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Abstract: Geopolymer concrete has the potential to replace ordinary Portland cement which can
reduce carbon dioxide emission to the environment. The addition of different amounts of steel fibers,
as well as different types of end-shape fibers, could alter the performance of geopolymer concrete.
The source of aluminosilicate (fly ash) used in the production of geopolymer concrete may lead to a
different result. This study focuses on the comparison between Malaysian fly ash geopolymer concrete
with the addition of hooked steel fibers and geopolymer concrete with the addition of straight-end
steel fibers to the physical and mechanical properties. Malaysian fly ash was first characterized by
X-ray fluorescence (XRF) to identify the chemical composition. The sample of steel fiber reinforced
geopolymer concrete was produced by mixing fly ash, alkali activators, aggregates, and specific
amounts of hook or straight steel fibers. The steel fibers addition for both types of fibers are 0%, 0.5%,
1.0%, 1.5%, and 2.0% by volume percentage. The samples were cured at room temperature. The
physical properties (slump, density, and water absorption) of reinforced geopolymer concrete were
studied. Meanwhile, a mechanical performance which is compressive, as well as the flexural strength
was studied. The results show that the pattern in physical properties of geopolymer concrete for
both types of fibers addition is almost similar where the slump is decreased with density and water
absorption is increased with the increasing amount of fibers addition. However, the addition of hook
steel fiber to the geopolymer concrete produced a lower slump than the addition of straight steel
fibers. Meanwhile, the addition of hook steel fiber to the geopolymer concrete shows a higher density
and water absorption compared to the sample with the addition of straight steel fibers. However,
the difference is not significant. Besides, samples with the addition of hook steel fibers give better
performance for compressive and flexural strength compared to the samples with the addition of
straight steel fibers where the highest is at 1.0% of fibers addition.

Keywords: geopolymer; alkali activated material; reinforced concrete; steel fiber; physical properties;
mechanical properties; flexural
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1. Introduction

Currently, geopolymer concrete has emerged in the last two decades as new engineer-
ing materials with the potential of becoming a significant element in the environmentally
sustainable construction and construction industry [1]. The reaction of aluminosilicate—
containing fly ash with alkali produces an inorganic polymer binder, which is called
geopolymer. A concrete geopolymer was studied by several researchers [2–5]. Geopolymer
was also developed for other applications including lightweight concrete [6], material for
computer numerical control (CNC) cutting tools [7–10], piping materials [11], and water
treatment [12].

Based on previous research, the interfacial bonding carried out using the pull-out test
have shown that Ordinary Portland Cement (OPC) mortars are generally excellent [13].
Recently, the works related to steel reinforcing fiber on Ordinary Portland Cement (OPC)
composite, including fly ash, rice hush-bark, and silica fume have been studied. The results
indicated that the OPC composite bonding strength was improved on the aging of the 28th
day [14].

Hooked steel fiber is widely used for OPC concrete reinforcement [15–17]. The material
properties of fibers are usually more dominant in affecting the performance of a reinforced
geopolymer composite than binders [18]. The role of the fiber is very important as it is
mainly reflected when the concrete starts to crack and it also improves the post-cracking
performance as there is the fiber bridging of the crack section. It is said that adding steel
fibers to concrete can produce a better crack control effect and improve the tensile strength
before and after cracking initiates [19–21]. The inclusion of steel fibers could help to
improve fatigue strength and dynamic resistance of the concrete. However, as the amount
of steel fiber added increases, the workability of concrete will decrease [21].

Concrete geopolymer has excellent strength without any fiber reinforcement [1,22] and
good fire resistance. Fibers are incorporated into OPC concrete to overcome this weakness,
producing materials with increased tensile strength, ductility, toughness, and increased
durability properties. Fiber efficiency in the concrete mixture depends on factors such as
fiber matrix properties, the volume of fiber inclusion, fiber geometry, the types of fiber,
as well as fiber orientation. To improve durability, strength, and different properties of
hardened concrete, a wide range of fibers must be studied. Most of the fibers are made
of steel, carbon, or polymer [23]. The selection of steel fiber is chosen for this research to
gather the data of strength, and different properties on geopolymer concrete.

Research on the addition of steel fibers in OPC concrete to enhance the performance
has been extensively studied by many researchers [24–26] over the world but is quite
limited to fly ash-based geopolymer concrete. In the production of geopolymer concrete,
the chemical composition of raw material, which is fly ash, is not standardized, especially
as it comes from different sources. The different chemical content of fly ash may influence
to the different properties and performance of geopolymer concrete. Besides, the study
on mechanical and physical properties of fly ash-based geopolymer concrete with the
reinforcement of steel fibers is limited. This paper aims to study the effects of steel fibers
as an addition to the physical and mechanical properties of Malaysian fly ash-based
geopolymer concrete.

2. Materials and Methodology
2.1. Preparation of SFRGC

Steel Fiber Reinforcement Geopolymer Concrete (SFRGC) is mixing between geopoly-
mer binder which is fly ash, an alkali activator, aggregates, and a specific amount of steel
fibers. Firstly, an alkali activator was produced by mixing sodium silicate (Na2SiO3) and
sodium hydroxide (NaOH) at a ratio equal to 2.5. The Na2SiO3 was from South Pacific
Chemicals Industry Sdn. Bhd. (SPCI), Penang, Malaysia with a ratio of SiO and Na2O equal
to 3.2. NaOH is in a form of a pallet that was bought from Farmosa Plastic Corporation,
Kaohsiung, Taiwan. The NaOH pellet was first diluted in distilled water and as a result, a
concentration of 12 M was produced.
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Fly ash was taken from the electric power plant Manjung, Perak, Malaysia. Aggregates,
which are river sand and granite, were used at a maximum size equal to 4.75 mm and
20 mm respectively. The ratio of fly ash to alkali activators is equal to 2. The steel fibers
used in this experiment are hook and straight end as shown in Figure 1. The percentage
of steel fibers as an addition in the geopolymer concrete mixture has been set based on
the volume fraction of samples which are 0%, 0.5%, 1.0%, 1.5%, and 2.0%. The details mix
proportion of the SFRGC is tabulated in Table 1. Besides, the details of the end-shape steel
fibers specification used in the production of SFRGC was summarized in Table 2 as hook
steel fiber and in Table 3 as straight steel fiber.

Figure 1. Steel fibers: (a) Hook fibers and (b) straight fibers.

Table 1. Mix design of steel fiber reinforced geopolymer concrete.

Steel Fibers
Addition (%)

Fly Ash
(kg/m3)

Coarse
Aggregate

(kg/m3)

Fine
Aggregate

(kg/m3)

Sodium
Silicate
(kg/m3)

Sodium
Hydroxide

(kg/m3)

0 640 864 576 229 91
0.5 630.44 851.10 567.40 225.58 89.42
1.0 620.99 838.34 558.89 222.20 88.30
1.5 611.63 825.70 550.47 218.85 86.97
2.0 602.36 813.19 542.13 215.53 85.65

Table 2. Specifications of hooked steel fibers.

Items Specifications

Fiber type Hooked
Diameter (mm) 0.60
Length (mm) 0.75
Aspect ratio 80

Table 3. Specifications of straight steel fibers.

Items Specifications

Fiber type Straight
Diameter (mm) 0.60
Length (mm) 0.75
Aspect ratio 80

The samples of SFRGC were cast in a mold size of 100 mm × 100 mm × 100 mm
for physical (workability, density, and water absorption) and mechanical (compressive
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and flexural) tests. Samples were taken out from the mold after 24 h and cured at room
temperature for 28 days.

2.2. Slump Test

Workability of SGRGC was measured by a slump test. The slump test was performed
based on ASTM C143 [27]. After the mixing process, the fresh geopolymer concrete was
poured into a slump cone in three layers. Each layer was compacted by rodding 25 strokes
by suing the tamping rod. The excess of fresh SFRGC was removed by scrapping off
from the top of the cone. The slump cone then was immediately removed from the fresh
SFRGC by raising it up vertically. The slump was measured by determining the distance
between the top of the slump cone and the displaced original center of the top surface of
the fresh SFRGC.

2.3. Density Test

A density test was conducted after the sample solidified for 28 days. A sample was
immersed in water for 24 h at ambient temperature. The sample of SFRGC was placed
separately (no contact) from each other in a water tank. The top of the sample surface was
not lower than 150 mm below the water surface. The immersed sample was placed on a
wire mesh to ensure there is a gap between the sample and bottom of the water container
at a distance of about 3 mm.

The sample of SFRGC that completely was immersed in water for 24 h was weighed
and recorded as immersed weight (Wi). The sample then was removed from the water tank
and allowed to dry for 1 min. Any visible water on the surface of the sample was removed
by a damp cloth. Then, the sample was weighed and recorded as saturated weighed (Ws).
After that, the sample was dried in an oven at a temperature of 110 ◦C for 24 h. Then, the
dried sample was weighed and labeled as dried weight (Wd). The detail calculation of
density of SFRGC is summarized as in Equation 1:

Density, D =

(
Wd

Ws − Wi

)
× 1000 (1)

where:
Wd = oven dry weight of specimen (kg);
Ws = saturated weight of specimen (kg);
Wi = immersed weight of specimen (kg).

2.4. Water Absorption Test

Meanwhile, a water absorption test was conducted to determine the moisture content
of the samples. The experimental procedure of water absorption was conducted in a
similar way to the density test in Section 2.2 but different with the calculation. The water
absorption of the SFRGC was measured by Equation (2):

Percentage of water absorption (%) =

(
Ws − Wd

Wd

)
× 100 (2)

where:
Wd = oven dry weight of specimen (kg);
Ws = saturated weight of specimen (kg);
Wi = immersed weight of specimen (kg).

2.5. Compression Test

The compressive strength of sample SFRGC was measured by following standard
BS 1881-116 [28] using Universal Testing Machine (UTM) Automatic Max (Instron, 5569,
Norwood, MA, USA). This testing was conducted for sample cured at 28 days in ambient
temperature. The load speed was adjusted to 0.1 kN/s.
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2.6. Flexural Test

The flexural test, was performed to measure the flexural strength of the sample. The
sample was subjected to 4 point bending and tested by using the UTM model Auto-
matic Max (Instron, 5569, Norwood, MA, USA). The testing was conducted by following
ASTM C1018 [29]. The constant deflection rate applied in this testing was in the range of
0.05–0.10 mm/min. The lower and upper support are 300 mm and 100 mm respectively.
The sample was tested at 28 days after being cured at ambient temperature.

3. Results and Discussion
3.1. Chemical Composition

The chemical composition of fly ash that has been used in the production of geopoly-
mer concrete for both types of fibers is summarized in Table 4. The total amounts of SiO2
and Al2O3 are 53.5% from the total composition. Fly ash used in this experiment fulfils
the fundamental as a source of material to be used as a precursor in a geopolymerization
process where it is rich in Si and Al, which will be activated by alkali solution. This fly ash
is verified as Class F by ASTM C618 [30]. This verification is based on the chemical content
of CaO, Al2O3, SiO2, and Fe2O3.

Table 4. Chemical composition of fly ash.

Element Percentage (%)

SiO2 38.80
Fe2O3 19.48
CaO 18.10

Al2O3 14.70
MgO 3.30
K2O 1.79
SO3 1.50

MnO 0.16
BaO 0.27
TiO2 1.02

3.2. Slump

The slump was measured by using a conventional slump cone. The slump test in
this research was measured to find consistency and workability of geopolymer concrete
between hook steel fiber and straight steel fiber reinforced. Figure 2 showed the decrease
trend workability between hook steel fiber and straight steel fiber.

Figure 2. Slump of geopolymer concrete with the addition of hook steel fibers and straight steel fibers.
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Figure 2 illustrates that the slump test result of geopolymer concrete without the
addition of steel fibers was 100.67 mm. The slump of geopolymer concrete for hook steel
fibers addition decreased with the increasing additions of steel fibers from 0% to 2% which
are 61 mm (0.5% steel fibers), 48.33 mm (1% steel fibers), 31.5 mm (1.5% steel fibers), and
17.67 mm (2.0% steel fiber). Meanwhile, the slump of straight steel fiber had also decreased
with the increasing addition of steel fibers which is 63.55 mm (0.5% steel fibers), 51.3 mm
(1% steel fibers), 35.88 mm (1.5% steel fibers), and 20 mm (2.0% steel fiber). This has shown
that the existence of steel fibers will reduce the workability of geopolymer concrete. The
workability of concrete will significantly decrease due to the increase of resistance between
the steel fibers and geopolymer matrix called interlocking as shown in Figure 3.

Figure 3. Flow of fresh reinforced geopolymer concrete is resisted by fiber-aggregate interlocking.

Meanwhile, the slump of hook steel fiber was lower than the straight steel fiber due to
the function of the hook end that creates higher flow resistance to the fresh geopolymer
concrete compared to the geopolymer concrete reinforced with straight steel fiber. The
medium value for the slump test of OPC concrete ranges between 50 mm to 100 mm. Based
on this result, it can be concluded that the range of 17.67 mm to 100 mm can be considered
as low and medium workability. This indicates that the mixing process involved with these
materials is suitable to be produced by using a vibrator or manually.

3.3. Density

The density of a substance is measured as mass per unit volume. All the samples
were measured after being cured for 28 days at room temperature by their mass and
divided by the size of mold which is 100 mm × 100 mm × 100 mm. Figure 4 shows the
graph comparison of density between hooked steel fiber and straight steel with different
fibers addition.

From the results, the density of 2% steel fiber additions for both hooked and straight
steel fiber was the highest with 0.25 kg/m3 and 0.249 kg/m3 respectively. The density of
geopolymer increased proportionally with the increase of both steel fibers addition. The
density of geopolymer concrete with the addition of hook steel fibers seems higher than the
density of geopolymer concrete with the addition of straight steel fibers in all percentage of
fibers addition. The addition of steel fiber increased the density because of different specific
gravity for steel fiber which is 7800 kg/m3 compared to a normal geopolymer which is
2345 kg/m3 and it gives an impact for a density value of SFRGC. The increase of concrete
density by the addition of aggregate or reinforcement fibers with higher specific gravity
was also mentioned by Harshavardhan and Bala Murugan [31].
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Figure 4. Density of hook and straight steel fiber against steel fibers addition.

3.4. Water Absorption

Figure 5 shows the result of the water absorption test. The water absorption of
geopolymer concrete was increased with the increase of both types of fiber additions. The
highest water absorption for geopolymer concrete with the addition of hook steel fibers
and straight steel fibers are 1.35% and 1.85% which is 2% of the steel fibers addition. This
is due to the workability which decreased with the addition of steel fibers obtained in
this research, which can lead to an increase in pores formation. The water absorption of
geopolymer concrete with the addition of hook steel fibers seems higher than the straight
steel fiber. This is due to the workability of geopolymer concrete with the addition of
hook steel fibers which is lower compared to the geopolymer concrete with the addition of
straight steel fibers.

Figure 5. Water absorption of geopolymer concrete with the addition of hooked and straight steel fibers.

3.5. Compressive Strength

The compressive strength of steel fiber reinforced geopolymer concrete for both sam-
ples are summarized as in Figure 6. The addition of hook steel fibers and straight steel
fibers seems to improve the compressive strength of geopolymer concrete until its max-
imum value at 1% of fibers addition. This is due to the steel fibers that help to stop the
propagation of crack during the compression load. Besides, the compressive strength of
hook steel fibers addition seems better than the straight steel fibers addition. This is due to
the contribution of the end types of steel fibers in which the anchorage of hook steel fibers
will produce higher resistance when slipping out from the geopolymer binder during the
cracking compared to the straight steel fibers that do not have anchorage.
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Figure 6. Compressive strength of hook steel fiber and straight steel fiber reinforced geopolymer
concrete versus steel fibers addition.

However, the compressive strength of geopolymer concrete decreases as the addition
of the fibers exceeds 1.5%. This may be due to the poor workability of geopolymer concrete
with the addition of steel fibers starting at 1.5%, which is around 31.5 mm and 35.88 mm
for the inclusion of hook and straight steel fiber respectively.

3.6. Flexural Strength

The effect of steel fibers addition to the flexural strength of geopolymer concrete is
summarized in Figure 7. The inclusion of hook steel fibers and straight steel fibers increases
the flexural strength of geopolymer concrete until the addition of a maximum fiber at
1.5% which is 11.12 MPa and 9.42 MPa respectively. The improvement of flexural strength
is due to the steel fibers, which functioned to stop the propagation of crack during the
flexural testing by creating a bridging at the crack area as shown in Figure 8. The higher
the amount of steel fibers, the higher the flexural load that the sample can absorb before
completely failing.

Figure 7. Flexural strength of hook steel fiber and straight steel fiber reinforced geopolymer concrete
versus steel fibers addition.
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Figure 8. Sample of Steel Fiber Reinforcement Geopolymer Concrete (SFRGC) after a flexural test
shows the bridging effect at the cracking area.

However, the performance of flexural drops when the steel fibers addition exceeds
1.5% for both types of fibers. This is related to the poor workability of samples when
steel fibers are added at a high amount. This poor workability may affect the steel fibers
dispersion resulting in the steel fibers not being dispersed uniformly. Hence, the absorption
capacity inside the sample is imbalance when loading is applied. Therefore, the sample
tends to crack at the area that contains fewer fibers.

Besides, the addition of hooked steel fibers shows a higher flexural strength compared
to the straight steel fibers at all percentage of steel fibers addition. This is due to the
anchorage of hooked steel fibers, which provides extra loading capacities during the
flexural test compared to the straight steel fibers. The anchorage of hooked end steel fibers
increases the resistance and friction between the fibers and geopolymer matrix when a load
is applied. This indicates that higher energy is required to slip out the hooked end steel
fibers from the geopolymer matrix.

4. Conclusions

The reinforcement of Malaysian fly ash-based geopolymer concrete by the addition
of hook and straight steel fibers showed some influence on the physical and mechanical
properties which are slump, density, water absorption, compressive, and flexural strength.
Overall, the changes of the slump, density, and water absorption for geopolymer concrete
with reinforcement of hook and straight steel fibers were not significant and is still ac-
ceptable to be used as concrete in normal applications. However, there was a significant
improvement for both types of samples in the mechanical properties especially the flexural
strength which is due to the bridging effect. The addition of hook steel fibers has proven to
give a higher improvement to mechanical properties compared to the addition of straight
steel fibers. Overall, the types of hooked-end steel fibers are better to be used as reinforce-
ment on Malaysian fly ash-based geopolymer concrete compared to straight steel fibers
due to its better mechanical performance with acceptable physical properties. The source
of alumino-silicate, which is the Malaysian fly ash, has proven to be used as a precursor in
the production of steel fiber reinforced geopolymer concrete.
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