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Abstract: The magnesium alloys Mg-0.5Mn-2Zn, Mg-1.0Mn-2Zn, and Mg-1.5Mn-2Zn (wt.%) with
potential biomedical applications, synthesized by powder metallurgy, were investigated to evaluate
the influence of manganese content on their microstructure, mechanical properties, and corrosion
resistance. The results show that Mg-Mn-Zn alloys prepared by powder metallurgy reached the
maximum compressive stress of 316 MPa and the maximum bending strength of 186 MPa, showing
their good resistance to compression and bending, and meeting the mechanical properties required
for the human bone plate. With an increase in manganese content, the corrosion resistance improved.
In the polarization curve, the maximum positive shift of corrosion potential was 92 mV and the
maximum decrease of corrosion current density was 10.2%. It was concluded that, of the alloys
tested, Mg-1.0Mn-2.0Zn (wt.%) had the best overall performance, and its maximum compressive
stress force and corrosion current density reached 232.42 MPa and 1.32 × 10−5 A·cm−2, respectively,
being more suitable for service in human body fluids.

Keywords: magnesium alloys; powder metallurgy; microstructure; mechanical properties; corro-
sion resistance

1. Introduction

In recent years, magnesium alloy as a new biodegradable biomaterial has been in-
creasingly valued by front-line researchers in clinical applications. The greatest advantage
of magnesium alloys is their excellent performance in biocompatibility and in mechan-
ical properties. The density of magnesium and magnesium alloys is between (1.74 and
2.0 g/cm3) which corresponds to the density of human bones. Compared to titanium
alloys and the rest of traditional medical materials, magnesium has an elastic modulus of
(41–45 GPa) [1–4], which is very close to human bone, thus avoiding the adverse effects
due to stress shielding. Magnesium has very good biocompatibility, belongs to the human
body’s indispensable trace elements, and can achieve self-degradation in the human body,
avoiding the secondary removal as a medical bone plate, as well as reducing the economic
burden and physical pain of patients. However, pure magnesium has a high negative
standard electrode potential (−2.37 V at 25 ◦C), which leads to a rapid corrosion rate of
pure magnesium, especially in the human body fluid environment. At least 12 weeks
are needed for the joint plate to provide mechanical support during the initial phase of
the fracture to provide time for bone healing to repair the damage [5,6]. Excessive rapid
degradation corrosion causes magnesium to lose its mechanical integrity before human
tissue repair, while the rapid degradation of pure magnesium generates large amounts of
hydrogen, leading to local pH increases in cellular tissue fluids, resulting in the possibility
of cell death or tissue inflammation occurring [7]. Therefore, particularly important to
prevent the rapid corrosion of magnesium by alloying it.

Powder metallurgy (PM) is a promising technique that uses the interfusion of spaced
particles to prepare magnesium alloys [8]. The mechanical properties of the material it pre-
pares can be achieved by changing the pore size and distribution within the metal alloy [9].
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By controlling the size and shape of the material powder particles and by adjusting the alloy
preparation conditions such as (compaction pressure, sintering time, and holding time),
the pore size and distribution within the sintered alloy can be controlled [8]. Inevitably,
impurities occur during the sintering process, where the melting point of the impurities
may differ significantly from that of the raw material, leading to abnormal grain growth in
the sintered alloy, i.e., a few areas within the slower growing fine grain matrix grow rapidly
to form coarse grains, resulting in the inability to produce a neck connection between the
particles, leading to excessive porosity in the sintered product, which adversely affects
the ductility and compressive strength of the alloy, and reduces the overall mechanical
properties of the metal alloy. Witte et al. [10] successfully prepared a composite material
using AZ91D as matrix and HA (Hydroxyapatite) particles as reinforcement by powder
metallurgy, and the results showed that the AZ91D/HA composite material prepared by
powder metallurgy is a biomaterial that can meet the mechanical properties. Thus, consid-
ering the economic and energy consumption aspects, the powder metallurgy process is one
of the most suitable techniques for preparing magnesium alloy materials [11]. Due to the
good biocompatibility of zinc and manganese elements, these two elements were chosen to
develop biomedical magnesium alloys in this paper. When zinc is low in the human body,
almost all physiological processes are strongly disturbed. The addition of manganese leads
to grain refinement of the alloy, and its most important function is that manganese removes
iron and its heavy elements to improve the corrosion resistance of magnesium alloys [12].
Except for extreme occupational exposure, Mn has no toxic effects and plays a major role in
the activation of several enzyme systems (hydrolases, kinases, transferases, decarboxylases,
and mitochondrial respiration) [13]. Based on the above discussion, in this study, three
magnesium alloys with different manganese element contents were prepared, and the
microstructure, mechanical suitability, and corrosion properties of the three alloys were
investigated by selecting manganese and zinc as alloying elements by powder metallurgy.

2. Materials and Methods

This section focuses on the material selection, preparation process, and initial micro-
scopic morphology of the original powder, as well as the phase analysis after the preparation.

2.1. Materials

Table 1 shows the powder’s characteristics used for the preparation of medical Mg-
Mn-Zn alloys. In order to develop medical Mg-Mn -Zn alloy with more excellent properties,
spherical magnesium powder (300 mesh, purity ≥ 99.9%) was selected, in which two other
different materials were added: Zn (300 mesh, purity ≥ 99.9%), Mn (300 mesh, purity ≥
99.9%) These materials were selected from Shanghai Naio Nano Technology Co. (Shanghai,
China), as shown in Table 1.

Table 1. Powder material parameters for the preparation of medical Mg-Mn-Zn alloy.

Powder Powder Shape Particle Size/µm Purity/wt.% Melting Point/◦C

Mg Spherical <40 99.9 648.9
Mn Irregular shape <30 99.9 1244
Zn Spherical <30 99.9 419.5

2.2. Preparation of Mg-Mn-Zn Alloy

Carboneras et al. [14] found that pure magnesium prepared by powder metallurgy
had finer grains and outperformed the conventional casting process in terms of mechanical
properties. Meanwhile, Yu et al. [15] found that the mechanical properties of 5, 10, and
15 wt.% β-Ca3(PO4)2/Mg-6 wt.% Zn composites prepared by powder metallurgy were con-
sistent with the corrosion rate in human bone tissue. Therefore, the powder metallurgical
process can be a potential process preparation means to manufacture biomedical materials.
Thus, it is important to study whether the properties of the magnesium alloy prepared by
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powder metallurgy meet the human body’s needs, and the results will lay the foundation
for the subsequent optimization of the preparation and processing process.

The target alloys sintered in this experiment were magnesium alloys with composition
ratios of Mg-0.5%Mn-2%Zn, Mg-1.0%Mn-2%Zn, and Mg-1.5%Mn-2%Zn. Thermal stability
analysis of the three powders was required to determine their final sintering temperatures
before sintering. The powder mixture is first weighed out, using an electronic balance with
a total mass of 80 g. The weighed powder is poured into the stainless steel ball-mill jar
and vacuumed. Place the ball-mill jar into the planetary ball-mill machine (XQM-1-6 of
Changsha Tianchuang Powder Co., Ltd., Changsha, China), with the ball-mill time set to
5 h and speed at 300 r/min. The quality ratio of ball and powders is 5:1 and intermittent
ball milling is used. To prevent the steel balls inside the ball-mill jar from cold welding
with the powders inside the jar due to long rotation time, the ball-mill machine stops
for 10 min every 30 min of operation. Mixed powder is not a single substance, before
powder metallurgy, it is necessary to obtain the temperature of the mixed powder in the
solid–liquid coexistence state, and the differential scanning calorimetry is done to obtain
the temperature at which the mixed powder starts to melt. The sintering temperature
of the mixed powder was determined by differential scanning calorimetry (DSC) with a
differential scanning calorimetry analyzer (1600HT, Mettler, Bremen, Germany) at a test
temperature of 50–800 ◦C, using high-purity argon as the protective gas and a heating rate
of 15 K/min, and the thermal stability analysis curve of the alloy powder was obtained. The
maximum temperature for the sintering preparation of Mg-Mn-Zn alloy was determined
to be 650 ◦C, as shown in Figure 1.
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Figure 1. Alloy powder thermal stability analysis curve.

After determining the sintering temperature, the mixed powder was weighed out to
80 g by an electronic balance (Shanghai Sunyu Hengping Scientific Instruments Co., Ltd.,
Shanghai, China, FA2004) and poured into the graphite mould, which was cold-pressed
at room temperature, using a universal electronic testing machine (Shenzhen New Sansi
Material Testing Company CMT5305, Shenzhen, China) at a pressure of 30 kN and held
under 30 kN for 5 min. The graphite mould was then placed in a vacuum sintering furnace
at 5 MPa, using the two-step sintering (TSS) technique, as shown in Figure 2. In the figure,
the heating rate of the ab section is 5 ◦C per minute, the b–c section is held at a temperature
of 500 ◦C for 1 h, the heating rate of the cd section is 3 ◦C per minute, the de section is held
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at a temperature of 650 ◦C for 2 h, and the e–f section is the stage of natural cooling from
650 ◦C to room temperature.
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2.3. Mechanical Performance Test
2.3.1. Vickers Hardness Test

The prepared Mg-Mn-Zn alloy was processed into 10 mm × 10 mm × 10 mm speci-
mens by wire-cutting, and the samples were decontaminated by ultrasonic cleaning, for
5 min, using an ultrasonic cleaner (Kunshan Ultrasonic Instrument KQ-100B, Suzhou,
China), and polished by using 400, 800, 1000, 1200, 1500, and 2000 mesh metallographic
sandpaper, step by step. The samples were polished on the grinding and polishing machine
(UNIPOL-1200S of Shenyang Kejing Automation Equipment Co., Ltd., Shenyang, China).
The hardness of the specimens was tested by using a digital micro hardness tester HV-
1000IS (Shanghai Optical Instruments I, Shanghai, China) and a diamond Vickers indenter.
The pressure applied during the test was 100 g. To ensure the accuracy of the data, each
specimen was spotted 5 times on the surface, under the same conditions, and the data
obtained was averaged as the hardness of the specimen.

2.3.2. Compression Test

The prepared Mg-Mn-Zn alloy was made into a Ø10 mm × 18 mm compression
specimen by wire-cutting. A universal electronic testing machine (Shenzhen New Sansi
Material Testing Company CMT5305, Shenzhen, China) was used to carry out, at room
temperature, a compression test on the metal material. In order to obtain more accurate
test results, the indenter was loaded at a rate of 2 mm/min, until the test was stopped
when the magnesium alloy specimen showed significant failure. Three compression tests
were carried out on each compressive specimen, for accuracy, to obtain the maximum
compressive strength.

2.3.3. Three-Point Bending Test

A three-point bending test was carried out at room temperature, using a electronic
universal testing machine (Shenzhen New Sansi Material Testing Company CMT5305,
Shenzhen, China). The specimens were machined into 5 mm × 5 mm × 55 mm specimens
by a wire-cutting machine.
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To obtain more accurate test results, we used the bending strength equation based on
the three-point bending test:

R =
3FL
2bh2

where R is the bending strength, F is the loading force, L is the span (40 mm), b is the width
of the specimen (5 mm), and h is the height of the specimen (5 mm). A loading speed of
2 mm/min was used for the indenter, until the test was stopped when the magnesium
alloy specimen failed in bending deformation. To ensure the authenticity of the three-point
bending test data, all specimens were tested three times at the same indenter speed. Each
specimen could only be used once.Table 2 summarizes the maximum bending strength of
the specimens at different Mn contents.

Table 2. Bending strength of Mg-Mn-Zn alloy.

Magnesium Alloy Maximum Bending Force (kN) Maximum Bending Strength (MPa)

Mg-0.5%Mn-2%Zn 389.05 ± 12 186.74 ± 20
Mg-1.0%Mn-2%Zn 256.49 ± 8.5 155.11 ± 10
Mg-1.5%Mn-2%Zn 175.08 ± 10.5 101.06 ± 15

2.4. Electrochemical Corrosion Test

Electrochemical corrosion tests were carried out, using the Shanghai C&H CHI604E
electrochemical workstation (Shanghai, China). A classical three-electrode system was used
for the experiments. The working electrode (Mg-Mn-Zn alloy specimen with a working
area of 10 mm × 10 mm) was completely submerged—the reference electrode (saturated
glycerol electrode) and the auxiliary electrode (platinum electrode) respectively. The
corrosion medium was an SBF simulated body fluid to simulate the chloride concentration
in the human environment. Three different ratios of Mg-Mn-Zn alloys with different Mn
contents were wire-cut into 10 mm × 10 mm × 5 mm blocks for electrochemical corrosion
testing. The surface to be tested was ground and polished, and the rest of the surface was
covered with silica gel to ensure that the polished surface was completely submerged in
the solution with a contact area of 1 cm2.The experimental data obtained were analyzed to
obtain the best-fitting equivalent circuit model. Each test was repeated twice to increase the
accuracy of the test data. Furthermore, to best simulate the environment under corrosion
of human body fluids, all samples were measured at a temperature of 37 ◦C.

3. Results and Discussion
3.1. Original Powder Morphological Characteristics

Figure 3 shows the original powder morphology of Mg-Mn-Zn material, using scan-
ning electron microscopy (FEI USA, Inc. FEI QUANTA FEG 250, Boston, MA, USA). It can
be seen that, due to the high quality required to maintain a high purity, the magnesium
powder is spherical and has a spherical particle size < 40 um, with a slightly rough surface
with some burrs that can be observed. Manganese powder is irregular in shape and has
a size <30 um, with an angular surface profile and sharp corners. Zinc powder has a
particle size of <30 um and a smoother surface than magnesium powder, characterized by
a spherical shape.

At the end of the ball-milling process a homogeneous mixture of powders was ob-
tained as in Figure 4. It can be seen that, after 5 h of ball milling, the powder is well mixed,
and it can be seen that the impact produces spherical magnesium-like powders of varying
sizes and zinc powders, and manganese powders of varying regularity.
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3.2. Characteristics of the Alloy Prepared by Powder Metallurgy

The Mg-Mn-Zn alloy material prepared by sintering is shown in Figure 5. After
observation, it can be seen that the surface color of the prepared Mg-Mn-Zn alloy is
basically the same and has a metallic luster, and the density is about 1.77 g/cm3 after
measurement and calculation. In the preparation environment of hot-pressing sintering,
the surface of the alloy is cracked due to the excessively high local pressure on the surface
of the alloy. The reason why the prepared alloy frame is not straight is that, under natural
cooling conditions, the alloy is cold when it transforms from high temperature to low
temperature, which results in shrinkage.
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Figure 5. Hot-pressed magnesium alloys: (a) Mg-0.5%Mn-2%Zn, (b) Mg-1%Mn-2%Zn, and (c) Mg-1.5%Mn-2%Zn.

According to reports, low-heating-rate sintering of metal specimens tends to lead to
low densification of the metal, resulting in an increase in porosity of the alloy and thus
a decrease in the strength of the alloy. Because the sintering temperature of many metal
powder particles does not reach the melting point at low heating rate, many particles
still remain dense, and the metal particles cannot generate solder joints with each other,
resulting in lower density. The high heating rate can quickly reach the solder joints between
the particles by rapid heating and thus promote the fusion between the metal particles, and
the higher sintering temperature accelerates the diffusion of the particles and improves the
densification of the metal alloy [16,17].
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3.3. Mechanical Property Analysis
3.3.1. Microhardness and Bending Force

The hardness curves of the three alloys (Figure 6) show that the hardness of these three
alloys increases as the manganese content increases. The hardness of the Mg-0.5%Mn-2%Zn
alloy reached 56 HV, the Mg-1.0%Mn-2%Zn alloy reached 62 HV, and the Mg-1.5%Mn-
2%Zn alloy reached 69 HV. The possible reason for this is that, by adding manganese, it
serves to refine the grain of the alloy, which in turn improves the surface integrity of the
whole alloy. Therefore, alloying magnesium with manganese can effectively increase the
hardness of magnesium alloys.
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Figure 6. Hardness curves of the three alloys.

Figure 7 plots the maximum bending strength of the sample alloy in the three-point
bending test under the same movement rate displacement of the indenter, in which the max-
imum bending strength of the three alloys are marked. With the change of displacement,
the bending force keeps increasing and the bending strength also increases gradually, and
it can be seen that the maximum bending strength also changes according to the increase
of manganese content, that is, the maximum bending force decreases with the increase of
manganese content. The reason may be that, with the increase of manganese content, the
plasticity of the alloy starts to decay and, thus, the brittleness increases, which leads to the
decrease of the bending strength of the material. This is due to the fact that the increase
in manganese content causes dynamic recrystallization during the preparation process,
which leads to a decrease in the flexural and compressive strength of the alloy [18].
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3.3.2. Compression Force

Tables 2 and 3 show the mechanical properties of the specimens under three-point
bending test and compression test, respectively. The compression test also further verifies
that the maximum compressive stress changes with the increase of manganese content. The
phenomenon is that the maximum compressive stress of the alloy becomes smaller as the
content of manganese element increases. At the same time, it can be inferred that, when the
content of manganese element increases, the plasticity of the alloy continues to decrease
and the brittleness continues to increase. In order to show more visually the maximum
compressive stress of the alloy at different Mn contents, the maximum compressive stress
of the specimen is shown in Figure 8.
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Table 3 shows that the maximum compressive stress of the three magnesium alloys
with different manganese content can reach up to 316.61 MPa at 0.5% of manganese element
and only 166.03 Mpa at 1.5%.
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Table 3. Compression test of Mg-Mn-Zn alloy.

Magnesium Alloy Maximum Compression
Force (kN)

Compressive
Strength (Mpa)

Compression Ratio
to Specimen (%)

Mg-0.5%Mn-2%Zn 24.866 ± 0.645 316.61 ± 3.951 41.98
Mg-1.0%Mn-2%Zn 18.253 ± 1.618 232.42 ± 20.60 32.57
Mg-1.5%Mn-2%Zn 14.570 ± 1.437 185.611 ± 18.30 24.50

3.4. Microstructure Characterization after Powder Metallurgy Preparation

The sintered Mg-Mn-Zn alloy was cut into 10 mm × 10 mm × 10 mm pieces, using
a wire cutter prior to microscopic observation of the specimens. The specimens were
grinded with 400–2000 grit sandpaper and then polished with diamond paste until a
metallic-mirror finish was achieved, and the oxidation layer was removed by using a nitric
acid solution (2%).

The cross-section of the Mg-Mn-Zn alloy specimen was observed by using a scanning
electron microscope (FEI USA, Inc., FEI QUANTA FEG 250, Boston, MA, USA), as shown in
Figure 9. It can be seen that the surface morphology of the alloy has a uniform texture and
no elemental segregation. With the increase of manganese element content, it can be seen
that the pores on the surface of the alloy are reduced and the pore diameter is decreased. It
shows that manganese can play the role of grain refinement and can reduce the generation
of pores. Figure 9 shows that the metal alloys prepared by powder metallurgy have
more pores and porosity on the cross-sectional surface, and such pores and porosity can
be basically grouped into two main categories. Type 1 holes are 20–30 um in diameter
and have a narrow, irregular shape. The main reason for the formation of such holes
is that, during the sintering process, part of the surface of magnesium particles is still
covered by a thin layer of oxide. Because oxygen has a close affinity with magnesium,
the magnesium reacts with the gas in the pores during the sintering process, and local
combustion occurs on the surface of the magnesium particles. In the above process, because
of the uneven transfer of pressure, the phenomenon of incomplete compaction exists. The
local combustion produced gas expansion, so it led to the creation of holes. The Type
2 pores are generated because the magnesium powder purchased for this hot-pressing
sintering is spherical magnesium powder. In the microscopic state, there are voids when
the spherical magnesium powder is stacked on each other. The sintering temperature may
be slightly lower or the pressure may be less, resulting in such naturally occurring voids
that are not eliminated by the sintering preparation.
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Fracture Morphology Analysis

The fracture surfaces of the specimens at the end of the bending test are shown in
Figure 10. The fracture surface of the alloy can be seen in the electron microscope images at
200× and 1000× magnification, respectively, which show a large number of brittle fracture
traces, as can be seen in Figure 10a1,a2,b1,b2,c1,c2. The fracture shape starts to show a
radial tearing shape due to the extremely rapid expansion of the crack, which has the
characteristics of a brittle fracture [15]. However, the plastic deformation is still visible
after magnification, as the specimen is subjected to a large amount of force within the
alloy in the early stages of bending deformation, resulting in a large amount of plastic
deformation between the internal metal particles, such as the presence of a large number
of tough nests on the fracture surface that are more pronounced with plastic deformation
at 0.5% manganese addition. With increasing manganese, the microscopic morphology
of the bending fracture shows that the alloy generally exhibits localized tough nests with
bending tearing ribs and a few areas of fracture along the grain. The brittle fracture of the
alloy is more pronounced at high levels of manganese.
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Figure 10. Fracture morphology of alloy (a1,a2) Mg-0.5%Mn-2%Zn, (b1,b2) Mg-1.0%Mn-2%Zn, and
(c1,c2), Mg-1.5%Mn-2%Zn.

3.5. Physical Phase Analysis

The XRD pattern of Mg-Mn-Zn prepared after hot-press sintering was obtained by
using CuKα source X-ray diffraction (XRD, JDX-8030, Jeol, Osaka, Japan). The XRD device
was operated under a CuKα (λ = 0.1541 nm) radiation, the 2θ range of 20◦−80◦ with a step
size of 0.02◦, a measurement time per step of 0.2 s, and an Ni filter. As shown in Figure 11,
the identification of all reflections was done using jade software.
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and MnO by reacting with the phosphate in the SBF solution, and such oxides are a pro-
tective film similar to the type of conversion film [21], as indicated by the polarization 
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Figure 11. XRD phase composition analysis of Mg-Mn-Zn alloy.

The intermetallic phases such as Mg2Zn3, and MgZn2 appear as peaks in the diffrac-
tograms, resulting in eutectic transformation during the sintering process, and these
intermetallic phases can improve the corrosion resistance of Mg [19,20], and the highest
peak in the α-Mg matrix is the main phase produced from the elemental phase composition
prepared. Since the solid solution of manganese in the magnesium matrix is limited, no
intermetallic compound is formed between magnesium and manganese, and it is also
possible that the manganese content added to this Mg-Zn alloy is so small that it does
not produce a great change in the phase organization, resulting in no independent phase
generation of manganese; thus, no α-Mn phase peak is observed in the XRD analysis.
The different color lines can distinctly represent the different component content and the
different phase

3.6. Electrochemical Analysis

The electrochemical SBF of the three Mg-Mn-Zn alloys prepared after powder metal-
lurgy simulates the Tafel polarization curves in human body fluids, as shown in Figure 12.
The corrosion parameters (corrosion potential, ϕcorr, and corrosion current density, Jcorr)
for the three Mg-Mn-Zn alloys obtained from the Tafel polarization curves are shown in
Table 4. The results show that the alloys with high Mn content have superior corrosion
resistance compared to the alloys with less Mn content added. The reason for this is that
the addition of Mn reduces the corrosion rate of the Mg-Zn alloy. Mn forms similar oxides
such as MnO2 and MnO by reacting with the phosphate in the SBF solution, and such
oxides are a protective film similar to the type of conversion film [21], as indicated by the
polarization curves; with increasing Mn content, the corrosion potential moves to a higher
potential. Such protective films cover the grain-boundary surface, reducing the corrosion
rate, delaying the breakdown and pitting of the protective film, and improving the stability
of the surface corrosion product film [22], which significantly inhibits the corrosion of
magnesium alloys; thus, the addition of Mn reduces the corrosion rate of the alloy.

Table 4. Parameters of the Tafel polarization curve of Mg-Mn-Zn alloy.

Magnesium Alloy ϕcorr/V Jcorr/(A·cm−2)

Mg-0.5%Mn-2%Zn −1.409 1.46 × 10−5

Mg-1.0%Mn-2%Zn −1.345 1.32 × 10−5

Mg-1.5%Mn-2%Zn −1.187 1.31 × 10−5
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4. Conclusions

In this study, the Mg-Mn-Zn alloy was successfully prepared by powder metallurgy,
and in this paper, its microstructure, mechanical properties, and corrosion resistance were
analyzed and following conclusions were drawn:

1. From the results, in the microstructure, as the content of manganese increases, it can
be seen that the porosity of the alloy cross-section decreases and the diameter of the
pores decreases. This indicates that the manganese element can have a grain-refining
effect and reduce the generation of pores. In the fracture morphology, it can be
seen that, as the manganese content increases, tearing edge representatives of brittle
fracture are observed.

2. The results show that the mechanical properties of the Mg-Mn-Zn alloy prepared by
powder metallurgy have a maximum compressive stress of 316 MPa and a maximum
bending strength of 186 MPa. The microhardness of the Mg-Mn-Zn alloy prepared
after powder metallurgy increased with increasing manganese content, and the hard-
ness values of Mg-1.5Mn-2Zn (wt.%) were effectively increased by 20% compared to
those of Mg-0.5Mn-2Zn (wt.%).

3. From the electrochemical corrosion experiments, with the increase of manganese
content in the Mg-Mn-Zn alloy, the corrosion resistance of the alloy was improved,
and in the polarization curve, the maximum positive shift of the corrosion potential of
the specimens was 92 mv, and the maximum decrease of the corrosion current density
was 10.2%. By comparing the above properties, it was concluded that Mg-1.0Mn-
2.0Zn (wt.%) had the best overall performance among the three alloys prepared, and
its maximum compressive stress and corrosion current density reached 232.42 MPa
and 1.32 × 10−5 A·cm−2, respectively. Therefore, it is more suitable for service in the
human body fluid environment.
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