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Abstract: Two-dimensional materials based on transition metal carbides have been intensively stud-
ied due to their unique properties including metallic conductivity, hydrophilicity and structural
diversity and have shown a great potential in several applications, for example, energy storage,
sensing and optoelectronics. While MXenes based on magnetic transition elements show interesting
magnetic properties, not much is known about the magnetic properties of titanium-based MXenes.
Here, we measured the magnetic properties of Ti3C2Tx MXenes synthesized by different chemical
etching conditions such as etching temperature and time. Our magnetic measurements were per-
formed in a superconducting quantum interference device (SQUID) vibrating sample. These data
suggest that there is a paramagnetic-antiferromagnetic (PM-AFM) phase transition and the transition
temperature depends on the synthesis procedure of MXenes. Our observation indicates that the
magnetic properties of these MXenes can be tuned by the extent of chemical etching, which can be
beneficial for the design of MXenes-based spintronic devices.

Keywords: MXenes; SQUID; X-ray diffraction; etching; magnetic materials

1. Introduction

Since the first reported synthesis of single-layer graphene by the mechanical exfo-
liation of graphite in 2004, there has been tremendous research interest in the chemical,
electronic and physical properties of two-dimensional (2D) materials [1]. In 2011, it was
first reported that 2D nanosheets of Ti3C2 could be obtained by chemically etching the
aluminum layer from Ti3AlC2 MAX phase materials with hydrofluoric acid [2]. These
materials were referred to as MXenes due to their similar electronic properties to graphene.
MXenes have a general formula of Mn+1Xn where M represents an early transition metal,
X is carbon and/or nitrogen and n = 1, 2 or 3. The etching process may occur via a direct
hydrofluoric acid treatment (harsh) or an in situ generation of hydrofluoric acid through the
protonation of an aqueous fluoride-containing salt in a hydrochloric acid solution (mild),
which results in surface terminations (Tx) of fluoride, oxide, hydroxide and chloride on the
metal surface. Thus, the MXene general formula may be denoted as Mn+1XnTx. To date,
approximately 20 single-transition metal MXenes and 15 ordered double-transition metal
MXenes have reportedly been experimentally synthesized and up to 100 different MXene
compositions have been theoretically predicted to be stable [3]. The high elastic mechanical
strength [4], electronic conductivity [5,6], chemical stability [7–9] and hydrophilicity [10,11]
of MXenes have opened broad prospects for their applications in a variety of industrial
and technological areas including energy storage [12–18], optoelectronics [19,20], spintron-
ics [11,21], catalysis [22] and sensing [23]. Although there is significant research effort in
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the optical [24,25] and electronic [11,26,27] properties of MXenes, the magnetic properties
of these materials for spintronic application are relatively unexplored [21,28].

The intrinsic properties of MXenes are mainly determined by the transition metal in
the MAX phase. Therefore, most of the reported magnetic MXenes are based on magnetic
transition metal elements such as Cr, V, Mn, MO, Fe, Co and Ni [25,27,29–37]. However,
MXenes based on nonmagnetic transition metals are also predicted to be magnetic and their
optical, electronic and magnetic properties can be influenced by defects, different surface
terminating groups and synthetic procedures [38–41]. In particular, Yoon et al. [41] ex-
plored the magnetic behavior of Ti3C2Tx reduced by Li-ethylenediamine and demonstrated
that their powders to be Pauli paramagnets above 10 K with a temperature dependent
Curie term below this. Scheibe et al. [40] demonstrated that etching Al from a Ti3AlC2
MAX phase resulted in Ti3C2Tx MXenes with a mixed antiferromagnetic/paramagnetic
behavior that depended upon the surface functionalization. Recent density functional
theory calculations [39] for different magnetic configurations of Ti2C showed that the
antiferromagnetic (AFM) had the lowest energy but an applied external electric field could
tune the monolayer from the AFM state to a ferrimagnetic one. Earlier calculations by
Khazaei et al. [35] revealed that surface functionalized MXenes were magnetic and differed
from their parent MAX phase. Igbal et al. [38] recently reported on the magnetic behavior
of undoped and La-doped Ti3C2Tx MXenes that showed the co-existence of ferromagnetic
(FM) and AFM phases due to an exchange bias effect. While the M vs. T behavior was
similar for the undoped and La-doped MXenes, the magnitude of magnetization in the
doped material was nearly 100× that of the undoped, suggesting that doping enhances
magnetism. They also suggested that Ti atoms on the surface of the MXene sheets had
an FM orientation with the intralayer being AFM. It has also been experimentally con-
firmed that the presence of atomic defects in layers can alter the magnetic properties of
MXenes [42]. In addition, MXenes exhibit a diverse magnetic behavior depending on the
doping, applied electric field and chemical composition [34,38,39]. Therefore, MXenes
are emerged as promising 2D magnetic materials and may be used to fabricate magnetic
devices such as spin-valves, spin-filters, magnetic tunnel junctions (MTJ) and magnetic
random access memories (MRAM).

In this work, we report the synthesis of Ti3C2Tx MXenes, which are robust to oxida-
tion [8], using a milder LiF/HCl solution and investigate the magnetic properties. There
have been relatively few reports on the magnetic characteristics of these materials [38,40,41].
The extent of aluminum removal was controlled by performing two separate syntheses,
one at an ambient temperature and another at an elevated temperature for a longer reaction
time. The contents of the etched phase and the unetched one were probed using X-ray
diffraction as discussed below. The magnetic property of the resulting Ti3C2Tx MXene was
analyzed using a superconducting quantum interference device (SQUID) and the extent of
etching was determined by using X-ray diffraction (XRD). We observed a paramagnetic-
antiferromagnetic (PM-AFM) phase transition in samples generated by both synthesis
techniques that occurred at different Néel temperatures, indicating that the aluminum
content mediates the magnetic transition.

2. Materials and Methods
2.1. Sample Preparation

A sample (20 g) of commercially-available MAX phase Ti3AlC2 powder (>98%, 200 mesh,
Forsman Scientific, Beijing, China) was further milled in a planetary mill (SPEX 8000 M
Mixer/Mill, Metuchen, NJ, USA) using a zirconia jar (45 cm3) and two zirconia balls
(12.7 mm diameter). A milling energy of 1/3 hp was used at a milling rate of 1725 rpm for
45 min.

Batch 1 Ti3C2Tx was prepared by etching Al from the milled Ti3AlC2 powder in a
solution containing 1.33 g lithium fluoride (LiF) (>97%, Alfa Aesar, Haverhill, MA, USA)
dissolved in 100 mL of 6 M hydrochloric acid (HCl) solution. First, 2.00 g Ti3AlC2 powder
was slowly added into the 100 mL LiF/HCl solution and magnetically stirred at 400 rpm
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for 24 h at room temperature (21 ◦C). The mol ratio of LiF and Ti3AlC2 in this mixture
was 5:1. The crude Ti3C2Tx product was collected and centrifuged at 4500 rpm for 10 min
and further washed first with 6 M HCl for 3 cycles and then with deionized (DI) water
repeatedly; the resultant samples were centrifuged for 15 minutes until the resulting
supernatant reached a pH > 6. The supernatant contained a green coloration indicating that
delamination of the Ti3C2Tx nanosheets was occurring (Figure S1). The Ti3C2Tx product
was vacuum filtered and air dried at room temperature for 24 h before storage (Figure S1).
The mass of the obtained product was 1.57 g.

Batch 2 T3C2Tx was prepared in a solution containing 1.93 g LiF dissolved 100 mL
of 6 M HCl solution. First, 2.90 g Ti3AlC2 powder was slowly added into the 100 mL
LiF/HCl solution and magnetically stirred at 400 rpm for 166 h at 35 ◦C. The mol ratio
of LiF and Ti3AlC2 in this mixture was also 5:1. The crude product was washed using
the same procedure as Batch 1 and then allowed to air dry at room temperature for 24 h
followed by heating at 125 ◦C for 45 min. The mass of the obtained purified product was
2.00 g.

2.2. Characterization

The XRD measurements were conducted on a Rigaku Miniflex 600 X-ray diffractome-
ter, Tokyo, Japan. The instrument was operated at a 20 kV voltage and a 2 mA current. The
XRD pattern of the Ti3AlC2 MAX phase and Ti3C2Tx MXene powder samples was taken
over the scan range from 5◦ to 90◦ at a scan rate of 0.075◦/min. The magnetic behavior of
the Ti3AlC2 powders and the etched Ti3C2Tx MXene samples was measured in a Quantum
Design SQUID vibrating sample magnetometer (VSM, San Diego, CA, USA) over the tem-
perature range 2–300 K with applied magnetic fields from 0–2 T. For these measurements,
samples were mounted on a quartz holder with GE 7031 varnish (Lake Shore Cryotronics,
Inc., Westerville, OH, USA); we confirmed that there was no magnetic contribution from the
holder and varnish prior to these measurements. For the morphological characterization,
a solution of MXene was spin-coated on a glass substrate at 1000 rpm. Morphological
data were collected using a JEOL JSM-6510LV scanning electron microscope (SEM, Tokyo,
Japan). Topographic images of tapping mode atomic force microscopy were taken using a
Keysight 5500 atomic force microscope (Keysight Technologies, Inc., Colorado Springs, CO,
USA) with a resolution of 512 points × 512 lines and a scanning rate of 1 line/s. A Bruker’s
Sharp Nitride Lever probe, SNL-10, with a normal frequency 65 kHz and a normal spring
constant of 0.35 N/m was used in the scanning (Bruker AFM Probes, Camarillo, CA, USA).

3. Results and Discussion

The XRD measurements were conducted to determine the crystal structure of the
materials before and after LiF/HCl etching. Figure 1 shows the XRD patterns of the Ti3AlC2
and Ti3C2Tx samples in the scan range 5–90◦ where Tx denotes the surface terminations
(O2−, OH− and F−) on the MXene sheet. The typical peaks of both the Ti3AlC2 and
Ti3C2Tx samples were within this range and were consistent with the previously published
results [43–45].

The lowest Bragg peak for the (002) reflection of the Ti3AlC2 powder occurred at
9.70◦ with its second-order reflection at ~19◦ and several other allowed (hkl) reflections
over the range investigated [43]. After LiF/HCl etching at room temperature (Batch 1),
the (002) peak broadened and shifted towards a smaller angle (7.2◦) compared with the
unetched Ti3AlC2, indicating that Al was replaced by –F or –OH moieties especially near
the surface region [43,46]. A few Ti3AlC2 peaks were still observed in Ti3AlC2 Batch
1 indicating the presence of some unreacted MAX phase in the bulk after the etching
process [43]. A very contrasting XRD pattern was obtained when Ti3AlC2 was etched at
35 ◦C for 166 h (Batch 2). The (002) reflection was shifted to 8.30◦ and was much broader
compared with Ti3AlC2. The peak shift to the smaller angle and hence the increase in the
c-lattice parameter suggested that the surface functional groups and micro-molecules such
as water molecules appeared between the MXene nanosheets [47]. In addition, the (004)
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reflection at 17.6◦ and the (006) at 26.5◦ were also broadened. Furthermore, the (104) peak
at 39◦ was vanishingly small compared with the Ti3AlC2 and Ti3C2Tx Batch 1 samples.
These observations indicated that Ti3AlC2 was transformed to Ti3C2Tx MXene [44,48] with
a less unreacted MAX phase in Batch 2 compared with Batch 1. It is worth noting here that
the vanishingly small 39◦ peak was previously reported using direct hydrofluoric acid (HF)
etching [45] but this was the first observation with the milder LiF/HCl etching method.

Figure 1. XRD patterns of Ti3AlC2 and Ti3C2Tx MXene samples.

The surface roughness of the MXene flakes was characterized by atomic force micro-
copy in a tapping mode. The topographic image (Figure 2) shows clear sheet structures
with an average height of 16 nm, a mean area of 1005 nm2 and a mean roughness of 2.98 nm.
The minimum thickness of the MXene sheets was around 2–3 nm, which corresponded
to a few layers of two dimensional MXene flake nanostructures [46,47,49]. A scanning
electron microscopy (SEM) image showed that the synthesized Ti3C2Tx MXene exhibited a
discrete layered/sheet structure with a well crystallized feature (Figure 2), confirming the
observation from the atomic force microscopy image measurement.

Figure 2. Topographic atomic force microscopy image (a) and scanning electron microscope (SEM)
image (b) of Ti3C2Tx MXene.

To investigate how the extent of etching affected the magnetic properties, a SQUID
VSM was used to measure the magnetic moment as a function of an applied magnetic field
and temperature in an applied magnetic field of 1 kOe. Figure 3 shows the field dependent
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magnetization from 2–300 K of the Ti3AlC2 and Ti3C2Tx samples while the temperature
dependent magnetization (M (T)) of the Ti3AlC2 and etched Ti3C2Tx samples at 1 kOe are
shown in Figure 4.

Figure 3. Magnetization versus applied magnetic field for (a,c) Ti3AlC2 and (b,d) LiF etched
Ti3C2TX samples.

Figure 4. Magnetization versus temperature at 1000 Oe for (a) Ti3AlC2, (b) LiF/HCl etched Ti3C2Tx

Batch 1 and (c) Batch 2 samples.
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Note in Figure 3c that the coercivity of the Ti3AlC2 MAX phase was 380 Oe at 2 K
but reduced to 50 Oe at 300 K. However, the coercivity for the Ti3C2Tx MXene (Figure 3d)
was 25 Oe at 300 K and 12 Oe at 2 K. The larger coercivities in the MAX phase suggested
that it was ferromagnetic although the hysteresis loops did not saturate at 2 T. One should
also note that the magnetization at 2 K and 20,000 Oe was 0.04 emu/g for the MAX phase
and 0.02 emu/g for the Ti3C2Tx MXene. Scheibe et al. suggested that a lack of saturation
indicates an antiferromagnetic (AFM) phase although small coercivity may indicate an
AFM phase or a ferromagnetic one with weakly bonded MXene phase monolayers [40].

Consistent with the M vs. H data (Figure 3), the M vs. T behavior of Ti3AlC2 shown
in Figure 4a indicated that it was ferromagnetic in nature. It has been reported that
MAX phases exhibit Pauli paramagnetism [40,41,50,51]. However, Yoon et al. noted that
their Ti3AlC2 sample did not exhibit an EPR signal, which should have been present
if their MAX phase was a Pauli paramagnet, nor did they present other magnetic data
supporting this. Similarly, Scheibe et al. showed no field or temperature dependent
magnetization data that would demonstrate their MAX phase was paramagnetic. Based
on our data and these references, it was not obvious that MAX phases are unambiguously
paramagnetic. Figure 4b,c present the M versus T data for the etched MXene samples
and indicate that they were paramagnetic (PM) at higher temperatures but exhibited a
more complex behavior at lower temperatures. Consistent with the results reported by
Yoon et al., the temperature independent behavior at higher temperatures in Figure 4b,c
suggested that our etched MXenes were Pauli paramagnets. Yoon et al. suggested that
such behavior at lower temperature is consistent with a temperature dependent Curie
term [41]. However, we suggest otherwise. There was an antiferromagnetic-like cusp
~70 K for the Ti3C2Tx Batch 1 sample that indicated a paramagnetic-antiferromagnetic
(PM-AFM) phase transition [40,52]. With a more thorough removal of the aluminum in
Batch 2, the cusp appeared to shift toward a higher Néel temperature. Interestingly, the
magnetization of both batches of etched samples at 2 K was the same and was only one-fifth
of the magnetization of Ti3AlC2. The more complete removal of Al was indicated by the
vanishingly intense (104) X-ray reflection at 39◦ in Figure 1. These results indicated that
different magnetic behavior and/or a magnetic phase transition might be influenced by the
presence of unetched Al. In particular, it appeared that the FM behavior in the unetched
Ti3AlC2 was mediated by Al and more specifically Al in the near-surface region. After
etching, Ti3AlC2 transformed to Ti3C2Tx with a much smaller amount of Al where Al3+

acted as a self-dopant causing complex PM-AFM behavior in the Ti3C2Tx MXene. This
explanation is consistent with the recently reported AFM behavior of La3+-doped Ti3C2Tx
where La3+ ions were adsorbed onto the MXene surface [38].

4. Conclusions

In conclusion, we examined the magnetic properties of a Ti3AlC2 MAX phase and two
batches of Ti3C2Tx MXene to understand the impact of etching on magnetic behavior. We
found that Ti3AlC2 was ferromagnetic whereas a complex PM-AFM behavior was observed
in MXenes. The FM-AFM transition temperature depended on the extent of the etching of
Ti3AlC2. In fact, the results showed a direct quantitative correlation between the extent of
Al etching (obtained through XRD) and the PM-AFM transition temperature. Our findings
provide an improved understanding of the factors that control the magnetic behavior in
titanium carbide MXenes.

5. Addendum

After submission of our manuscript, we found a recently published paper [53] in
which they reported the co-existence of mixed magnetic phases in Ti3C2Tx MXene obtained
from the selective etching of Ti3SiC2 MAX phase. Although they do not show M vs. H
curves with sufficient resolution to observe the hysteresis loops, they suggest that their
data reveal FM and diamagnetic phases. Their M vs T data are quite similar to ours and
exhibit a peak near 50K as observed in our Figure 4b.
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Supplementary Materials: The following are available online at https://www.mdpi.com/1996-1
944/14/3/694/s1, Figure S1: Ti3C2Tx MXene synthesis. (a) Decantate from washing (b) Dried
Ti3C2TX product.
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