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Abstract: The paper analyzes the stability and failure phenomenon of compressed thin-walled
composite columns. Thin-walled columns (top-hat and channel section columns) were made of
carbon fiber reinforced polymer (CFRP) composite material (using the autoclave technique). An
experimental study on actual structures and numerical calculations on computational models using
the finite element method was performed. During the experimental study, post-critical equilibrium
paths were registered with acoustic emission signals, in order to register the damage phenomenon.
Simultaneously to the experimental tests, numerical simulations were performed using progressive
failure analysis (PFA) and cohesive zone model (CZM). A measurable effect of the conducted
experimental-numerical research was the analysis of the failure phenomenon, both for the top-hat
and channel section columns (including delamination phenomenon). The main objective of this study
was to be able to evaluate the delamination phenomenon, with further analysis of this phenomenon.
The results of the numerical tests showed a compatibility with experimental tests.

Keywords: finite element method (FEM); post-buckling; laminates; progressive failure analysis;
cohesive zone model

1. Introduction

Thin-walled composite structures are often used as stiffening elements in aviation,
automotive, or construction industries. Both closed and open sections are used as load-
carrying stiffening elements. Previously mentioned structures made of composite materials
are mainly responsible for axial load-carrying. This type of structures should operate in
the stable range (the increase in the post-critical deflection is directly accompanied by the
load increase). The stability issue of this type of profiles is presented in many research
papers [1–3]. Buckling can occur as a result of axial loading on thin-walled structures [4–6].
During the stable work [7–11], the structure is able to carry the axial compressive load
after buckling [12,13]. Thin-walled composite structures (with flat walls) often have a
high reserve of load-carrying capacity, especially after buckling [14–16]. In the stability
analysis of structures, the post-buckling phase is very important. The phase mentioned
above determines the behavior of the construction where increasing compressive load is
accompanied by increase in buckling (in the case of stable work) [16–18]. The analysis of
this type of structure is often associated with the possibility of damaging the composite
structure [19–23]. When conducting research in the full load range, up to the structure’s
failure, it is important to capture the failure phenomenon (both damage initiation and
further damage evolution) [24–27]. First, Ply Failure theory states that the composite
structure is damaged when the first layer of laminate is damaged [28]. Experimental tests
enables to capture damage phenomenon with the use of acoustic emission signals [29].
Likewise, the numerical study allows capturing damage initiation when applying Hashin’s
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criterion [30]. After damage initiation phenomenon occurred, the damage evolution of the
composite material begins. In Continuum Damage Mechanics (CDM), all types of damage
are represented by the structural stiffness degradation [31,32]. The appropriate interpreta-
tion of the mentioned phenomenon defines the occurrence of certain micro-cracks or loss
of the effective cross-sectional region [33]. For numerical analysis, the progressive failure
analysis (PFA) requires the declaration of damage initiation and evolution parameters [34].
The progressive failure analysis is controlled by five variable damage components [35–37],
responsible for: damage due to fibers compression or tension, damage due to matrix
compression or tension and damage due to interlayer shearing [38–40]. For of complex
interlayer behavior, e.g., delamination phenomenon, additional numerical techniques are
used—based on cohesive zone model (CZM) [41,42]. The above-mentioned advanced
model combines crack initiation criteria, based on stress components, with the energetic
crack mechanics criteria [43,44]. The innovation in the present study is primarily the use of
two independent damage models PFA and CZM (in each of the numerical models—both
for top-hat and channel numerical models). The CZM model considered globally mod-
eled cohesive surfaces, between all laminate layers (occurring on entire surfaces between
layers)—which in most research studies are usually considered locally (i.e., only in regions
where damage was observed in experimental studies). The subject literature has already
described studies of the phenomenon of failure (including the phenomenon of delamina-
tion) of thin-walled composite materials. Those studies are mainly based on the example
of columns with top-hat cross-section [45], which have higher load capacity and different
geometrical parameters than those in the current research. This paper presents the phe-
nomenon of failure in more details by comparing the failure results of top-hat and channel
structures (which is the main difference in relation to previous research works). Current
studies present a complex issue, with globally occurring cohesive zones between laminate
layers and can be considered innovative in the context of delamination modeling [46–51].
In this work, both experimental and numerical studies of failure of the thin-walled com-
posite profiles (top-hat [16,17,24] and channel section profile [25]) were carried out. In
numerical calculations, the nonlinear Newton–Raphson incremental-iteration method [52],
with parallel using damage criteria [53,54], was used. In case of experimental testing, a
universal testing machine (UTM) and acoustic emission method (AEM) were used [55].

2. The Subject of the Study

The subject of the study was thin-walled top-hat and channel section composite struc-
tures made of CFRP material with the use of autoclave technique. The manufacturing
process of specimens took place in a hermetic vacuum package in sterile conditions. The
composite structure making method allowed for manufacture specimens with low porosity,
high repeatability, and high strength properties [56]. The thin-walled composite columns
were made of pre-preg (semi-finished components). The manufacturing process of com-
posite specimens was presented in detail in the work [56]. The specimens consisted of
eight layers (equal thickness) with symmetrical arrangement [45/–45/90/0]s relative to
the central laminate plane. The geometrical parameters of the specimens are shown in
Figure 1.

Figure 1. Geometrical parameters of specimens with layers arrangement: (a) top-hat; (b) channel.
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Material properties (both mechanical and strength properties) were determined using
a universal testing machine (UTM)—Zwick Z100 (ZwickRoell GmbH & Co. KG, Ulm,
Germany). All mentioned properties were determined using ISO standards (ISO 14126—
static compression test, ISO 527—static tensile test, ISO 14129—shear test) [45]. The
mechanical and strength properties of the composite material are presented in Table 1 [56].

Table 1. The mechanical and strength properties of the composite material [56].

Mechanical Properties Strength Properties

Young’s modulus E1 [MPa] 130,710 Tensile Strength (0◦) FT1 [MPa] 1867

Young’s modulus E2 [MPa] 6360 Compressive Strength (0◦) FC1 [MPa] 1531

Poisson’s ratio 0.32 Tensile Strength (90◦) FT2 [MPa] 26

Kirchhoff modulus G12,
G23, G13 [MPa] 4180 Compressive Strength (90◦) FC2 [MPa] 214

- - Shear Strength F12 [MPa] 100

3. Experimental Investigation

In the presented work, the experimental study (EXP) of axial compression tests of
thin-walled top-hat and channel section composite columns in full load range (up to loss
of load-carrying capacity) were carried out. The axial compression was achieved with a
constant cross-bar speed of 2 mm/min, at room temperature. In the experimental study,
steel centering inserts were used in order to set the composite structure at the center of
gravity. Additionally, special supports (plastic—for channel column, plywood—for top-hat
column) were used in order to reduce any geometrical imperfections of end sections of
actual specimens. Experimental tests were carried out using a UTM—Zwick Z100. The
experimental study registered shortening, compressive force, and increase in deformation
of the column (measured using the electrofusion strain gauges (Micro-Measurements,
Raleigh, NC, USA), in the perpendicular direction to the web of composite structures,
in the region of the largest deflections). Moreover, the acoustic emission method—AEM
(registered: energy, amplitude, sum of hits, and number of counts) [29]—using the AMSY-5
device (Vallen Systeme GmbH, Icking, Germany) with special piezoelectric Fujicera sensor
1045S and AEP-4 signal amplifiers was used. An important objective of the conducted study
was to determine post-critical equilibrium paths, which allows to predict the behavior of
the composite columns subjected to axial compression. The test stand is shown in Figure 2.

Figure 2. Experimental stand with mounted specimens.

During the experimental study, a variety of phenomena were recorded that directly
contributed to the failure of the composite structures. As part of the study, the following
issues were determined: damage initiation load—corresponding to the damage of the first
laminate layer (Pd/EXP), and the failure load (Pf/EXP)—which corresponds to the loss of
load-carrying capacity.
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Regarding the above, the values of these loads (limit loads) were determined on the
basis of the force-time characteristics. Additionally, selected acoustic emission signals were
used to determine the values of the discussed loads.

4. Numerical Simulations

All numerical investigations were conducted using the finite element method (FEM)
in ABAQUS® software (Abaqus 2021, Dassault Systemes Simulia Corporation, Velizy
Villacoublay, France). The numerical studies were conducted in two stages, with the first
stage being solely the solution of the linear eigenproblem [57]—to determine the lowest
buckling form corresponding to the experimental study.

The second stage of the numerical analysis dealt with a complex nonlinear stability
problem of the structure including advanced numerical damage models. Numerical cal-
culations were carried out using the Newton–Raphson method, considering amplitude
of initial deflections (geometrical imperfections) w0 = 0.05 mm (which was determined in
preliminary numerical calculations) [17].

The conducted simulation of structure damage was based on two independent damage
models—progressive failure analysis and cohesive zone model.

The first damage model, known as progressive failure analysis (PFA), was based on the
Hashin criterion (to describe damage initiation) [58,59]. Hashin’s damage initiation crite-
rion includes four components of damage initiation: damage initiation due to fiber tension
(HSNFTCRT) or compression (HSNFCCRT) and matrix tension (HSNMTCRT) or com-
pression (HSNMCCRT). The fulfillment of any of the mentioned components determines
the initiation of the damage initiation phenomenon of a given component (by obtaining a
value of 1 within a given parameter), as well as possibility of damage evolution. Damage
evolution requires introduction of the description of a special scalar damage parameter [33].
Scalar damage parameter can take values from 0 to 1 (0 indicates no damage evolution and
1 indicates damage to the structure due to the reach of evolution component). It can be
conceptualized that the load is transferred solely through the undamaged cross-sectional
structure region, which is represented by the effective stress. This assumption has been
presented in many scientific papers [24,25,38]. When it comes to numerical analysis, it is
possible to define the relationship between the nominal stress and effective stress using the
damage operator M:

σ̂ = Mσ =


1

1−d f
0 0

0 1
1−dm

0
0 0 1

1−ds




σ11
σ22
σ12

 (1)

where: σ denotes apparent stresses (Cauchy nominal), σij defines stresses in the ij directions
(σ11—local 1 direction corresponds to the fiber direction, σ22—local 2 direction corresponds
to the direction perpendicular to the fiber, σ12—in the layer plane).

The variables shown in Relation (1), correspond consecutively:

d f =

{
dt

f , i f σ̂11 ≥ 0,
dc

f , i f σ̂11 < 0,
(2)

dm =

{
dt

m, i f σ̂22 ≥ 0,
dc

m, i f σ̂22 < 0,
(3)

ds = 1−
(

1− dt
f

)(
1− dc

f

)(
1− dt

m
)
(1− dc

m) (4)

The damage evolution model allows for a gradual stiffness degradation of the compo-
nents [60], up to total loss of load-carrying capacity. The damage evolution phenomenon
includes five parameters: dt

f , dc
f , dt

m, dc
m, ds, which correspond respectively: damage evolu-

tion due to fiber tension (DAMAGEFT), fiber compression (DAMAGEFC), matrix tension
(DAMAGEMT), matrix compression (DAMAGEMC), and shear damage (DAMAGESHR).
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The second damage model—cohesive zone model (CZM)—enables the simulation
of the delamination phenomenon of the composite structure (by rupture of the interlayer
connections). The CZM model is based on traction-separation law (Figure 3) [61].

Figure 3. Traction-separation law (for cohesive model).

Regarding the elastic behavior of the cohesive layer, it is possible to represent this
behavior by [62]:

t =


tn
ts
tt

 =

 Knn Kns Knt
Kns Kss Kst
Knt Kst Ktt


δn
δs
δt

 = Kδ (5)

where: t, tn, ts, tt denote cohesive tractions; K, Knn, Kss, Ktt define the cohesive layer stiffness
and δ, δn, δs, δt are the separation cohesive displacements, respectively, in global, normal,
shear, and transverse shear directions.

The maximum nominal stress criterion (MAXS) has been used to determine the
beginning of the cohesive degradation phenomenon. Regarding the MAXS criterion, when
the maximum nominal stress obtains a value of 1 (parameter CSMAXSCRT obtain value of
1), damage process occurred [62]:

max
{
〈tn〉
t0
n

,
ts

t0
s

,
tt

t0
t

}
= 1 (6)

where: t0
n, t0

s , t0
t define the peak values of the contact stress and 〈 〉 define a Macaulay bracket.

Regarding the CZM, a scalar damage variable (parameter D) represents overall dam-
age (caused by delamination) in the composite material. In case of damage, the evolution of
CZM scalar damage parameter monotonically evolves from value of 0 to 1 (after previously
fulfilling the damage initiation). The parameter mentioned above can be presented as:

D =
δf

m

(
δmax

m − δ0
m

)
δmax

m

(
δf

m − δ0
m

) (7)

where: δ0
m, δf

m, δmax
m define respectively parameters of the effective displacement at damage

initiation, effective displacement at total failure, and effective displacement at maximum
value (obtained during the loading history).

The damage evolution, associated with the occurrence of progressive delamination
phenomenon, is represented by the parameter CSDMG (which represents overall value of
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the scalar damage variable). The damage evolution of CZM is based on the energy criterion
(B-K) [63]:

GC = GC
n +

(
GC

s − GC
n

){GS
GT

}η

(8)

where: GC defines the total critical fracture energy (in case of the mixed-mode behavior);
GC

n , GC
s , GC

t define the critical fracture energies in normal, first and the second shear
directions; GS denotes the portion of the total work (associated with shear traction and
relative displacement); GT denotes total work (associated with normal and shear traction)
and η denote a material parameter.

Similar to the PFA model, damage analysis is performed using the damage initiation
and evolution phenomenon (based on energy criterion).

Regarding the prepared numerical models, a Continuum Shell model was used. All
composite layers were modeled separately with each layer having a thickness of 0.131 mm.
The orthotropic properties of each of the composite layers were declared. The numerical
models were prepared using special type of finite elements (SC8R). Each of the finite
elements had eight nodes (with three translational degrees of freedom, linear shape function
and also reduced integration). Additionally, two non-deformable plates (representing
supports of end sections of the composite structures) were modeled. The above-mentioned
plates were designed using non-deformable Shell finite elements (R3D4). Each of the non-
deformable finite elements have four computational nodes (containing three translational
degrees of freedom). The discrete model of top-hat column had 13,296 finite elements
and 27,342 nodes. For the discrete model of channel column, 8478 finite elements and
17,432 nodes were used. The reduced-density mesh used in the discrete models allowed
numerical calculations to be performed without rapid loss of convergence as it is often the
case with high-density mesh models. Regarding the numerical models, seven cohesive
zones (cohesive surfaces) were implemented between eight laminate layers. The cohesive
surfaces were introduced based on the parameters shown in Table 2. Additionally, between
plates (constituting the supports for the end sections of the composite specimens) and
the composite structure, the contact interactions were implemented—the tangential (with
friction coefficient equal 0.2) and normal behavior. In the case of non-deformable plates, all
boundary conditions were determined using reference points. The boundary conditions of
the properly prepared numerical models are presented in Figure 4. A detailed description
on the preparation of discrete models of thin-walled composite structures was presented in
works on the subject literature [25,45].

Figure 4. Discrete models of top-hat and channel columns with boundary conditions.

The boundary conditions show high similarity between experimental and numerical
studies; however, the lack of full symmetry is caused by the fact that the bottom head of the
testing machine is fixed (like the bottom plate in numerical tests) and the top head moves
in the direction of axial compression (like the top plate in numerical simulations). The
additional influence on the asymmetrical results may be the lay-up system used, which,
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especially in the failure phase, can generate effects of locally occurring asymmetries in the
damage regions. The un-symmetric damage evolution presented in the following section
of the paper, was probably conditioned by the consideration of geometric imperfections at
the level of w0 = 0.05 mm.

The damage initiation and evolution properties, associated with the PFA damage
model [64] and CZM damage model [65] are presented in Table 2.

Table 2. Progressive failure analysis (PFA) and cohesive zone model (CZM) parameters.

PFA Parameters

Longitudinal
tensile

strength
XT [MPa]

Longitudinal
compressive

strength
XC [MPa]

Transverse
tensile

strength
YT [MPa]

Transverse
compressive

strength
YC [MPa]

Longitudinal
shear strength

SL [MPa]

Transverse
shear

strength
ST [MPa]

1867 1531 26 214 100 107

Fracture energy
G1t fiber tension

[N/mm]

Fracture
energy G1c
fiber comp.
[N/mm]

Fracture energy G2t
matrix crack.

[N/mm]

Fracture
energy G2c

matrix crush.
[N/mm]

Viscosity
coefficients η1t, η1c,

η2t, η2c [-]

133 10 0.5 1.6 0.0005

CZM Parameters

Interface stiffness in normal, first
and second shear direction

Knn, Kss, Ktt [N/mm3]

Damage
initiation
stress in
normal

direction
tn

[N/mm2]

Damage
initiation

stress in first
and second

shear
direction

ts, tt [N/mm2]

Fracture energy
in normal
direction

Gn
C [N/mm]

Fracture
energy in
first and
second
shear

direction
Gs

C, Gt
C

[N/mm]

105 18 14 0.32 0.68

5. Results

As part of the structures initially solved linear stability problem, a convergent result in
the form of buckling were achieved. For the top-hat structure, three half-waves occurred in
the longitudinal direction of the structure, while for the channel structure, two half-waves
were obtained, as shown in Figure 5.

The above result within the qualitative evaluation confirms the same behavior of the
structure in experimental and numerical studies, in the initial loading range. The top-hat
structure demonstrated higher stiffness (due to the two additional outer flanges) than the
channel structure. Furthermore, as well as proper analysis of the behavior of the structure,
the initiation and evolution of the damage can be evaluated. In the case of the experimental
study, the damage initiation and the loss of load-carrying capacity were evaluated using the
post-critical equilibrium paths P-t (load-time) compared with selected acoustic emission
signals (energy and counts). The conducted experimental study demonstrated static (stable)
behavior of structures (both for top-hat and channel columns). It also showed that the
increase of the deflection is accompanied by the load increase [16,25], as shown in Figure 6.
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Figure 5. Buckling: (a) top-hat experimental study (EXP); (b) top-hat finite element method (FEM);
(c) channel EXP; (d) channel FEM.

Figure 6. Post-critical equilibrium paths with acoustic emission signals: (a) top-hat (energy); (b) top-
hat (counts); (c) channel (energy); (d) channel (counts).

Based on the presented results for top-hat and channel columns, the damage initiation
was directly evidenced by the first local observed “peak” of energy signal, which was
approximately 75 pJ (at a time equal to 68 s) for top-hat column—Figure 6a, and 60 pJ (at a
time equal to 85 s) for channel column—Figure 6c. A slight increase in the number of counts
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signal was also observed during the occurrence of the first energy “peak”. The acoustic
emission signal presented in Figure 6b,d shows only the local increase in the signal (counts)
in the time when the failure occurred and a significant increase in the signal was noted in
its final phase—during the loss of the load capacity of the columns. The value of registered
damage initiation load is Pd/EXP = 12,879.5 N for top-hat column and Pd/EXP = 4141.2 N for
channel column. The value of the failure load was determined on the basis of the maximum
value, which was registered during the experimental tests. During those tests a rapid
increase in acoustic emission signals was recorded. The maximum registered load—failure
load equaled Pf/EXP = 18,450.1 N for top-hat column and Pf/EXP = 4631.17 N for channel
column. Regarding the experimental study, the damage initiation and failure loads for the
top-hat column were a few times higher than for the channel column: 3.11 times higher in
the context of damage initiation load and 3.98 times higher in the aspect of load causing
loss of load-carrying capacity. During the parallel numerical simulations damage initiation
and evolution were carried out with two damage models (PFA, CZM). In the first damage
model, which was based on PFA, the damage initiation depended on Hashin criterion and
damage evolution on energy criterion—Figure 7.

Figure 7. Damage initiation and evolution (PFA)—envelope result from eight laminate plies:
(a) damage initiation of top-hat column—HSNMTCRT; (b) damage evolution of top-hat column—
DAMAGEMT and DAMAGESHR; (c) damage initiation of channel column—HSNMTCRT; (d) dam-
age evolution of channel column—DAMAGEMT and DAMAGESHR.

Obtaining a value of 1, indicating the fulfillment of the first component of damage
initiation by HSNMTCRT, constituted the beginning of damage initiation. This occurred at a
load that equals Pd/FEM-PFA = 13,567.66 N for top-hat column and Pd/FEM-PFA = 4303.36 N
for channel column. The first layer to be damaged was the first external layer of the
composite material (presented directly on Figure 7a,c). Further numerical analysis allowed
for evaluation of the damage evolution phenomenon. Damage analysis in the context of
damage evolution confirmed the progression of damage due to matrix tension which in
the case of damage evolution corresponds to the DAMAGEMT parameter (at the same
time the shear damage component DAMAGESHR was fulfilled). The damage evolution
occurred at the load that equals 18,422.9 N for the top-hat column and 4370.93 N for the
channel column. The fulfillment of the damage evolution within the first component was
not the reason for the loss of load-carrying capacity of the composite structures.

For the second CZM damage model, damage initiation was only possible when
fulfilling the MAXS, which is the maximum nominal stress criterion. The parameter
responsible for achieving damage initiation was CSMAXSCRT. The considered parameter
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was fulfilled when a load value equaled Pd/FEM-CZM = 14,219.72 N for top-hat column and
Pd/FEM-CZM = 4492.77 N for channel column. The damage initiation phenomenon due to
delamination occurred between the third and fourth composite layers as shown in Figure 8.
Damage analysis in the context of damage evolution confirmed the progression of damage
due to delamination, which in the case of damage evolution corresponds to the CSDMG
parameter. The damage evolution occurred at the load 19,080.53 N for top-hat column
and 4612.79 N for channel column. In order to visualize the regions of damage initiation
and evolution caused by delamination phenomenon, the first three plies of the composite
columns were partially hidden. This allowed for better illustration of the damaged cohesive
surface between the third and fourth plies of the composite structures—Figure 8.

Figure 8. Damage initiation and evolution (CZM) caused by delamination: (a) damage initiation
of top-hat column—CSMAXSCRT; (b) damage evolution of top-hat column—CSDMG; (c) damage
initiation of channel column—CSMAXSCRT; (d) damage evolution of channel column—CSDMG.

As a part of the qualitative assessment, it was observed that damage initiation and
damage evolution, regardless of the damage model used, occur mainly at the bottom
parts of the end sections of the columns (both for top-hat and channel columns). In the
case of both damage models (PFA and CZM), the progression of the damage evolution
caused by further loading of the structures resulted in a complex damage mechanism—
which directly contributed to the loss of load-carrying capacity of the structures. Loss of
load-carrying capacity occurred at a load of Pf/FEM = 19,190.3 N for top-hat column and
Pf/FEM = 4703.2 N for channel column. Regarding the numerical simulations, the damage
initiation and failure loads for the top-hat column were a few times higher than for the
channel column: 3.15 (based on PFA) and 3.17 (based on CZM) times higher in the case
of damage initiation load, and 4.08 times higher in the aspect of load causing loss of load-
carrying capacity. The numerical results were similar to the experimental results, where the
top-hat column presented 3.11 times higher damage initiation load and 3.98 times higher
failure load than the channel column.

Additionally, in the context of the qualitative assessment, the experimental-numerical
post-critical equilibrium paths were confronted—Figure 9.

Regarding the performed study, a high compliance between the experimental study
and numerical simulations was observed [66–74]. Furthermore, the qualitative results of
conducted investigations are presented in Figure 10 (including progressive delamination).
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Figure 9. Comparison of post-critical equilibrium paths: (a) top-hat column, (b) channel column.

Figure 10. Cont.
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Figure 10. Qualitative assessment of loss of load-carrying capacity (including delamination): (a) top-
hat column EXP; (b) top-hat column FEM; (c) channel column EXP; (d) channel column FEM.

Despite the fact that the delamination phenomenon (according to Figure 8) was initi-
ated in the bottom end sections of the columns—in the corner regions between the web
and the flanges—a clear form of progressive damage caused by this phenomenon occurred
mainly on one of the outer flanges (both for top-hat and channel column). Slight discrepan-
cies between delamination results are conditioned by the fact that the numerical model
represents an ideal construction and is not affected by any manufacturing imperfections
(which is most often observed in case of actual specimens). Based on the results achieved,
the loss of load-carrying capacity phenomenon (including delamination) of experimental
and numerical tests showed highly similar results.

The quantitative evaluation was performed with the reference to the experimental
and numerical tests of the failure analysis, as presented in Table 3.

Table 3. Results of damage initiation and failure loads.

Column
Type

Limit
Load EXP [N] FEM-PFA

[N]
FEM-CZM

[N]
EXP/FEM-
PFA [%]

EXP/FEM-
CZM [%]

Top-hat

Damage
initiation

(Pd)
12,879.5 13,567.66 14,219.72 5.07 9.43

Failure
(Pf)

18,450.1 19,190.3 3.86

Channel

Damage
initiation

(Pd)
4141.2 4303.36 4492.77 3.77 7.83

Failure
(Pf)

4631.17 4703.2 1.53

Additionally, the delamination regions in the detailed view is shown in Figure 11.
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Figure 11. Comparison of delamination regions: (a) EXP (top-hat column); (b) FEM (top-hat column);
(c) EXP (channel column); (d) FEM (channel column).

In numerical studies, it was observed that delamination also occurred in regions where
it would be difficult to estimate its occurrence experimentally, because this phenomenon
occurred, inter alia, in the end sections—Figure 12.

Figure 12. Additional delamination regions observed in numerical simulation: (a) top-hat column;
(b) channel column.

The high agreement of result is conditioned by proper preparation of the numerical
models (verified by experimental tests). Additionally, by comparing the obtained results
for the top-hat column with the results presented in a previously published paper [45],
it is possible to evaluate the influence of the stacking sequence on the load-carrying
capacity of the composite structure. In the case of the structure presented in the previous
publication [45], characterized by the lay-up [0/–45/45/90]s, two half-waves were observed
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in terms of the structure stability, and the failure load was equal to Pf = 17,084 N (FEM).
Regarding the current work, with composite lay-up [45/–45/90/0]s, three half-waves were
observed in terms of structure stability, and the failure load was equal to Pf = 19,190.3 N
(FEM). The above proves the significant effect of stacking sequence (for composite layers)
on the load carrying capacity of composite structures with the same shape but different lay-
ups. The obtained results allowed for failure analysis of thin-walled composite structures
with different cross-sections [75].

6. Conclusions

Regarding the thin-walled structures made of composite materials, it is important
to conduct analyses in the post-critical state—considering the failure phenomenon. It is
essential to evaluate the failure phenomenon in context of: damage initiation, delamination
phenomenon, and also loss of load-carrying capacity. Therefore, it is necessary to conduct a
study with use of independent experimental methods (universal testing machine, acoustic
emission method) and a numerical model using advanced damage techniques (progressive
failure analysis, cohesive zone model), in the full load range. Based on the conducted tests,
the main conclusions are as follows:

• it is possible to evaluate the complex failure phenomenon of thin-walled composite
structures with the use of experimental tests and numerical calculations;

• the evaluation of limit loads (damage initiation, damage evolution, beginning of
delamination, loss of load-carrying capacity) allows to estimate the complexity of the
failure phenomenon;

• for short composite columns, the delamination phenomenon and loss of load-carrying
capacity propagate in the regions of end sections and outer flanges of the columns;

• composite structures with a top-hat cross section display a few times higher load-
carrying capacity than structures with channel cross section;

• depending on the needs, it is possible to design profiles with higher stiffness—
structures with a top-hat cross-section, as well as with lower stiffness—structures with
a channel cross-section.

The research displayed that the current experimental and numerical research tech-
niques allow for more in-depth analysis of the loss of load carrying capacity phenomenon
(including delamination). The study exhibits an advanced modeling technique of the
composite structures using advanced numerical damage models while considering tra-
ditional experimental methods. In the future, the study of stability and load carrying
capacity of the structure will be carried out on several types of cross-sectional shapes of
composite structures with consideration of the effect of different composite lay-ups on the
behavior of the structure under axial compression. Additionally, an extended finite element
method (XFEM) damage model will be used to simulate the initiation and propagation of
material cracking.
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