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1.0. Electronic Properties: Band Structure and Density of States 

 

Figure S1. (a)The unit cell of a 2D heterostructure of MoS2-PbS, and (b) the charge density differ-
ence plot for the MoS2-PbS heterostructure. (blue for depletion and red for accumulation). 
Isovalue 0.01 e/Å3. 
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Figure S2. Calculated band structure of the (free standing) (a) H (i.e. MoS2 monolayer) and (b)Q (i.e. PbS bilayer) layers. 
(c) The partial density of states for the H layer (Red), Q layer (Green), and the 2D MoS2-PbS heterostructure (Blue); (c)-(i) 
p-orbitals of the S atoms, (c)-(ii) d-orbitals of the Mo atoms and (c)-(iii) d-orbitals of the Pb atoms. 
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2.0. The Electrostatic Potential: 

 
Figure S3. The calculated profile of the planar averaged self-consistent electrostatic potential of the 
2D merelaniite heterostructure as a function of position. 

3.0. VASP Calculations 
In general, the HSE06 calculations are about two orders of magnitude computation-

ally expensive in Quantum espresso than those in VASP [1]. Therefore, we have used the 
VASP code to perform HSE06 calculations on the 2D MoS2-PbS heterostructure [2,3] It is 
worth mentioning that the PBE (DFT) band structure calculated using VASP is nearly the 
same as obtained by the Quantum espresso. In VASP calculations, the energy cutoff was 
kept at 400 eV and the k-point grid was 7×7×1. The energy and forces were converged to 
10−5 eV and 10−2 eV/Å, respectively. 

 
Figure S4. (a) Calculated PBE (DFT)+D2 band structure and (b) HSE06 band structure obtained at the PBE (DFT)+D2 
structural configuration. 

4.0. Calculations of Carrier Mobility 
The room-temperature carrier mobilities (μ2D) were calculated by applying a phonon-

limited scattering model including the anisotropic characteristics of effective mass follow-
ing the expression, Equation S1 given by Bardeen and Shockley [4]. 
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ଶ஽ߤ = ݁ℏଷܥଶ஽ܭ஻ܶ݉∗݉௔∗ ௜ଶ (S1)ܧ

where e is the electronic charge, ℏ is the reduced Plank’s constant, T is the temperature, 
kB is the Boltzmann constant, m* is the effective mass in either along x- or y- direction, 
ma* is the average effective mass given by ඥ݉௫∗ ݉௬∗ . Ei is the deformation-potential con-

stant calculated using the expression, ܧ௜ = ௗா౛ౚౝ౛ௗ௘  where ୢୣܧ୥ୣ is the energy of the CBM 
(VBM) for electrons (holes) and e = Δl/l0, and Δl/l0 is the strain/lattice dilation along x- or 
y-direction. 

The in-plane elastic modulus, C2D was calculated using: (ܧ − (଴ܧ ܵ଴⁄ = ଶ஽ܥ (∆ ݈ ݈଴⁄ )ଶ 2⁄  (S2)

where ܧ −  ଴ represents total energy change, ܵ଴ is the area of the 2D cell and, Δl/l0 is theܧ
the strain along x or y-direction [5]. It is worth mentioning that the expression, Equation 
S1 (ESI) gives only an estimated value of the carrier mobility in a given material [6]. 

 
Figure S5. Band energy (Eedge) of CBM and VBM as a function of lattice dilation e along x and y 
directions for 2D MoS2-PbS heterostructure. 

5.0. Structural Parameters for MoS2-PbS Heterostructure 

 

Lattice Vectors (Å) 
5.4739656448 0.0000000000 0.0000000000 
0.0000000000 6.3207879066 0.0000000000 
0.0000000000 0.0000000000 24.0000000000 
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Atomic Positions (Cartesian Coordinates) 

0.912116 0.790098 1.365608 
3.652712 2.364822 1.362597 
0.91875 3.950492 1.35763 

3.652712 5.536163 1.362597 
0.916813 0.790098 4.532084 
3.652164 2.377615 4.519615 
0.913364 3.950492 4.492824 
3.652164 5.52337 4.519615 
0.908153 0.790098 8.504323 
3.643472 0.790098 10.43171 
0.909773 3.950492 10.49807 
3.646854 3.950492 8.52363 
4.56393 0.790098 2.948438 

1.826947 2.36821 2.938384 
4.562025 3.950492 2.930117 
1.826947 5.532775 2.938384 
0.907365 0.790098 11.12649 
3.645749 0.790098 7.809825 
0.908142 3.950492 7.883156 
3.645267 3.950492 11.1454 
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