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Abstract: In the present work, the kinetics of electroless deposition of Pt, using a cobalt ion redox
system (Co3+/Co2+) as a reducing agent, has been investigated. The deposition rate of Pt depends
on the pH, concentration of reactants, and temperature. The deaeration and bubbling of the plating
solution with argon play an essential role. It was found that 0.11 mg cm−2 of Pt films could be
deposited on the surface of a roughed glass sheet in one hour without replenishing the solution.
Additional data have been obtained on the grounds of electrochemical quartz crystal microbalance
experiments. The bubbling (agitation) of the electroless Pt plating solution with argon during the
deposition of Pt results in a higher deposition rate and is ca. 3 µg cm−2 min−1. The Pt deposition
rate is far less, and is as low as 0.14 µg cm−2 min−1 when the electroless Pt plating solution is not
bubbled with argon during the deposition of Pt.

Keywords: platinum; cobalt; electroless deposition; EQCM

1. Introduction

Nowadays, electroless metal plating processes are applied in many areas of research
and industry, e.g., in metallization, galvanoplastic, microcircuits, and optoelectronics.
Moreover, they are successfully used to form catalysts for fuel cells and in various catalytic
processes, such as catalytic steam methane reforming (SMR), methanol oxidation, etc. [1–9].
In general, the mechanism of electroless metal deposition (Equation (1)) is considered as
the coupling of the cathodic reaction of reducing of metal ions (Equation (2)) and the anodic
reaction of oxidation of the reducing agent (Equation (3)), occurring simultaneously at the
surface to be plated:

MeLn+
m + Red→ Me + mL + Oxn+, (1)

MeLn+
m + ne− → Me + mL, (2)

Red→ Oxn+ + ne−, (3)

Therefore, under open-circuit conditions, an electrode attains a mixed potential (Em)
due to both partial reactions (Equations (2) and (3)) occurring at equal rates [10–13].

A sufficiently strong reducing agent is required for autocatalytic metal deposition.
The use of traditional reducing agents, such as borohydride, borane dimethylamine, and
hypophosphite, results in the deposition of non-pure metal coatings that contained boron
or phosphorous [14–16]. Moreover, when using hydrogen-containing reducing agents, the
deposited coating structure has large defects due to the evolution of hydrogen gas. The
use of hydrogen-containing reducing agents is also connected with environmental and
technological problems: (1) the plating bath cannot be recycled, i.e., the reducing agent
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oxidizes irreversibly; (2) formaldehyde and most ligands are environmentally unacceptable;
and (3) the plating rate and solution stability are not high enough. The search for new types
of solutions, which would be more environmentally-friendly and have a higher plating rate
and solution stability, has been made in some works [17,18]. For the reasons mentioned
above, the search for and investigations of new reducing agents, e.g., charge-transfer
reducers, viz. the different oxidation state metal-ion redox couples, are ongoing. In this case,
multivalent metal ions with lower oxidation states are strong enough to reduce other metal
ions to metallic states: Cr2+, Cr3+, Ti2+, Ti3+, V2+, V3+, V4+, Cu+, Sn2+, Fe2+. Generally, the
most pronounced catalytic effect has been observed for the Co3+/Co2+ redox couple. For the
first time, the use of Co2+ complexes with ethylenediamine as reducing agents for electroless
copper deposition was documented by Vaskelis with co-workers in 1995 [19]. The authors
carried out detailed investigations on the behavior of the Co3+-Co2+-ethylenediamine redox
couple in systems related to electroless copper deposition [20–28]. Ethylenediamine as
a ligand is not an exclusive amine for Co3+-Co2+ redox couples in the electroless copper
plating systems. Co2+ complexes with other higher polyamines, e.g., propylene diamine
(propane-1,2-diamine) [29,30], diethylenetriamine [31,32], or pentaethylenehexamine [33],
and are eligible reducing agents to reduce Cu2+ to the metallic state on a surface to be plated.

It is worth noting that Co2+ complexes with different amines have found application
as reducing agents for electroless deposition of metals different from Cu. The authors
successfully used the Co3+-Co2+-ammonia redox couple for the deposition of silver coat-
ings [34,35]. Electroless gold plating was carried out when using trimethylene diamine
as a Co2+ ligand [29]. Electroless deposition of platinum using Co2+ complexes with
diethylenetriamine as a reducing agent was documented recently [36].

In this work, we investigated autocatalytic reduction of Pt4+ by the Co3+-Co2+-
diethylenetriamine redox couple. The Co2+ metal ion reducing agent-containing bath
is operable below room temperature and with a low pH. Additionally, the kinetics of
electroless deposition of platinum have been investigated using electrochemical quartz
crystal microgravimetry (EQCM). The method is based on the Sauerbrey’s equation [37],
where the measured frequency changes of the quartz crystal are correlated with the mass
changes according to Equation (4):

∆ f = −2
f 2
0 ∆m

S√µqρq
(4)

where f 0—is the resonant frequency of the quartz crystal, S is the piezoelectrically active
area (cm2), µq is the shear modulus of the quartz (2.947 · 1011 g cm−1 s−2) and ρq is its
density (2.648 g cm−3) [38]. As seen from Equation (5),

∆m = −∆fSCq (5)

where Cq—the quartz crystal sensitivity constant. For a 6 MHz quartz crystal, it is
12.26 ng cm−2 Hz−1. This sensitive method allows determining small in situ changes in
the electrode mass, which are directly proportional to the changes in the quartz crystal
resonant frequency.

2. Materials and Methods

Electroless Pt films were deposited onto a roughed glass sheet (1 cm · 2.5 cm) at a
temperature of 20 ◦C. The surface roughness factor of the glass sheet was ca. 10. The scheme
of electroless Pt deposition is shown in Figure 1. At first, the roughed glass sheet’s cleaning
procedure (the same in all experiments) was carried out by degreasing the glass sheet in
a K2Cr2O7 + H2SO4 solution. After that, the glass sheet was sensitized in a 1 g L−1 SnCl2
solution for 1 min, rinsed with distilled water, then activated in a 1 g L−1 PdCl2 solution for
1 min, rinsed with deionized water, and then immersed into the electroless Pt plating bath.
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The electroless Pt plating bath containing 0.004–0.012 mol L−1 H2PtCl6, 0.4 mol L−1

NH4OH, and 0.16 mol L−1 diethylenetriamine (dien) was prepared. The addition of HCl
adjusted the solution pH to 7.5. It is well-known that the Co2+ compounds react with
oxygen in alkaline solutions [39]. The plating solution was deaerated with argon (Ar)
for 10 min to remove the oxygen. Then, the required amount of CoCl2 in the range of
0–0.25 mol L−1 was added to the electroless plating solution. Later studies of Pt deposition
were carried out in the deaerated solution with continuous Ar bubbling through the
solution. The main experiments were performed at a temperature of 20 ◦C and the time
(tdep) of electroless Pt deposition was 30 min unless otherwise stated.

A SEM/FIB workstation Helios Nanolab 650 (FEI, Eindhoven, The Netherlands)
with an energy dispersive X-ray (EDX) spectrometer INCA Energy 350 XMax 20 (Oxford
Instruments, Abingdon, UK) was used to investigate the morphology of the Pt films
deposited on the surface of a glass sheet.

A tearing fastness test was used to evaluate the adhesion strength of the deposited Pt
layer on a roughed glass sheet. Briefly, the tearing fastness test was performed by pasting
tape on Pt coating’s surface and then tearing the tape off quickly to observe the surface
peeling condition of the Pt layer.

Electrochemical quartz crystal microgravimetry (EQCM) was used to investigate
the kinetics of electroless deposition of Pt films. EQCM setup is described in detail in
Reference [40].

Before the electroless platinum deposition measurements, a copper layer was elec-
trodeposited on a gold sublayer onto quartz crystals installed at the bottom of the cell from
a solution containing 1.0 mol L−1 CuSO4 and 0.5 mol L−1 H2SO4 at a current of 10 mA for
1 min. Initially, the instantaneous rate of electroless Pt deposition was determined on the
electrodeposited copper surface.

For comparison, the EQCM experiments were carried out in two ways: (i) the deposi-
tion of Pt was investigated, then the prepared and deaerated Pt plating solution was not
bubbled (agitated) with Ar (denoted as “without Ar bubbling”) during the deposition pro-
cess; and (ii) the electroless Pt plating solution was bubbled with Ar during the deposition
process (denoted as “with Ar bubbling”).

3. Results

Electroless Pt films were deposited on the surface of a roughed glass sheet using
the Co3+/Co2+ ions couple as a reducing agent and diethylenetriamine as a complexing
agent. Generally, the reduction of Pt4+ with Co2+ in diethylenetriamine solutions occurs
as follows:

Pt4+ + 4Co2+ → Pt0 + 4Co3+, (6)

and it is the sum of two (anodic and cathodic) partial reactions, simultaneously occurring
on the surface to be plated:

Co2+ − e− → Co3+, (7)
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Pt4+ + 4e− → Pt0, (8)

Figure 2 presents the dependence of Pt deposition rate on solution pH. Formation of
Pt coatings begins at a pH over 6.5 (Figure 2). A sharp increase in the amount of deposited
Pt is observed when pH rises from 6.5 to 7.5. The maximum plating rate obtained was close
to 0.09 mg cm−2 for 30 min. With further pH increment, the plating rate remains constant
or slightly diminishes (Figure 2). It is worth noting that creating the solutions with a pH
higher than 8.5 was impossible due to a precipitate formation.
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Figure 2. Dependence of plating rate of Pt on the solution pH under conditions with Ar bubbling.
Solution contained (mol L−1): H2PtCl6—0.004; NH4OH—0.4; complexing agent—0.16; CoCl2—0.2;
HCl to pH = 7.5; tdep = 30 min; 20 ◦C.

The dependence of deposited Pt mass on a roughed glass sheet plating time is shown
in Figure 3. As evident, the mass of deposited Pt film increases with time. During the first
30 min, the observed deposition rate is the highest, whereas later, it slows down and stops
after 2 h (Figure 3). It should be noted that Pt deposits of 0.12 mg cm−2 during 90 min
can be obtained from the solutions investigated without additional replenishment of the
reactants (Figure 3). The decrease in Pt deposition rate can be explained by the formation,
accumulation, and adsorption of the reaction products (e.g., Co3+-dien complexes) on the
surface to be plated, which diminishes the Pt catalytic surface. The same phenomenon
was observed in electroless copper plating using Co3+/Co2+-ethylenediamine complexes
as a reducing agent [26]. The authors investigated the copper deposition under unstirred
and hydrodynamic conditions. As the jet of electrolyte removes inhibiting Co3+ species
from the surface and ensures the transport of both reacting species (Co2+ and Cu2+) to the
electrode, the copper deposition rate was ca. 10 times higher compared with that under
stationary conditions.
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At a constant Pt4+ concentration, the platinum plating rate increases with the rise in
Co2+ concentration (Figure 4). The concentration dependence has a distinctly expressed
maximum at 0.2 mol L−1 of Co2+, and the highest Pt deposition rate was found to be ca.
0.09 mg cm−2 during 30 min and the thickness being ca. 0.05 µm. A further increase in
Co2+ concentration results in the slowdown of the platinum plating rate.
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Solution composition (mol L−1): H2PtCl6—0.004; NH4OH—0.4; complexing agent—0.16; HCl to
pH = 7.5; tdep = 30 min; 20 ◦C.

Under conditions of constant Co2+ concentration, the mass of deposited platinum
depends practically linearly on the concentration of Pt4+ in the concentration range in-
vestigated (Figure 5a). In Figure 5b, natural logarithmic plating rates of Pt vs. natural
logarithmic bulk concentrations of H2PtCl6 were plotted. The slope of the straight line is
0.9852, indicating 1st order kinetics. The maximum electroless platinum deposition rate
is ca. 0.27 mg cm−2 during 30 min and is observed at a concentration of Pt4+ equal to
0.012 mol L−1 (Figure 5a). The thickness of the deposited Pt layer was ca. 0.13 µm.
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The electroless Pt deposition begins at a relatively low temperature (5 ◦C) and increases
up to a distinct maximum value of the temperature, equal to 15–17 ◦C (Figure 6a). After
the increase in temperature from 17 to 50 ◦C, the platinum plating rate unexpectedly
decreases more than fivefold. Interestingly, the platinum deposition rate at a temperature
of 50 ◦C is twice as low as that at 5 ◦C (Figure 6a). The decrease in Pt plating rate at
temperatures higher than 15 ◦C may be attributed to the changes in solution equilibria
at higher temperatures or/and the surface contamination by reaction products formed at
higher temperatures. The Arrhenius plot was calculated from the first three points and
given in Figure 6b. The activation energy is ca. 52 kJ mol−1.
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Therefore, based on the data obtained, we can conclude that the optimum operating
conditions (high enough plating rate and moderate temperature) are as follows (mol L−1):
H2PtCl6—0.004; CoCl2—0.2; NH4OH—0.4; complexing agent—0.16; pH = 7.5, the temper-
ature being 17–20 ◦C. Experiments showed that the Pt films with a thickness greater than
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0.1 mg cm−2 could be obtained on the surface of the glass sheet without replenishment
of the solution (Figure 3). The solutions were stable during the electroless Pt deposition,
and the reduction of Pt4+ occurred only on the surface plated, no considerable signs of the
reduction of Pt4+ in the solution bulk were observed.

For comparison, the Pt coating was deposited on the roughed glass sheet using the
conventional electroless Pt plating bath described in Reference [1]. The bath contained
0.03 M Na2Pt(OH)6, 0.12 M ethylenediamine, 0.125 M NaOH, and 0.02 M N2H4. The
solution pH was ~10, the operating temperature was 35 ◦C. Figure 7 presents the rate of Pt
deposition using the Co3+/Co2+ redox couple and N2H4 as reducing agents. In the case
of Pt plating bath with N2H4, the reduction of Pt4+ occurs in the solution bulk after one
h of deposition, indicating the plating solution instability. Comparing the electroless Pt
plating process using the Co3+/Co2+ redox couple and N2H4 as reducing agents shows
the advantages of Co2+ complexes as reducing agents. The rate of Pt plating using the
Co3+/Co2+ redox couple as a reducing agent is ca. 3 times higher than that using N2H4 as a
reducing agent. Furthermore, the solution stability of Pt plating bath with Co2+ complexes
is much better than that with N2H4 (Figure 7).
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Figure 7. The rate of Pt deposition using different reducing agents.

Figure 8 presents the electrolessly deposited Pt coatings SEM views, obtained using
the Co2+ complexes (a) and hydrazine (b) as reducing agents. It is seen that in the case of
hydrazine, the coating is built from much larger Pt conglomerates, comparing with that
using the Co2+ complexes as a reducing agent (Figure 8). As seen, the Pt film obtained is
compact and of good quality (Figure 8a). Concerning the adhesion of Pt coatings received
using Co3+/Co2+ and N2H4 as reducing agents, it can be noted that the adhesion of the
coating is higher enough. The tearing test showed no surface peeling for the deposited Pt
coatings, indicating a strong adhesion of Pt coatings with a roughed glass sheet.

The electroless deposition of Pt was investigated in more detail employing electro-
chemical quartz crystal microbalance. The instantaneous rate of Pt deposition on the initial
electroplated copper surface was investigated in solutions, which were deaerated with
Ar before the measurements, and during the deposition of Pt, those solutions were not
bubbled with Ar, and in solutions under conditions of constant Ar bubbling during the
deposition process. The EQCM data on the electroless Pt deposition using the Co3+/Co2+

redox couple as a reducing agent are shown in Figure 9, which presents the main measured
parameters of the electroless Pt deposition: open-circuit potential (a), change in frequency
(b), and Pt mass gain (c).
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It is evident that in the absence of an external current, the electrode attains a mixed
potential (Em) value (Figure 9a). The open-circuit potential of Cu in the course of electroless
deposition is quite stable during the electroless Pt deposition under both conditions, while
its values after ca. 150 s slightly shift to more positive values (Figure 9a). During the
electroless Pt deposition, the frequency begins to decrease, i.e., the coating mass increases
linearly with time (Figure 9b,c). Moreover, the bubbling of the electroless Pt plating
solution with argon results in a higher Pt deposition rate. The rate of the electroless Pt
deposition under bubbling with argon is ca. 3 µg cm−2 min−1, whereas the value of plating
rate of 0.14 µg cm−2 min−1 was determined in the solution that was not bubbled during
deposition. Notably, under conditions of bubbling with Ar, the Pt films with a thickness
greater than 60 µg cm−2 may be obtained without replenishing the solution over 20 min
(Figure 8c).

4. Conclusions

The kinetics of electroless deposition of Pt on a roughed glass sheet, using the cobalt
ion redox system (Co3+/Co2+) as a reducing agent, has been investigated. It has been deter-
mined that the deposition of Pt depends on pH, the concentration of reactants, temperature,
and the agitation of the plating solution by bubbling with Ar. It was found that the Pt films
with a thickness greater than 0.11 mg cm−2 could be obtained on the surface of the roughed
glass sheet without replenishment of the solution over one h.

The electroless deposition of Pt on the Cu electrode has been investigated using
electrochemical quartz crystal microbalance. The agitation of the electroless Pt plating
solution by bubbling with argon results in higher deposition rates of Pt—the rate of the
electroless Pt deposition is ca. 3 µg cm−2 min−1. In the case of the non-agitated plating
solution, the rate of Pt deposition is significantly lower, e.g., 0.14 µg cm−2 min−1. The Pt
films obtained are compact and of good quality.
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copper(II) by cobalt(II) in aqueous diethylenetriamine solutions studied by EQCM. J. Electroanal. Chem. 2008, 622, 136–144.
[CrossRef]
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of autocatalytic copper(II) reduction by cobalt(II) pentaethylenehexamine complexes in wide pH range. J. Electrochem. Soc. 2014,
161, D373–D380. [CrossRef]
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