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Abstract: The article presents the stress impedance investigation of CoFeNiMoBSi alloy in variation
of the applied magnetic field. In order to carry out the study, a specialized stand was developed
that allows for loading the sample with stresses and simultaneous action of the DC (direct current)
magnetizing field. The tests were carried out for as-cast and Joule annealed samples. The significant
influence of the magnetizing field acting on the sample on the stress-impedance results was demon-
strated and the dependence of the maximum impedance change in the stress-impedance effect was
determined, depending on the field acting. The obtained results are important due to the potential
use of the stress-impedance effect for the construction of stress sensors.

Keywords: metallic glass; stress-impedance; GMI; Villari effect

1. Introduction

Since the discovery of the stress-impedance (SI) effect in amorphous alloys by Shen
et al. [1], there has been ongoing research in both understanding and maximizing this
effect from a material science point of view [2–9], and sensor development for practical
engineering applications [10–14]. Soft magnetic amorphous materials, with positive and
negative magnetostriction, exhibit a significant Villari effect, which alters the material’s
magnetic permeability [15–20]. Due to the changes of magnetic permeability, the skin
depth of the high-frequency current also changes, which leads to significant changes in the
material’s impedance [21]. This effect constitutes the base of the SI phenomena.

The SI effect is, thus, a new addition to a broad series of magnetomechanical ef-
fects [22], some of which were first observed in the first half of the nineteen century, and
are researched to this day due to high sensitivity of various experimental sensors, which
can be obtained in newly developed materials [23–32]. The most known of the magnetome-
chanical effects are magnetostrictive and Villari effects [33], the latter leads to a change
in magnetic permeability due to the mechanical stress, by inducing temporary magnetic
anisotropy in stress direction [34].

The change of magnetic permeability is also significantly influenced by external
magnetic fields, especially materials with very high magnetic permeability [35]. This, in
turn, constitutes the base of giant magneto-impedance (GMI) effect [36–38]. While the GMI
effect is heavily researched and there are many applications reported, it is detrimental for
the SI effect, (potentially) significantly affecting the SI sensor output. However, most of the
recent SI research is performed under ambient Earth field conditions, the value of which
is rarely reported. It is worth noting that the SI effect, in turn, heavily modifies the GMI
response and cannot be neglected [39], but it is much easier to take into account or even
exploit in a sensor design stage [40].

Taking into account that both SI and GMI have (almost) the same underlying physical
mechanism and the same influencing factors, but different expected measured variables, it
is necessary to investigate the materials for SI applications with external magnetic field
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influence in mind. Ideally, one should find material with a strong magnetoelastic (Villari)
effect, and a flat external magnetic field response, and, at the same time, maintains high
magnetic permeability. These somewhat contradictory requirements can be potentially
met in special class of GMI materials, having two peak characteristic with a wide plateau
between GMI maxima due to perpendicular anisotropy [41]. Because it is a necessary (but
not sufficient) condition, mainly due to nonlinearities of the Villari effect, the actual field
dependence of SI characteristics should be experimentally investigated in search of most
suitable material for SI sensors.

In the presented work, stress-impedance measurements in an amorphous ribbon
under an external magnetic field is elucidated. A semi-automated measurement that is
capable of precise measurements of SI characteristics, under the influence of an external
DC magnetic field, is described. Effects of thermal treatment of the amorphous ribbon
is given.

2. Materials and Methods

During the tests, ribbon samples were used. The investigated alloy Co70Fe5Ni2Mo5B3Si15
has a magnetostriction close to zero, and a high magnetic permeability of 100,000 [42]. The
samples were prepared, with measurements of 60 mm long, 1 ± 0.1 mm wide, and 22 µm
thick strips, by cutting from a spool of material. In order to precisely determine the stresses
acting on the sample, the width was carefully measured using an optical micrometric
microscope (PZO MWDC, Warsaw, Poland). The as-cast and Joule annealed samples were
examined. The annealing was carried out with a current of 700 mA and 900 mA for a
period of 1 h in a protective atmosphere of argon.

Figure 1 presents the results of the magnetic property measurements of the research
samples. The tests were performed using a hysteresis graph system (Blacktower Ferrograph,
ESP, Warsaw, Poland) [43]. The B(H) induction plots were normalized to the B0 value of
saturation of the as-cast sample.
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Figure 1. Hysteresis loop of as-cast and annealed samples used in the study. 
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Figure 1. Hysteresis loop of as-cast and annealed samples used in the study.

Figure 2a presents the block diagram of the SI test stand, and Figure 2b the photograph
of the system. The impedance Z of the tested samples was measured using the four-
wire method using a high-frequency RLC (Resistance, Inductance, Capacitance) bridge
(Microtest 6630E, New Taipei City, Taiwan). The tests were carried out in the range of low
and medium frequencies (<5 MHz) with a constant driving current Irms 10 mA.
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Figure 2. Developed test stand: (a) block diagram of the developed stand; (b) photo of the developed stand for testing
stress-impedance in a function of the external magnetic field. The diagram and the photo contains: 1—balance scale,
2—applied mass, 3—magnetizing coil, 4—tested sample, 5—electrodes/measuring holders, 6—high-frequency RLC bridge,
7—ammeter, 8—laboratory power supply, 9—PC computer.

The impedance change factor SI expresses the change in impedance with respect to
minimum stresses σmin. It is calculated using the following Equation (1):

∆Z/Z(%) = 100 · Z(σ)− Z(σmin)

Z(σmin)
(1)
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The longitudinal tensile stresses, reaching up to about 200 MPa, were applied using a
modified equal-arms laboratory scale. One of the sample holders was attached to the base,
and the other was connected to the balance, so that the mass applied to the pan, attached to
the other arm of the balance, applied tensile stress on a sample. The weight of the sample
holder was compensated by putting special weights on the second arm of the balance, so
that the initial external stresses in the sample were close to zero. The load was applied
from the minimum value to the maximum with a constant step of 24.80 g. The value of the
mass of a single weight was measured using an analytical balance (XA 82/220 3Y, Radwag,
Radom, Poland). The gravity constant used for determining stresses g equal 9.81229 m·s−2

was taken from [44].
Stress-impedance measurements were made for a wide range of magnetizing fields

acting on the sample. The coil provided a field in the range of ± 8000 A/m with a 10 A/m
step. The coil was calibrated using a magnetometer (DSP 455, Lake Shore Cryotronics,
Westerville, OH, USA) with calibrated hall probe (HSE, Lake Shore Cryotronics, Westerville,
OH, USA), taking into account the Earth’s field. The value of the current flowing through
the coil was set using a laboratory power supply (DP821A, Rigol Technologies Inc., Sha
He Town, Beijing, China), and to precisely determine the field acting on the sample, the
current was measured using an ammeter (TH1961, Changzhou Tonghui Electronic Co,
Changzhou, China). A dedicated program for controlling the measurement system and
collecting measurement data was developed by the authors using the National Instruments
LabVIEW environment (v.17, National Instruments, Austin, TX, USA).

3. Results

Figures 3–11 present the results of the conducted experimental studies. For each of the
prepared samples, graphs of longitudinal tensile stress dependence of the SI were prepared:
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Figure 3. Dependence of impedance in a function of stresses for different magnetizing fields for the as-cast sample.
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Figure 4. Dependence of impedance in a function of stresses for different driving frequencies for the as-cast sample and
0 A/m magnetizing field.
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for the as-cast sample.
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Figure 6. Dependence of impedance in a function of stresses for different magnetizing fields for the annealed by a 700 mA
current sample.
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Figure 9. Dependence of impedance in a function of stresses for different magnetizing fields for the annealed by a 900 mA
current sample.
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For range of magnetizing fields and the exciting frequency of 5 MHz (Figure 3, Figure 6,
and Figure 9);

For set of frequencies and the magnetizing field for which the greatest impedance
change was obtained (Figure 4, Figure 7, and Figure 10).



Materials 2021, 14, 1919 9 of 13

Additionally, graphs of the coefficient of the largest change in the impedance were
prepared for a given magnetizing field according to the Equation (2):

max ∆Z/Z (%) =

{
max (∆Z/Z(σ)), max (∆Z/Z(σ)) ≥ |min (∆Z/Z(σ))|
min (∆Z/Z(σ)), max (∆Z/Z(σ)) < |min (∆Z/Z(σ))| (2)

Figures 3–5 show the SI for the as-cast ribbon sample. Figure 3 shows that, for stresses
up to about 40 MPa, the influence of the magnetizing field was small. Then, for magnetizing
fields below 300 A/m, the characteristic decreased, the smaller the value of the magnetizing
field, the greater SI, reaching the maximum for the magnetizing field equal to 0 A/m. The
highest SI value measured for this sample was −45.38%. Figure 4 shows that the frequency
had an influence on the scale and the nature of impedance changed under stress. The
greatest changes were recorded for the 5 MHz frequency, while the observed dependence
decreased. With a decrease in frequency, a change in the characteristics was observed;
for frequencies 2, 1, 0.1 MHz, an increase and stabilization of the characteristics can be
distinguished, and the increase/stabilization was maintained in a wider range of stresses
for lower frequencies. Max ∆Z/Z ratio (Figure 5) had a clear character of a single-peak
curve, increasing the maximum value of the ratio with increasing frequency.

In Figures 6–8, the measurement results of a sample annealed with a current of 700 mA
are presented. The diagram in Figure 6 shows that, for magnetizing fields close to 0 A/m
and medium magnetizing fields (in the range of 300–500 A/m), the change in impedance
under stress was small, below 10%. For the magnetizing field of 200 A/m, the characteristics
were approximately constant for stresses up to 110 MPa, and then it decreased. In the
case of the magnetizing field amounting to 100 A/m, the characteristic decreased sharply
in the range from 20 to 120 MPa, while for higher stresses, the characteristics were: less
sloping, slowly flattening. Figure 7 shows that the excitation frequency above 0.1 MHz
does not affect the shape of the graph, but only the stress range in which the characteristic is
decreasing and the maximum value of impedance change. For the frequency of 1,2,5 MHz,
the plateau area was observed. The maximum SI value for this sample was −59.77%. The
nature of the max ∆Z/Z ratio curve was clearly 2 peaks. The inset of Figure 8 presents a
plot of the coefficient in the full tested magnetizing field, showing that the changes in the
SI for 5 MHz occur in a very wide range of magnetizing fields.

Figures 9–11 show the graphs for a sample annealed with 900 mA. For this sample,
the nature of the impedance versus stress curve (Figure 9) depends much more strongly
on the magnetizing field than for the as-cast sample (Figure 3) or the sample annealed
with 700 mA current (Figure 6). For the near magnetizing field, there is a large slope of
the characteristic in the range of 0–30 MPa, while in the later range, the changes are small.
For a magnetizing field of approximately 100 A/m, the characteristic has a decreasing
character in the entire range of operating stresses, and for larger fields, up to 30 MPa,
the characteristic increases, followed by a slow and partly significant decrease. As the
magnetizing field increases, the stress area for a small impedance drop increases. The
highest SI value observed for this sample was −56.37%. In Figure 10, you can see that
increasing the frequency causes greater changes in impedance. For the frequency of 1,
2, 5 MHz, a characteristic inflection point is visible at 20 MPa. It can be seen that the
characteristic for the 1 MHz frequency is saturated, while for the remaining frequency
values the saturation point was not reached. The graph in Figure 11 has a clear character of
the 2-peak curve for all tested excitation frequencies.

4. Discussion

Numerous studies indicate a close dependence of the magnetic properties of amor-
phous co-based alloys on the stresses acting on the material [45,46]. However, a com-
plete model of the dependence of magnetic permeability on mechanical stress has not
been presented so far. The model that best describes this phenomenon was presented by
Sablik et al. [47]. This solution uses the concept of the effective magnetic field Heff, acting
on the sample, taking into account the variable and constant components of the acting
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magnetic field, mechanical stress, and others. According to the Jiles–Sablik model, Heff can
be expressed as [16]:

→
He f f =

→
H + αM +

→
Hα (3)

where H is defined as the sum of the DC basing field and exciting AC (alternating current)
magnetic field, α is dimensionless average filed associated with the interdomain coupling
and M is the magnetization. The component of the effective field affecting the sample,
related to mechanical stress-induced anisotropy field, is given by the relationship:

→
Hα =

3λsσ

2µ0Ms

M
Ms

(4)

where λs is the magnetostriction value in saturation, µ0 is the magnetic permeability of the
vacuum, and Ms is the saturation magnetization. However, it is important that this model
can only be used under small mechanical stress. In the range of high stresses that occurred
in the test, the saturation magnetostriction λs parameter is not constant. Moreover, it was
also observed that for high values of mechanical stress, this parameter may change the
sign [17].

Operation of stress on the sample changes the magnetic permeability of the sample [48].
This, in turn, changes the penetration depth δ of the exciting AC current in the stress-
impedance effect according to the formula:

δ =

√
ρ

π· f ·µ0·µr
(5)

where ρ is the resistivity of the material, f is the frequency of the AC current passed through
the sample, µ0 is the magnetic permeability of the sample, and µr is the relative permeability.
This formula is correct when using the SI (french. système international d’unités) system,
which was used in this study. In the case of using the centimeter–gram–second (CGS)
system, the relation proposed by Landau–Lifszyc [49] should be used.

The relationship between the ribbon impedance Z and the penetration depth δ is
obtained by substituting the solution of Maxwell’s equations to the equation describing
the impedance, using the surface impedance tensor (the transformation is fully described
in [38,50]):

Z = RDC·i·(1 + i)·δ·a·coth(i·(1 + i)·δ·a) (6)

where RDC is the dc sample electrical resistance, i is an imaginary unit, and 2a is the ribbon
thickness.

Combining dependences 5 and 6, it can be seen that the change of the relative magnetic
permeability of the material directly changes the impedance of the sample. Using the
change in magnetic permeability resulting from the effective magnetic field Heff and the
above dependence, it is possible to identify the influence of the acting magnetic field and
stresses on the impedance of the tested sample. In a study, the change of the effective field
Heff was influenced by the change of stresses (relationships 3 and 4), but also by the change
of the field H acting on the sample during the stress-impedance test.

The graph in Figure 4 is clearly a single-peak curve, while those in Figures 8 and 11
are a two-peak curve. These are the shapes characteristic of the study of the giant mag-
netoimpedance phenomenon [51], where the single-peak curve is obtained for samples
with longitudinal anisotropy, and the two-peak curve for the transverse anisotropy (for the
magnetizing field acting along the sample) [52]. The as-cast sample (Figures 3–5) should
have longitudinal anisotropy due to postproduction stress, and Joule annealed samples
should have transverse anisotropy due to induced transverse field anisotropy (relative to
the specimen). Therefore, for the as-cast sample, the SI changes will be the greatest for the
0 magnetizing field. Increasing the magnetizing field, acting on the sample, will block the
motion of the domain walls and the rotation of the magnetization, which reduces the range
of SI changes. For the sample annealed with the 700 mA current, the greatest changes are
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obtained for the magnetizing field in the range from 50 to 200 A/m, and for the 0 A/m
field and above 200 A/m, the SI changes drop rapidly. This behavior of the sample is
due to the fact that the greatest changes in SI are obtained for the situation in which the
sample is affected by the field causing the sample’s magnetization along the axis of easy
magnetization. Then the rotation of the magnetization vector and the movement of the
domain walls is the most free; therefore, the SI changes are the greatest. We have a similar
situation for a sample annealed with the area of 900 mA. However, for this sample, a larger
area of maximum SI change was obtained.

The samples used in the study had nearly zero magnetostriction in the initial state [42].
Despite this, the study showed large stress-induced impedance changes. This is due to
the significant change in saturation magnetostriction under stress. The performed Joule
annealing process could also influence the value of saturation magnetostriction. The effect
of stresses on the magnetostriction of amorphous alloys with a negligible magnetostriction
saturation value has not yet been fully investigated. However, there are studies supporting
this phenomenon [18].

5. Conclusions

The article presents previously unpublished research on the phenomenon of stress
impedance in a wide range of magnetizing fields acting simultaneously on the sample. It
has been shown that the change of the magnetizing field significantly changes the shape of
the ∆Z/Z (σ) characteristic. This may, for example, lead to a change in the stress range for
which the changes are significant and approximately linear, or the use of a field for which
the changes are small (Figure 9). This opens up new possibilities in the construction of
stress sensors based on the phenomenon of stress-impedance.

The conducted research shows that proper annealing significantly increases impedance
changes in the stress impedance phenomenon. The performed annealing allowed to
increase the SI coefficient by 32%. The largest SI changes, 59.77%, were achieved for the
Joule annealed sample, with a current of 700 mA. For this sample, the greatest changes were
in the range from 0 to 100 MPa, additionally, the characteristic was approximately linear.
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