responses may be deemed random variables that follow density functions of probability, in
lieu of being defined with a single value.

Therefore, the equation of Krieger–Dougherty may be expressed in probabilistic terms,
thereby obtaining information on the variability of the estimation of η. If the matter is
dealt with by using a classic methodology, η may be treated as a random variable of a
parametric family, thereby reducing the problem to an estimation of equation parameters.
Nevertheless, if a Bayesian methodology is applied, a series of parametric distribution
families are considered, and their parameters are treated as random variables [21].
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2.1. Sources of Randomness in Cementitious Suspensions

A colloidal suspension is a system of two or more phases formed by a fluid dispersing
medium and dispersed particles with diameters between 10−9 and 10−5 m [22,23]. They
vary from large molecules, such as polymer chains of superplasticizer admixture, to small
particles, such as cement materials and mineral fillers [22,24]. The shape and the size
distribution of the particles, together with the surface chemistry and the interaction forces
among them and with the dispersing medium, determine the properties of the suspen-
sion [22]. The forces of interaction (van der Waals forces, electrostatic repulsion forces,
steric hindrance, and Brownian forces) dominate on the inertials and the gravitationals at
this scale [22]. This constitutes one of the sources of randomness in suspensions of cement
paste together with the random nature itself of the Brownian movement [1,9]. Another of
the sources arises from the variety of shapes (pseudo-spherical, angular, elongated etc.)
and sizes of the particles of the cement materials [1,25]. The shear rate, γ̇, to which the
system is subjected must also be taken into account. It has a direct influence on the packing
and interaction among the particles, which is related to the values that the parameters φm
and [η] adopt [1,6–8].

Regarding self-compacting mortar (SCM) and self-compacting concrete (SCC), they
may be deemed as systems composed of a solid granular phase of one or various sizes,
respectively, that is found in suspension in a continuous fluid viscous phase, such as cement
paste [6,7,26]. The cement paste has a pronounced random nature as has been explained be-
fore. The rheological behavior of SCM and SCC is conditioned by the interactions between
the aggregates and by the physical–chemical properties of the cement paste [26]. Thus,
performing a multi-scale approach seems appropriate since the different phases are defined
by the maximum size of their particles [26], and each exhibits a characteristic rheology.

If the hypothesis of considering SCM and SCC granular skeleton as a collection of rigid
non-colloidal polydisperse spheres is proposed with respect to the distribution of the size of
the particles, the viscosity of this system may be determined using the Krieger–Dougherty
equation, Equation (1). As the fluid phase is always water (and thus η0 is not supposed to
vary much), Equation (1) depends mainly on two parameters with physical significance:
the maximum packing fraction of the particles, φm, and the intrinsic viscosity of the system,
[η] [6,10].

The maximum packing fraction of the disperse solid phase, φm, is related to the
particle size distribution and their shape [1,6]. Thus, in a system of monodisperse rigid
spherical particles, the value of φm is approximately equal to 0.648, regardless of the size
of the sphere. Under this hypothesis, Hu et al. [27] proposed an equation that can be
used as a first approximation to the value of φm. In polydisperse systems, the value of φm
increases with particle size variability as the space between them is filled more efficiently
(φm≈ 0.744) [6,7].

The intrinsic viscosity, [η], depends on the individual effect of particles and their shape
on viscosity [1,6]. It takes a value equal to 2.5 for rigid spherical geometries [6]; when the
particles deviate of this shape, [η] must be modified [1,13,28–30]. The expression suggested
by Pabst et al. [28] can be useful to estimate [η]. Anyway, the correlation between particle
shape and [η] is fundamentally complicated because, on the one hand, it is normally
assumed that all particles have a similar shape and, on the other hand, the fit of [η] in the
Krieger–Dougherty equation to the experimental measurements is subject to statistical and
systematic errors [28].

As the aggregates move away from the spherical shape, other values of [η] must be
used to simulate the actual shape of the particles. Szecsy [30,31] established a relationship
between [η] and the circularity of the particle, defined as the relationship between the
area and the perimeter of the particle using digital image processing techniques. It is of
utmost interest to analyze what occurs with the various concentrations of solids, especially
when their values are near the maximum packing fraction, a point that corresponds to the
volumetric fraction in which a strong increase of the dynamic viscosity occurs [10]. In the
same manner that occurs with cement paste, the variety of shapes and sizes of granular
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particles is a real fact that introduces a source of randomness related to aggregates to
the system.

When the system is diluted the viscosity depends principally on the concentration of
particles. Its value does not vary too much when γ̇ increases since the particles are not close
to each other and the hydrodynamic interactions may be disregarded [6,32]. With high
concentration of aggregates, which is what happens in SCC, the hydrodynamic interactions
that occur between them as a consequence of the shear applied to the suspension [6] must
be taken into account in addition to the distribution of shapes and sizes. The parameters
[η] and φm of the Krieger–Dougherty equation depend on γ̇, and its product remains
practically constant when the aggregates are deemed rigid spheres (it takes an average
value equal to 1.9 [6] or 2 [10,33]). Thus, this energy introduces a source of randomness to
the system as occurs with the systems comprised of only cement paste.

2.2. Bayesian Approach

The Bayesian networks are used in a multitude of disciplines and practical prob-
lems [15,21], in which the analysis and interpretation of data are important in taking
decisions [16–19]. A Bayesian network consists of two elements, (G,P); the first, G, is a
directed acyclic graph, that has the variables as nodes, and the links, the direct dependen-
cies among the variables. Due to the directed acyclic graph, the variables are ordered, and
each variable has no parents or a set of parents, normally a few, that are the variables on
which there is a direct dependency. The acyclic graph permits answering questions such as:
has a subset of variables A new information on another subset B, when a third subset C is
already known? This is a very interesting and useful property. Once we have the graph,
which defines the qualitative information on the network, we need to quantify probabilities,
and this is done by the second element, P , which is a set of conditional probabilities, one
per variable, that gives the conditional probabilities of the variables conditioned on their
parents. From this set we can obtain the joint density by multiplying all of the conditional
probabilities, that is, we have:

f (x1, x2, . . . , xn) =
n

∏
i=1

p(xi|Πi), (2)

where Πi are the subsets of parents of the variables xi. Thus, defining a multivariate
density means defining the directed acyclic graph, and defining each of the conditional
probabilities, one per variable. However, these conditional probabilities are local, because
normally involve a small number of variables, that is, easy to be defined. In Bayesian
methods, the parameters of these conditional probabilities are assumed random, and then,
they are converted into random variables, and incorporated into the Bayesian network. It is
clear that, apart from some particular cases, the calculus of probabilities is complicated and
normally involves integrals, that lead to very complex problems that have no analytical
solution. One way to avoid these calculations is by using simulations. We simulate a
very high number of samples and use the sample of the variable, marginal, or conditional,
we are interested in, and we inform the user by means of a very large sample, instead
of an analytical expression, that in practice is equivalent. The Markov Chain Monte
Carlo methods optimize the sampling procedure using some asymptotic properties of the
simulation procedures that reduce the sample size drastically. This is the method that is
used in this paper.

The Bayesian methods deal with parametric families of distributions, the parameters of
which are considered random variables [19,21]. These models do not choose a model of the
initial family of distributions, but rather a linear convex combination of the different models
of the selected family. This aspect is very important since it permits increasing the collection
of models and enables the sample to indicate which is the most appropriate [18,19].
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The Bayesian approach of a probabilistic model consists of the following steps [34]:

• Selection of the likelihood family.
• Selection of the prior distribution of the parameters. It deals with a very important

step in the methodology since the results for small samples strongly depend on it. The
selection of this prior information may be done in the following manner:

− Using an imaginary sample. For that, an expert is consulted for the purpose of
providing a virtual sample of a certain size as the most representative to their
prior knowledge.

− Using previous non-updated information available in the specialized scientific
literature.

− Based on data obtained in our own experiments.

• Obtaining data from the sample.
• Calculation of the posterior distribution.
• Combining the posterior with the likelihood to obtain the predictive distribution,

which is the one we used.

2.3. Formulation of the Probabilistic Model and Bayesian Analysis of the
Krieger–Dougherty Equation

The proposed objective consists of converting the Krieger–Dougherty equation into
a parametric model and performing a Bayesian analysis of it. In the first place, it will
deal with the case of homogenous suspensions of cement paste. Below, the same proce-
dure is performed for the case of self-compacting mortar and self-compacting concrete,
thereby considering them as heterogeneous suspensions of granular particles within a
homogeneous fluid, which is the cement paste.

Using the Krieger–Dougherty Equation (1), dynamic viscosity of cementitious systems
can be calculated; two main parameters intervene, φm and [η], which are going to be
dealt with as random variables in the Bayesian analysis. In order for the proposed model
to provide reasonable results, it is necessary to have prior adequate information, which
may be obtained from the experimental data or consultation with the scientific literature.
The quality of the information is fundamental, especially when sufficient data are not
available [34]. The Bayesian network of the model, which is to be created, will take into
account the random nature of the average value of the dynamic viscosity as well as the
variability of the parameters that intervene in the model.

The transformation of the parametric-deterministic model into a parametric-probabi-
listic model and the Bayesian analysis has been undertaken in this work using the open-
source code, OpenBUGS [35]. It involves a Bayesian inference program that uses Markov
Chain Monte Carlo methods and the Gibbs Sampling as a basis (the Gibbs Sampling is a
particular case of a simulation algorithm of a Markov Chain). These methods successively
simulate the density function that has been proposed, which does not necessarily have to
be similar to the posterior density function. Each value generated only depends on the
value simulated previously (thus the denomination of Markov Chain). Besides, OpenBUGS
permits the production of the graph or diagram of the Bayesian network of the model in
question. The program simulates the posterior distribution of the parameters of a model,
which requires the definition thereof, the incorporation of a collection of data and beginning
values, the latter of which are an important aspect in the analysis of the quality of the
simulations performed [18]. Insofar as results, the program provides the graph of the
hierarchical dependence structure between variables and parameters, the functions of the
posterior density of the parameters, and a collection of statistics of the probabilistic model.

2.3.1. Cement Paste Suspensions

The first step is the definition of the Krieger–Dougherty model [2] in a dimensionless
format:

η∗ =

(
1 −

φp

φm p

)−[η]p φm p

(3)
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where,

η∗ =
ηp
ηw

: non-dimensional dynamic viscosity of the cement paste.

ηp: dynamic viscosity of the cement paste.
ηw: dynamic viscosity of the continuous fluid phase of the suspension (water).
φp: fraction in volume of the disperse solid phase of the suspension (cementitious
materials).
φm p: maximum packing fraction of the particles of the disperse solid phase.
[η]p: intrinsic viscosity of the cement paste.

To perform the conversion of the initial deterministic model into a probabilistic model
and perform the Bayesian analysis, the variables φm p and [η]p are considered independent
random variables, which belong to a family of uniform probability density functions
defined within a domain (minimum and maximum values of the validity interval). In
addition, it is assumed that the Krieger–Dougherty equation provides the mean of the
values of the random variable, ηp, which follows a normal density function (with mean
µ∗ and standard deviation σ). The observed residue, ε∗, also follows a normal density
function and σ is to be defined by means of a non-informative uniform density function.
Therefore, the syntax with which the model is to be defined in statistical notation is the
following:

η∗ ∼ N [µ∗, ν] (4)

µ∗ =

(
1 −

φp

φm p

)−[η]p φm p

(5)

φm p ∼ U [φm p min, φm p max] (6)

[η]p ∼ U
[
[η]p min, [η]p max

]
(7)

σ ∼ U [σmin, σmax] (8)

where ν is an auxiliary variable depending on the standard deviation (ν = σ−2).

2.3.2. Self-Compacting Mortar Suspensions

Again, the first step is the definition of the Krieger–Dougherty model [2] for self-
compacting mortar suspensions in a dimensionless format. From ηp, and through the
application of a micromechanical model, the viscosity of any cementitious paste with
granular phases in suspension (self-compacting mortar and self-compacting concrete)
can be calculated considering it as a two-phase suspension of particles within a viscous
fluid [6,7]. The addition of each solid phase produces an increase of the viscosity of the
fluid phase, which can be calculated by successively applying the Krieger–Dougherty
equation when including each one of the granular phases. For the case of self-compacting
mortar suspensions, the viscous fluid is the cement paste and the fine aggregate constitutes
the only solid phase, thus the model can be expressed through [7]:

η� =

(
1 − φFA

φm FA

)−[η]FA φm FA

(9)

where,

η� = ηSCM
ηp

: non-dimensional dynamic viscosity of self-compacting mortar.

ηSCM: dynamic viscosity of self-compacting mortar.
ηp: dynamic viscosity of cement paste.
φFA: fraction in volume of the granular phase of the suspension (fine aggregate).
φm FA: maximum packing fraction of particles of the granular phase.
[η]FA: intrinsic viscosity of the system when adding the granular phase.
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As occurred with the cement pastes, each one of the parameters of Equation (9) are
considered random variables that follow a uniform density function of probability within
a domain of validity (with minimum and maximum values defined for each parameter).
Likewise, Equation (9) determines the mean of the dynamic viscosity of self-compacting
mortar, which follows a normal density function of probability (average, µ�, standard
deviation, σ). The residual, ε�, also belongs to a normal family and comprises a density
function of the uniform type. Thereby the syntax of the model in statistical notation is
defined in this way:

η� ∼ N [µ�, ν] (10)

µ� =

(
1 − φFA

φm FA

)−[η]FA φm FA

(11)

φm FA ∼ U [φm FA min, φm FA max] (12)

[η]FA ∼ U
[
[η]FA min, [η]FA max

]
(13)

σ ∼ U [σmin, σmax] (14)

2.3.3. Self-Compacting Concrete Suspensions

Similarly to self-compacting mortar, self-compacting concrete can be considered as
a two-phase suspension of granular particles, in which the addition of each solid phase
produces an increase of the dynamic viscosity. Again, applying successively the Krieger–
Dougherty equation when including each one of the solid phases (fine aggregate and coarse
aggregate) the model is defined as follows [7]:

η◦ =

(
1 − φFA

φm FA

)−[η]FA φm FA (
1 − φCA

φm CA

)−[η]CA φm CA

(15)

where,

η◦ = ηSCC
ηp

: non-dimensional dynamic viscosity of self-compacting concrete.

ηSCC: dynamic viscosity of self-compacting concrete.
ηp: dynamic viscosity of cement paste.
φFA: fraction in volume of the finer granular phase of the suspension (fine aggregate).
φm FA: maximum packing fraction of particles of the finer granular phase.
[η]FA: intrinsic viscosity of the system when adding the finer granular phase.
φCA: fraction in volume of the thicker granular phase of the suspension (coarse
aggregate).
φm CA: maximum packing fraction of the thicker granular phase of the suspension
(coarse aggregate).
[η]CA: intrinsic viscosity of the system when adding the coarser granular phase.

Similarly to cement pastes and self-compacting mortars, the parameters of the Krieger–
Dougherty equation in self-compacting concretes are treated as random variables with a
uniform density function of probability within a domain of validity (with minimum and
maximum values defined for each parameter). Thus, the Krieger–Dougherty equation
gives the mean of the dynamic viscosity of self-compacting concrete, which follows normal
density function of probability (average, µ◦, standard deviation, σ). Again, the residual,
ε◦, belongs to a normal family and comprises a density function of the uniform type. The
syntax of the model in a statistical format is shown below:
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η◦ ∼ N [µ◦, ν] (16)

µ◦ =

(
1 − φFA

φm FA

)−[η]FA φm FA (
1 − φCA

φm CA

)−[η]CA φm CA

(17)

φm FA ∼ U [φm FA min, φm FA max] (18)

φm CA ∼ U [φm CA min, φm CA max] (19)

[η]FA ∼ U
[
[η]FA min, [η]FA max

]
(20)

[η]CA ∼ U
[
[η]CA min, [η]CA max

]
(21)

σ ∼ U [σmin, σmax] (22)

3. Materials and Methods
3.1. Cement Paste Suspensions

The cement pastes analyzed here belong to an experimental campaign recently pub-
lished by De La Rosa et al. [5]. The cementitious suspensions were elaborated with two
classes of Portland cement (c) and a mineral addition (ground granulated blast-furnace
slag, GGBS). The particle size distribution of the cementitious materials (see Figure 1)
was obtained by laser diffraction granulometry using an optical system Mastersizer 2000
(Malvern, UK). Two superplasticizer admixtures of a polymeric nature were used: one
based on modified polycarboxylates in an aqueous base with a density equal to 1090 kg/m3

and a dry solid residue of 40% (Sika ViscoCrete-20 HE), and the other of a poly-aryl-ether
type with a density equal to 1058 kg/m3 and a dry solid residue of 30% (BASF MasterEase-
5025). The composition of the cement pastes in function of the different combinations of
materials is the following:

• 31 cement pastes with w/cm relationships equal to 0.35, 0.47, 0.53, and 0.63, each of
which was composed of CEM I 52.5-SR, CEM II 32.5 B-L, 75% CEM I 52.5-SR, and 25%
GGBS, 75% CEM II 32.5 B-L and 25% GGBS, respectively, and two relationships SP/cm
equal to 0.4 and 0.8% of a superplasticizer admixture based on polycarboxylates
modified in an aqueous based (SikaViscoCrete-20 HE).

• 8 cement pastes with w/cm relationships equal to 0.40, 0.47, 0.53, 0.63, made with CEM
I 52.5-SR, and two relationships SP/cm equal to 1.0 and 1.2%, with a superplasticizer
admixture of a poly-aryl-ether type (BASF MasterEase-5025).

(b)(b)

Figure 1. Particle size distribution of the cementitious materials.



Materials 2021, 14, 1971 10 of 27

The mixture of the pastes was performed in the following manner: introduction of the
cement materials and 90% of the water in the mixer and a 30 s rest. Then, mixing with a
rotational velocity of the blades of 64 revolutions per minute (rpm) for 60 s. Subsequently,
the mixing stopped, the material stuck to the sides of the recipient, the blades were scraped,
and the superplasticizer was added with the remaining water. The mixing was restarted
at a velocity of 92 rpm and after 90 s the process was stopped. This mixing protocol
was adopted in accordance with the recommendations ASTM C305-99 and AASHTO
T162-04 [36,37].

The dynamic viscosity of the cement pastes was measured using a rotational rheometer
with a double cone-plate sensor Haake RS50 (Thermo Fischer), performing the tests at
a constant temperature (25 ◦C) with a water bath while controlling the shear rate and
preventing the slippage between the suspension and the walls of the sensor. Measurements
were performed twice with increasing and decreasing shear rate ramps from 0 to 600 s−1

for 3 min and dwelling time of 1 min at maximum rate. The samples were introduced in the
rheometer and a first measurement was taken (considered as a pre-shear test). Subsequently,
the sample was at rest for 60 s and then the test was repeated. The procedure was repeated
again to have two measurements of ηp for each sample (78 data).

The resulting flow curves are deemed that formed by the pairs of points shear stress-shear
rate of the descent ramp. This permits determining the flow curve of cement suspensions
(Figure 2). The slope of the adjusting straight line to the descending branch of the flow curve
is ηp, the value of which has been calculated in the range γ̇ = 10–100 s−1 (note that the linear
behavior of the descending branches extends beyond 100 s−1, Figure 2). However, to make
correct measurements in the typical range of application of cement pastes for fluid concrete
applications (approximately γ̇ = 100–200 s−1), when preparing the samples it is necessary to
subject them to a higher shear rate to obtain a homogeneous and completely deflocculated
mixture. Hence, the sample preparation shear rate range reached values of 600 s−1.

The values of the descent branch of the flow curve were adjusted to a Bingham type
rheological model in which the value of the slope of the descent branch is ηp. These values
of ηp serve to adjust the parameters φm p and [η]p of the Krieger–Dougherty equation,
corresponding to cement pastes. Individual measurements η∗ (= ηp/ηw) corresponding to
each paste are included in Table A1 (Appendix A).

(a) (b)

Figure 2. Descending branches of the flow curves of cement pastes obtained with the rotational
double cone-plate rheometer: (a) 75% CEM I 52.5 N-SR + 25% ground granulated blast-furnace slag
(GGBS); (b) CEM I 52.5 N-SR.

3.2. Self-Compacting Mortar/Concrete Suspensions

Next, eight self-compacting mortars from the research of Ouro et al. [38] were analyzed
to evaluate the effect of adding the finest portion of a natural sand (Dm < 1.25 mm) on the
parameters of the Krieger–Dougherty equation.

Besides, 17 self-compacting concretes from the research performed by Feys et al. [39],
16 self-compacting concretes from the research performed by Esmaeilkhanian et al. [40],
and 9 self-compacting concretes from the doctoral thesis of Grünewald [41] were analyzed.
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The interest in using these self-compacting concretes lies in the nature and the size of their
aggregates: crushed coarse aggregate was used (5–10 mm and 10–20 mm) by Feys et al.;
round fine aggregate (0–2 mm) and crushed coarse aggregate (5–10 mm and 5–14 mm)
were used by Esmaeilkhanian et al.; Grünewald employed both round fine (0.125–4 mm)
and coarse (4–8 mm and 4–16 mm) aggregates.

The rheological measurement of self-compacting mortars was done using a parallel-
plates rotational rheometer; every rheological measure of self-compacting concretes was
done with rotational coaxial cylinder viscometers. However, none of the cited researches
measured the value of the dynamic viscosity of the cement paste, so we have estimated
these values from data of the scientific literature [6,7,42,43] according to Ghanbari et al. [6].
The composition of each of the mortars and concretes studied in this article is given in
Appendix A.

4. Results and Discussion

The transformation of deterministic into probabilistic models was carried out using a
Bayesian analysis methodology. For this purpose, the open-source software OpenBUGS
was used which applies Markov Chain Monte Carlo and Gibbs Sampling to perform the
simulations. In each model a total of 11,000 iterations were carried out to obtain the samples
of the variables that can be interpreted as their density functions, which are the parameters
of the deterministic models. We used all simulated samples but the first 1000, which belong
to the burn-in stage. We did not experience any multimodal posterior density problem,
which can appear in some cases, especially of extreme values or reliability analysis [44].
Besides, we did not consider noises since Bayesian methods deal with mixtures of the
selected basic models instead of these models themselves, which provide them with more
flexibility to reduce noise effects.

4.1. Ranges of the Parameters φm i and [η]i to Be Used in the Bayesian Analysis of
Cementitious Suspensions
4.1.1. Cement Paste Suspensions

From the rheometric tests performed on the cement pastes the values of the parameters
φm p and [η]p were calculated by means of the adjustment of the experimental results to the
Krieger–Dougherty equation. Some of the adjustment curves may be seen in Figure 3. The
results obtained from the statistical adjustment of the data are summarized in Table 1.

Table 1. Values of φm p and [η]p calculated in cement pastes [5]. Average range in rotational rheometry: 0–600 s−1. CI stands
for confidence interval.

Cementitious Material SP/cm ηw [mPa s] φm p 95% CI [η]p 95% CI R2
adj

CEM I 52.5 N-SR

0.4 0.933 0.68 0.43–0.93 6.6 4.4–7.7 0.980
0.8 0.933 0.70 0.41–0.98 6.4 3.9–7.4 0.977

0.4, 0.8 0.933 0.68 0.41–0.96 6.5 4.0–7.6 0.922
1.0 0.891 0.75 0.56–0.94 6.8 5.5–7.7 0.981
1.2 0.891 0.69 0.62–0.76 6.5 5.9–6.9 0.995

1.0, 1.2 0.891 0.72 0.63–0.80 6.7 6.1–7.1 0.986
0.4, 0.8, 1.0, 1.2 0.911 0.74 0.66–0.83 6.8 6.3–7.2 0.973

CEM II 32.5 BL-II
0.4 0.933 0.57 0.53–0.61 5.0 4.6–5.3 0.999
0.8 0.933 0.83 0.54–1.00 6.2 4.8–6.8 0.993

0.4, 0.8 0.933 0.66 0.52–0.79 5.5 4.5–6.2 0.979

75% CEM I 52.5 N-SR 0.4 0.933 0.60 0.36–0.84 6.0 2.8–7.3 0.954

+ 25% GGBS 0.8 0.933 0.83 0.50–1.00 6.5 4.8–7.3 0.991
0.4, 0.8 0.933 0.63 0.41–0.85 6.1 3.9–7.2 0.917

75% CEM II 32.5 BL-II 0.4 0.933 0.69 0.26–1.00 6.0 0.2–7.3 0.950

+ 25% GGBS 0.8 0.933 0.51 0.45–0.56 4.3 3.6–4.9 0.987
0.4, 0.8 0.933 0.58 0.42–0.73 5.1 3.4–6.1 0.909

All 0.4, 0.8, 1.0, 1.2 0.911 0.61 0.55–0.67 5.7 5.2–6.2 0.837
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(a) (b)

Figure 3. Adjustment curves for the experimental measures to the Krieger–Dougherty equation:
(a) all the pastes designed; (b) CEM I 52.5 N-SR.

Previously, Struble et al. [1], and subsequently, Burgos-Montes et al. [3,45], carried out
research on cement pastes of a different nature, that is, pastes with and without mineral
additions and superplasticizer admixtures, in which they obtained good results from the
adjustment of the experimental data to the Krieger–Dougherty equation. Struble et al. [1]
concluded that in cement pastes the parameters φm p and [η]p acquire adjustment values equal
to 0.70 and 6.0, respectively. In turn, when the pastes are dispersed with a superplasticizer
admixture, the value of φm p varies between 0.64 and 0.80, while the values of [η]p range
between 4.5 and 6.0, with average values of 0.70 and 5.0 for φm p and [η]p, respectively
(Table 2).

Table 2. Values of the parameters φm p and [η]p in cement pastes calculated by Struble et al. [1]. Range
of measure in rotational rheometer: 0–600 s−1.

Cement Paste γ̇[s−1] φm p [η]p

Cement type I (dispersed) 25 0.64 5.1
Cement type I (dispersed) 500 0.76 6.2
Cement type I (floculated) 500 0.64 6.3
White cement (dispersed) 25 0.67 5.7
White cement (dispersed) 500 0.80 6.8

Cement type V (dispersed) Low limit 0.70 4.7
Cement type V (dispersed) 25 0.68 4.5
Cement type V (dispersed) 500 0.75 5.2

In light of the results obtained, it may be verified that the ranges of the values experimen-
tally determined for φm p and [η]p are very similar to those contributed by Struble et al. [1].
The differences that appear, basically in the lower value of the parameter φm p, may be due to
the physical–chemical interactions arising between the cement particles as a consequence of
the chemical nature of the superplasticizer admixtures used in each case.

4.1.2. Self-Compacting Mortar/Concrete Suspensions

To establish the domains of validity of the parameters of the Krieger–Dougherty
equation in each phase of self-compacting mortar/concrete, the next hypotheses have been
followed. First, we have as reference the criterium established by Abo-Dhaheer et al. [7],
who consider rigid spherical particles for which φm increases with the addition of solid
phases according to theoretical packing values (φm = 0.524 for powder phase, φm = 0.63
for powder plus fine aggregate phase, and φm = 0.74 for powder plus fine and coarse
aggregate phase). Also, according to Hu et al. [27], φm could de estimated under the same
hypothesis as:

φm = 1 − 0.45
(

dm

Dm

)0.19
(23)
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where dm and Dm are the minimum and maximum dimension of the particles, respectively.
Having this into account, we select the lower limit of φm, equal to 0.55, for every phase
of self-compacting concrete (powder, powder plus fine aggregate, powder plus fine and
coarse aggregate).

To determine the upper limit of φm FA, we consider the experimental maximum pack-
ing fraction measured by Grünewald for fine round aggregate [41]. Furthermore, the
experimental maximum packing fraction measured for both fine and coarse round aggre-
gates is 0.809 (40% fine aggregate, 60% coarse aggregate) [41]. Zentar et al. [46] indicate that
φm is lower with round aggregates (φm = 0.793) than with crushed aggregates (φm = 0.901).
This is explained by the lubricating effect of the powder and cementitious phases, which is
more important with crushed aggregates [46]. Taking into account this, and to establish an
adequate value of reference, we take as upper limit of φm = 0.894 (packing density of all
solid particles). This value has been extracted from the investigation of Kwan et al. [47].

The morphology of the particles in any suspension is mainly controlled for the intrinsic
viscosity [46]. Its value is lower for round aggregates than for crushed aggregates because
these are closer to the spherical shape ([η] = 2.5). The following equation, proposed by
Pabst et al. [28], could be used to estimate [η] knowing the aspect ratio of the particles.

[η] = 2.5 + 0.123
(

Dm

dm
− 1

)0.925
(24)

Also, there are other relationships between circularity of particle and intrinsic vis-
cosity [30,31]. As the shape of the set of particles in concrete is broad, we have a lot of
uncertainty regarding the maximum and minimum values of [η] that can be acquired in
each phase, so we select the same interval in each one of them. Thus, we select a lower
limit of [η] = 2.5 and an upper limit [η] = 9, taking into account these references.

Abo-Daheer et al. [7] consider the φm[η] product (exponent of the Krieger–Dougherty
equation) practically constant and equal on average to 1.9 in every phase, since both
parameters have an inverse dependence on the shear rate [6,7]. This hypothesis is very
close to other models similar to Krieger–Dougherty, such as that of Quemada (exponent
equal to 2) [11]. However, in this parameter product, there is no information about the
shape, morphology, particle size distribution, etc., of concrete raw materials.

The ranges of values for the parameters in the mortar phase can be extracted from this
analysis. Actually, a lower value of φm FA in the mortar phase can be calculated through
Equation (23), considering monosize sand particles shape like spheres (φm = 0.55). The
upper value of φm FA is selected according to the experimental maximum packing fraction
measured by Grünewald for round fine aggregate with a certain grade of polydisper-
sion [41], which is equal to 0.717. Similarly, we select [η]FA within the 2.5 to 9 interval
following the investigations of Choi and Szecsy [30,31].

4.2. Bayesian Analysis of the Krieger–Dougherty Equation in Cementitious Suspensions
4.2.1. Cement Paste Suspensions

Table 3 presents the intervals of the values detected for the parameters φm p and [η]p,
which appear to establish the validity domains in order to carry out the Bayesian analysis
of the Krieger–Dougherty equation in cement pastes. The ranges in this work are calculated
from the experimental measurements performed in [5].

Table 3. Definition domains of the parameters φm p and [η]p.

Investigation φm p [η]p

Struble et al. [1] 0.64–0.80 4.5–6.8
Present work & De La Rosa et al. [5] 0.51–0.83 4.3–6.8
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The description of the model proposed from the Krieger–Dougherty equation in
cement pastes and the domains of the definition of the parameters are shown below:

η∗ ∼ N [µ∗, ν] (25)

µ∗ =

(
1 −

φp

φm p

)−[η]p φm p

(26)

φm p ∼ U [0.510, 0.830] (27)

[η]p ∼ U [4.30, 6.80] (28)

σ ∼ U [0, 400] (29)

Figure 4 represents the graph of the Bayesian network, obtained for the model, which
describes the hierarchical dependence structure of the collection of variables involved.
As indicated, the graph of the model permits verifying that φm p, [η]p and σ (standard
deviation) are independent variables.
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Figure 4. Graph of the Bayesian network of the Krieger–Dougherty equation in cement pastes.

Table 4 summarizes the statistics calculated after performing the Bayesian analysis.
The graphs of the density functions of the parameters of the Bayesian model are shown in
Figure 5. They demonstrate the variability in the distribution of the values of the parameters
φm p and [η]p, which is indicative of the properties and the nature of these cement systems.
Thus, the amplitude of the density function of the parameter φm p describes the poly-
dispersion insofar as the size of the particles within the system. Similarly, the characteristics
of the density function of the parameter [η]p represents the variability of shapes of the
particles present in the suspension. Figure 6a corresponds to the density function of
the product of parameters φm p [η]p (exponent of the Krieger–Dougherty equation). This
function indicates the most likely value that the exponent of the equation in cement pastes
can acquire. It reflects what is collected in the scientific literature [1], but now there is a
probability density function and not a single value. Figure 6b shows the bivariate histogram
of the parameters φm p and [η]p.

Table 4. Statistics of the parameters φm p and [η]p.

Parameter Mean Std. Dev. Percentage 2.5% Median Percentage 97.5%

φm p 0.870 0.031 0.800 0.879 0.899
[η]p 6.651 0.175 6.333 6.681 6.829
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11000 iteraciones pasta, 78 datos (función uniforme)

(a) (b)

Figure 5. Density functions of probability of the parameters of the cement paste suspensions: (a) [η]p;
(b) φm p.

11000 iteraciones pasta, 78 datos (función uniforme) para artículo

(a) (b)

Figure 6. (a) Density function of probability of the product of parameters φm p [η]p (exponent of the
Krieger–Dougherty equation); (b) bivariate histogram of φm p and [η]p.

4.2.2. Self-Compacting Mortar Suspensions

The Krieger–Dougherty model defined for the Bayesian analysis of self-compacting
mortars (SCM) from the research of Ouro et al. [38] and the parameter definition domains
are as follows:

η� ∼ N [µ�, ν] (30)

µ� =

(
1 − φFA

φm FA

)−[η]FA φm FA

(31)

φm FA ∼ U [0.550, 0.717] (32)

[η]FA ∼ U [2.5, 9.0] (33)

σ ∼ U [0, 400] (34)

Figure 7 is the graph of the Bayesian network of the model. The statistics calculated
from the parameters after performing the analysis are included in Table 5. In this case,
mortars were manufactured with the finest portion of a natural sand (Dm≤ 1.25 mm). The
shape of the particles is very close to the sphere and we can consider this mortar phase
like a monodisperse system, so the calculated values with the Bayesian analysis of the
parameters φm FA and [η]FA (Table 5) are very close to the theoretical values proposed by
Abo-Daheer et al. (which are 0.63 and 2.5, respectively) [7]. Also, the exponent of the
Krieger–Dougherty equation φm FA [η]FA is 1.8, which is very approximate to the theoretical
value proposed by Abo-Daheer et al. (which is 1.9) [7].
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Figure 7. Graph of the Bayesian network of the Krieger–Dougherty equation in self-compacting
mortar.

Table 5. Statistics of the parameters φm FA and [η]FA for self-compacting mortar.

Investigation Parameter Mean Std. Dev. Percentage 2.5% Median Percentage 97.5%

Ouro et al. [38] φm FA 0.655 0.043 0.565 0.662 0.715
[η]FA 2.753 0.196 2.510 2.714 3.221

The graphics of density functions of the parameters are shown in Figure 8. Both φm FA
and, specially, [η]FA display a very clear peak of probability in a narrow range of values
in the mortar. This confirms the hypothesis that the shape of the particles is very close
to the sphere and we can consider this mortar phase as a monodisperse system. Thereby,
this values are well known in the case of monodisperse system of spheres (φm FA ≈ 0.63,
[η]FA ≈ 2.5).

(a) (b)

Figure 8. Probability density functions of the parameters of the fine granular phase (FA) in self-
compacting mortar: (a) φm FA; (b) [η]FA.

To appreciate the improvement made with the Bayesian analysis better, we can use
the mean values of the obtained parameters (Table 5) in the Krieger–Dougherty model to
predict the actual experimental data of Ouro et al. [38]. Next, we compare them with the
results obtained using the theoretical values proposed by Abo-Daheer et al. (φm FA = 0.63
for powder plus fine aggregate phase, φm i [η]i = 1.9) [7]. Table 6 shows all the results and
the errors obtained with both approaches, expressed as a percentage of the experimental
values. The mean error using the theoretical values for the parameters is 43% (standard
deviation 39%), which gets reduced to 33% (22%) when the mean values from the Bayesian
analysis are used. It should be noted that these errors being high, they are reasonable
values according to the uncertainties present in the system and similar to the acceptable
error chosen by Ghanbari et al. [6] for their model (25%).
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Table 6. Comparison between experimental values and model results for self-compacting mortar (Ouro et al. [38]).

Name Experimental
ηSCM [Pa s]

Calculated with
Theoretical Values [7]

ηSCM [Pa s]

Calculated with
Bayesian Mean Values,

ηSCM [Pa s]

Error with
Theoretical

Values [7] [%]

Error with
Bayesian Mean

Values [%]

N3, N4 1.90 1.35 1.17 29.0 38.6
N7, N8 1.10 1.12 0.98 2.2 11.3

N11 1.66 1.48 1.26 10.5 24.1
N13 1.41 1.10 0.97 21.9 31.3
N15 0.94 1.28 1.08 36.0 15.3

E3, E4 0.50 1.06 0.87 112.4 73.3
E7 0.35 0.49 0.40 41.2 15.2
E13 0.37 0.72 0.59 93.3 59.6

4.2.3. Self-Compacting Concrete Suspensions

The Krieger–Dougherty model defined for the Bayesian analysis of self-compacting
concretes (SCC) from the research of Feys et al. [39], Esmaeilkhanian et al. [40], and
Grünewald [41]; the parameter definition domains are as follows:

η◦ ∼ N [µ◦, ν] (35)

µ◦ =

(
1 − φFA

φm FA

)−[η]FA φm FA (
1 − φCA

φm CA

)−[η]CA φm CA

(36)

φm FA ∼ U [0.550, 0.717] (37)

φm CA ∼ U [0.550, 0.894] (38)

[η]FA ∼ U [2.5, 9.0] (39)

[η]CA ∼ U [2.5, 9.0] (40)

σ ∼ U [0, 400] (41)

The scheme of the Bayesian network of the model, which describes the hierarchy and
independence of variables, is represented in Figure 9. The statistics calculated from the
parameters of the model after performing the analysis are included in Table 7. The graphics
of the functions of density of the parameters of every phase composing SCC and the
density function of the product of parameters φm i [η]i (exponent of the Krieger–Dougherty
equation) are shown in Figure 10 (Feys et al. [39]), and Figure 11 (Esmaeilkhanian et al. [40]).
Figure 12 represents the bivariate histogram of the parameters φm i and [η]i in every phase
of the research of Feys et al. [39] and Esmaeilkhanian et al. [40].
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Figure 9. Graph of the Bayesian network of the Krieger–Dougherty equation in self-compacting
concretes.
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Table 7. Statistics of the parameters φm FA, φm CA, [η]FA, and [η]CA for self-compacting concretes.

Investigation Parameter Mean Std. Dev. Percentage 2.5% Median Percentage 97.5%

Feys et al. [39]

φm FA 0.640 0.047 0.557 0.643 0.713
[η]FA 3.682 0.743 2.565 3.597 5.206
φm CA 0.728 0.099 0.560 0.731 0.886
[η]CA 5.611 1.607 2.713 5.672 8.402

Esmaeilkhanian et al. [40]

φm FA 0.675 0.031 0.605 0.682 0.716
[η]FA 3.120 0.425 2.525 3.052 4.009
φm CA 0.730 0.099 0.560 0.734 0.887
[η]CA 4.776 1.291 2.628 4.751 7.151

Grünewald [41]

φm FA 0.682 0.029 0.610 0.689 0.716
[η]FA 4.032 0.425 2.954 4.102 4.679
φm CA 0.740 0.097 0.562 0.749 0.887
[η]CA 5.294 1.094 3.183 5.241 7.741

(a) (b)

(c) (d)

(e) (f)

Figure 10. Probability density functions of the parameters of the self-compacting concretes (SCC)
phases in Feys et al. [39]: (a) φm FA; (b) [η]FA; (c) φm CA; (d) [η]CA; (e) [η]FA φm FA; and (f) [η]CA φm CA.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Probability density functions of the parameters of the SCC phases in Esmaeilkha-
nian et al. [40]: (a) φm FA; (b) [η]FA; (c) φm CA; (d) [η]CA; (e) [η]FA φm FA; and (f) [η]CA φm CA.

The sands of the research of Esmaeilkhanian et al. and Grünewald are round aggre-
gates. The mean value of φm FA is similar (≈0.68). However, this parameter has a lower
value for the sand of Feys et al., which can indicate that is a crushed sand. Regarding [η]FA,
the mean value calculated for the fine aggregate data of Feys et al. is higher than the value
obtained in the data of Esmaeilkhanian et al. This could reinforce the hypothesis of crushed
fine aggregate of Feys et al. The value obtained for [η]FA in Grünewald data is the highest
(≈4.03). This could indicate that the shape of this fine aggregate has a lower circularity
than the other sands [30,31].

The mean value of φm CA is similar in the three coarse aggregates (≈0.74). We know
that the self-compacting concretes of the research of Feys et al. and Esmaeilkhanian et al.
are crushed aggregates whereas the coarse aggregate of Grünewald is rounded. This could
be explained by the lubricating effect of the powder and cementitious phases, which is
more important with crushed aggregates [46]. Regarding [η]CA the mean values obtained
in every research are different and higher than 2.5. This means that the shape of the coarse
aggregates moves away from the spherical shape, since the parameter [η]CA is related with
the circularity of the aggregate [30,31]. This is plausible for the crushed coarse aggregates
employed by Feys et al. and Esmaeilkhanian et al. Also, this is possible for elongated
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round aggregates. In this particular case, the investigation of Grünewald indicates that
sand grains are much more rounded than coarse aggregates [41]. This fact is reflected in
the Bayesian analysis of the data as well.

If we look at the non-parametric density functions, φm FA displays a peak of probability
for the fine aggregate phase of Esmaeilkhanian et al. whereas the density function is
smoother for Feys et al. (Figures 10a,b and 11a,b). This fact indicates that the maximum
packing of the fine aggregate gets a value with high probability, which could be due to the
use of fine round aggregate (the maximum packing value of spheres is well known). The
plateau of values with similar probability for the fine aggregate of Feys et al. confirms that
crushed fine aggregate was used in this research.

Respect to the coarse aggregate phase, in both cases non-parametric density functions
of φm CA and [η]CA (Figures 10c,d and 11c,d) show a shape similar to a uniform density
function with similar ranges of values and probability. Both investigations use crushed
coarse aggregate; this indicates that there exists a variety of shapes of coarse aggregates
leading to a significant dispersion in the values of φm CA.

Figures 10e,f and 11e,f show that the maximum probability of the exponent of the
Krieger–Dougherty equation is, approximately, equal to the theoretical value of 1.9 in the
fine granular phase. However, the width of the density function in the coarse aggregate
phase indicates that the exponent could acquire an ample range of values with similar
probability. Figure 12 shows the bivariate histogram of the parameters φm i and [η]i in every
phase composing the self-compacting concretes of Esmaeilkhanian et al. and Feys et al.

(a) (b)

(c) (d)

Figure 12. Bivariate histograms in every SCC phase: (a) [η]FA and φm FA in Feys et al. [39]; (b) [η]CA

and φm CA in Feys et al. [39]; (c) [η]FA and φm FA in Esmaeilkhanian et al. [40]; and (d) [η]CA and φm CA

in Esmaeilkhanian et al. [40].

The improvement made with the Bayesian analysis can be visualized by carrying
out the same process that has been done with mortars, applying the mean values of the
parameters obtained in the Bayesian analysis (Table 7) of the Krieger–Dougherty model to
the data of Feys et al. [39] (see the results in Table 8), Esmaeilkhanian et al. [40] (Table 9), and
Grünewald [41] (Table 10), and compare them with the results obtained with the theoretical
values proposed by Abo-Daheer et al. [7] (φm FA = 0.63 for powder plus fine aggregate
phase; φm CA = 0.74 for powder plus fine and coarse aggregate phase; φm i [η]i = 1.9).



Materials 2021, 14, 1971 21 of 27

Again, the error given by the Krieger–Dougherty model in calculating the dynamic
viscosity of the SCC is smaller in the three series of tests. Namely, the mean error goes from
77% (standard deviation of 8%) to 25% (24%) in the Feys et al. series [39], from 42% (24%)
to 36% (26%) in the Esmaeilkhanian et al. tests [40] and from 71% (9%) to only 17% (22%)
in the series reported by Grünewald [41]. In this last series of calculations, it is noteworthy
that the error of most of the predicted values (8 out of 9) is smaller than 25%, i.e., the
predictions are excellent according to the criterion established by Ghanbari et al. [6].

Table 8. Comparison between experimental values and models, and error estimated for self-compacting concrete
(Feys et al. [39]).

Name Experimental
ηSCC [Pa s]

Calculated with
Theoretical Values [7]

ηSCC [Pa s]

Calculated with
Bayesian Mean Values,

ηSCC [Pa s]

Error with
Theoretical

Values [7] [%]

Error with
Bayesian Mean

Values [%]

SCC1 50.8 11.0 50.7 78.3 0.1
SCC2 42.6 11.1 49.8 74.1 17.0
SCC3 38.0 10.9 49.4 71.2 30.0
SCC4 41.4 11.4 52.9 72.5 27.8
SCC7 67.5 12.1 56.8 82.1 15.9
SCC8 59.0 11.5 53.5 80.4 9.3
SCC9 28.0 10.3 47.1 63.2 68.4

SCC10 45.0 10.5 50.1 76.6 11.3
SCC11 35.0 8.1 34.5 76.7 1.4
SCC12 96.5 15.2 78.2 84.2 19.0
SCC13 41.5 11.1 50.3 73.4 21.3
SCC14 29.3 11.5 53.9 60.7 84.1
SCC15 49.6 10.6 48.1 78.6 3.0
SCC16 55.6 10.5 51.9 81.2 6.6
SCC17 44.8 9.8 52.2 78.1 16.6
SCC18 71.2 11.3 52.1 84.1 26.7
SCC19 71.2 12.3 58.1 92.1 62.7

Table 9. Comparison between experimental values and models, and error estimated for self-compacting concrete (Es-
maeilkhanian et al. [40]).

Name Experimental
ηSCC [Pa s]

Calculated with
Theoretical Values [7]

ηSCC [Pa s]

Calculated with
Bayesian Mean Values,

ηSCC [Pa s]

Error with
Theoretical

Values [7] [%]

Error with
Bayesian Mean

Values [%]

SCC1 59.3 19.5 34.4 67.2 42.0
SCC2 29.0 17.1 30.1 41.2 3.9
SCC3 69.5 19.6 34.6 71.8 50.2
SCC4 124.0 16.1 28.9 87.0 76.7
SCC5 25.0 17.0 29.9 32.1 19.7
SCC7 62.0 31.6 51.8 49.0 16.5
SCC8 25.0 11.9 21.5 52.2 13.8
SCC9 28.0 32.7 52.6 16.8 87.9

SCC10 72.0 38.0 61.5 47.2 14.6
SCC11 128.0 41.7 67.8 67.4 47.1
SCC12 71.0 37.6 60.8 47.1 14.3
SCC13 67.0 37.4 60.7 44.1 9.4
SCC14 35.0 31.8 51.5 9.0 47.1
SCC16 37.0 31.6 51.2 14.5 38.3
SCC17 39.0 31.6 51.2 18.9 31.2
SCC18 30.0 31.7 51.5 5.7 71.6
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Table 10. Comparison between experimental values, models, and error estimated for self-compacting concrete
(Grünewald [41]).

Name Experimental
ηSCC [Pa s]

Calculated with
Theoretical Values [7]

ηSCC [Pa s]

Calculated with
Bayesian Mean Values,

ηSCC [Pa s]

Error with
Theoretical

Values [7] [%]

Error with
Bayesian Mean

Values [%]

OS1 69.2 16.1 74.6 76.8 7.9
OS2 59.4 11.4 49.0 80.9 17.4
OS3 87.9 26.0 91.8 70.5 4.5
OS4 56.0 15.8 54.5 71.8 2.7
OS5 97.6 49.3 167.8 49.5 71.9
OS6 81.0 26.3 92.9 67.6 14.6
OS7 62.2 16.2 55.9 74.0 10.1
OS8 71.3 21.1 70.6 70.4 1.0
OS9 57.5 14.1 46.0 75.5 20.0

5. Conclusions

We carried out the transformation of the Krieger–Dougherty equation into a probabilis-
tic model using a Bayesian analysis methodology. The open-source software OpenBUGS
was used, which employs Markov Chain Monte Carlo and Gibbs Sampling to perform
the simulations to obtain the samples of the variables that can be interpreted as their
density functions, which are the parameters of the deterministic models. The method-
ology has been applied to cement pastes, self-compacting mortars, and self-compacting
concretes. The density functions of the parameters (maximum packing fractions of the
phases involved, φm i and their corresponding intrinsic viscosities [η]i) are conditioned by
the Bayesian graph, which describes the hierarchy and independence of variables, by the
limits of the initial uniform distributions and by the limits of the final distribution. The
analysis does not attribute the resulting distribution to a single cause (for example, the
variations in the shape of the aggregate), but to all those that can physically condition the
values of the parameters.

In particular, the Bayesian method applied to the cement pastes in De La Rosa et al. [5]
confirms that the theoretical values give reasonable results and, for the first time, calculates
the distribution function of the parameters of the Krieger–Dougherty equation. The results
obtained with the self-compacting mortars of Ouro et al. [38] also confirm that theoretical
values give a good approximation, and the abrupt shape of the distribution function for
[η]FA indicates that the used sand was round and spherical. Additionally, the error in the
dynamic viscosity predictions using the mean values of the distribution curves (33%) is less
than the error with the theoretical values (43%) and the standard deviation is also reduced.

We also applied the Bayesian methodology to three series of self-compacting concretes
reported by Feys et al. [39], Esmaeilkhanian et al. [40], and Grünewald [41]. The Bayesian
results detect that the sand used by Feys et al. [39] was not round but crushed, since the
maximum packing fraction φm FA is smaller than in the other cases (0.64 versus 0.68) and
the distribution is smoother. Similarly, the methodology reveals that the sand used by
Grünewald [41] was less spherical than the others due to the high value obtained for
[η]FA. The study also reveals that the coarse aggregates used in the three SCC series must
have low sphericity due to the high values obtained for [η]CA in all of them. Regarding
the exponents of the Krieger–Dougherty equation, the one for fine aggregates is closer to
the theoretical value (1.9) for the fine aggregate in the three series, whereas the uniform
distribution for the exponents corresponding to the coarse aggregates reveals, again, the
disparity in the shape of the crushed particles. Finally, the dynamic viscosity predictions
made with the mean values of the Bayesian distributions were significantly better than
those made with the theoretical values. The error diminished from 77% to 25% in the
Feys et al. [39] series, from 42% to 36% in the Esmaeilkhanian et al. [40] SCCs and from 71%
to 17% in the Grünewald [41] concretes.
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Abbreviations
The following abbreviations are used in this manuscript:

CI Confidence interval
d Diameter of the smallest particle in the system
D Diameter of the largest particle in the system
dm Minimum dimension of granular particle
Dm Maximum dimension of granular particle
G Gamma probability function
GGBS Ground granulated blast-furnace slag
i Number of nodes
n Number of conditional probability densities
N Normal probability function
p(xi|πi) Probability of xi conditioned to πi
rpm Number of revolutions per minute
SCC Self-compacting concrete
SCM Self-compacting mortar
SCSFRC Self-compacting steel–fiber reinforced concrete
SP/cm Superplasticizer–cementitious materials ratio
U Uniform probability function
w/cm Water–cementitious materials ratio
ε∗ Residual error for non-dimensional dynamic viscosity of cement paste
ε◦ Residual error for non-dimensional dynamic viscosity of self-compacting concrete
ε� Residual error for non-dimensional dynamic viscosity of self-compacting mortar
γ̇ Shear strain rate
η Dynamic viscosity
ηSCC Dynamic viscosity of self-compacting concrete
ηSCM Dynamic viscosity of self-compacting mortar
ηp Dynamic viscosity of cement paste
ηw Dynamic viscosity of water
η0 Dynamic viscosity of the fluid phase in the suspension
η∗ Non-dimensional dynamic viscosity of cement paste
η◦ Non-dimensional dynamic viscosity of self-compacting concrete
η� Non-dimensional dynamic viscosity of self-compacting mortar
[η] Intrinsic viscosity
[η]CA Intrinsic viscosity of the coarse aggregate phase in self-compacting concrete
[η]FA Intrinsic viscosity of the fine aggregate phase in self-compacting mortar/concrete
[η]i Intrinsic viscosity of particles in i phase (i can be equal to p for cement paste,

FA for fine aggregate or CA for coarse aggregate)
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[η]p Intrinsic viscosity of cement paste
µ∗ Mean value for non-dimensional dynamic viscosity of cement paste
µ◦ Mean value for non-dimensional dynamic viscosity of self-compacting concrete
µ� Mean value for non-dimensional dynamic viscosity of self– compacting mortar
ν = 1

σ2 Auxiliary variable for the model of probability
πi Set of nodes Xi in G
σ Standard deviation
φ Volume fraction of particles
φCA Volume fraction of coarse aggregate
φFA Volume fraction of fine aggregate
φm Maximum packing fraction of particles
φm CA Maximum packing fraction of particles in the coarse aggregate phase in SCC
φm FA Maximum packing fraction of particles in the fine aggregate phase in SCM/SCC
φm i Maximum packing fraction of particles in i phase (i can be equal to p for cement

paste, FA for fine aggregate or CA for coarse aggregate)
φm p Maximum packing fraction of particles in cement paste
φp Volume fraction of particles in cement paste
G Acyclic graph directed
P Associated joint probability density of all nodes
X Nodes or random variables
τ Shear stress

Appendix A. Data Annex

Appendix A.1. Experimental Dynamic Viscosities of the Cement Pastes

Table A1. Experimental dynamic viscosities of the cement pastes.

Paste ηp [mPa s] φp SP/cm η∗ Paste ηp [mPa s] φp SP/cm η∗

CEM I 52.5 N-SR

18 0.336 0.4 19.3
38 0.376 0.4 40.7

CEM II 32.5 BL-II

36 0.414 0.4 38.6
51 0.404 0.4 54.7 13 0.386 0.4 13.9
19 0.336 0.4 20.4 32 0.414 0.8 34.3
37 0.376 0.4 39.7 23 0.386 0.8 24.7
58 0.404 0.4 62.2 14 0.345 0.8 15.0
26 0.376 0.8 27.9 25 0.386 0.8 26.8
43 0.404 0.8 46.1
20 0.336 0.8 21.4 46 0.399 0.4 49.3
30 0.376 0.8 32.2 31 0.371 0.4 33.2
47 0.404 0.8 50.4 10 0.332 0.4 10.7
13 0.336 1.0 14.6 49 0.399 0.4 52.5
32 0.376 1.0 35.9 75% CEM I 52.5 N-SR 34 0.371 0.4 36.4
47 0.404 1.0 52.8 + 25% GGBS 40 0.399 0.8 42.9
84 0.443 1.0 94.3 27 0.371 0.8 28.9
14 0.336 1.0 15.7 11 0.332 0.8 11.8
34 0.376 1.0 38.2 39 0.399 0.8 41.8
54 0.404 1.0 60.6 29 0.371 0.8 31.1
91 0.443 1.0 102.1
30 0.376 1.2 33.7 34 0.405 0.4 36.4
45 0.404 1.2 50.5 75% CEM II 32.5 BL-II 28 0.377 0.4 30.0
89 0.443 1.2 99.9 + 25% GGBS 12 0.338 0.4 12.9
15 0.336 1.2 16.8 35 0.405 0.8 37.5
48 0.404 1.2 53.9 09 0.338 0.8 9.6
86 0.443 1.2 96.5

Appendix A.2. Dosages and Dynamic Viscosities of the Self-Compacting Mortars

Table A2. Dosages and dynamic viscosities of the self-compacting mortars in Ouro et al. [38].

Name CEM Portland + Fly Ash + Silica
Fume [kg/m3] Water [kg/m3] SP [kg/m3] Fine Agg. [kg/m3] ηSCM [Pa s] ηp [Pa s]

N3, N4 842 335 7.96 834 1.90 0.331
N7, N8 792 357 7.48 818 1.10 0.286

N11 784 329 7.41 886 1.66 0.313
N13 853 355 8.06 774 1.41 0.313
N15 738 348 6.97 893 0.94 0.268

E3, E4 609 353 6.32 979 0.50 0.169
E7 557 381 5.78 995 0.35 0.079

E13 589 371 6.11 953 0.37 0.124
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Appendix A.3. Dosages and Dynamic Viscosities of the Self-Compacting Concretes

Table A3. Dosages and dynamic viscosities of the self-compacting concretes in Feys et al. [39].

Name CEM Portland +
8% SF (GUbSF)

Water
[kg/m3]

SP L + SP S
[kg/m3]

Fine Agg.
[kg/m3]

Coarse Agg.
[kg/m3]

ηSCC
[Pa s]

ηp
[Pa s]

SCC1 599 185 10.0 + 1.4 863 741 50.8 0.413
SCC2 602 183 10.0 + 1.7 859 726 42.6 0.422
SCC3 605 183 10.0 + 1.5 856 729 38.0 0.422
SCC4 597 186 10.0 + 1.6 871 752 41.4 0.413
SCC7 594 175 10.0 + 2.0 849 737 67.5 0.431
SCC8 645 165 15.3 + 2.4 840 750 59.0 0.458
SCC9 558 197 5.3 + 0.1 857 728 28.0 0.377

SCC10 601 180 10.0 + 1.5 816 760 45.0 0.422
SCC11 644 190 10.0 + 1.4 800 717 35.0 0.422
SCC12 562 171 10.0 + 2.8 879 776 96.5 0.422
SCC13 603 178 10.0 + 1.3 845 724 41.5 0.422
SCC14 598 177 10.0 + 0.0 843 737 29.3 0.422
SCC15 597 182 10.0 + 1.8 838 724 49.6 0.422
SCC16 602 179 10.0 + 1.8 797 789 55.6 0.422
SCC17 596 177 10.0 + 1.6 743 831 44.8 0.422
SCC18 602 179 10.0 + 2.2 851 730 71.2 0.422
SCC19 681 156 20.0 + 4.1 855 782 155.8 0.485

Table A4. Dosages and dynamic viscosities of the self-compacting concretes in Esmaeilkhanian et al. [40].

Name CEM Port. (GU)
[kg/m3]

Water
[kg/m3] SF [kg/m3] SP 1 + SP 2

[kg/m3]
Fly Ash
[kg/m3]

Fine Agg.
[kg/m3]

Coarse Agg.
[kg/m3]

ηSCC
[Pa s]

ηp
[Pa s]

SCC1 377 165 13 2.55 + 2.15 130 950 715 59.3 0.404
SCC2 344 181 12 1.96 + 1.72 119 950 715 29.0 0.350
SCC3 377 165 13 2.18 + 1.92 130 950 715 69.5 0.404
SCC4 381 165 0 2.45 + 21.5 131 950 715 124.0 0.413
SCC5 320 181 28 2.13 + 1.87 116 950 715 25.0 0.340
SCC7 315 166 11 1.88 + 1.66 109 993 749 62.0 0.350
SCC8 365 191.5 13 2.18 + 1.92 126 917 691 25.0 0.350
SCC9 308 169.5 11 1.92 + 2.02 106 1010 760 28.0 0.331
SCC10 341 153.5 12 1.92 + 2.95 118 1010 760 72.0 0.395
SCC11 374 138 13 3.05 + 3.60 129 1010 760 128.0 0.449
SCC12 341 153.5 12 2.80 + 2.85 118 1010 760 71.0 0.395
SCC13 341 153.5 12 2.90 + 2.95 118 1010 760 67.0 0.395
SCC14 308 169.5 11 2.12 + 1.73 106 1005 756 35.0 0.331
SCC16 308 169.5 11 2.12 + 2.18 106 1005 756 37.0 0.331
SCC17 308 169.5 11 2.12 + 2.18 106 1005 756 39.0 0.331
SCC18 308 169.5 11 2.12 + 2.18 106 1005 759 30.0 0.331

Table A5. Dosages and dynamic viscosities of the self-compacting concretes in Grünewald [41].

Name CEM I 52.5 R
[kg/m3]

CEM III 42.5 N
[kg/m3]

Water
[kg/m3]

SP LR + SP HR
[kg/m3]

Fly Ash
[kg/m3]

Fine Agg.
[kg/m3]

Coarse Agg.
[kg/m3] ηSCC [Pa s] ηp [Pa s]

OS1 249 155 172 2.58 + 1.58 142 913 682 69.2 0.404
OS2 263 149 181 2.88 + 1.44 173 876 655 59.4 0.413
OS3 249 149 171 2.59 + 2.12 146 1089 508 87.9 0.413
OS4 269 143 181 2.78 + 1.85 173 1045 487 56.0 0.413
OS5 0 335 155 2.10 + 1.26 168 1134 528 97.6 0.413
OS6 0 352 164 2.10 + 1.18 192 1089 508 81.0 0.422
OS7 0 367 173 2.17 + 1.09 217 1045 487 62.2 0.422
OS8 228 151 181 2.68 + 1.49 166 1100 467 71.3 0.395
OS9 246 164 188 2.73 + 1.31 180 1058 449 57.5 0.404
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