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Abstract: Copper strips experience severe corrosion when rolled with an oil-in-water (O/W) emul-
sions lubricant. The effects of rolling reduction on the pitting corrosion behavior and surface
microstructure of Cu strips were studied in detail using electrochemical measurements and electron
back scattered diffraction (EBSD) analysis. It was found that the corrosion current densities of the
rolled Cu strips increased with accumulated reduction, which also lowered the pitting potentials
and weakened their corrosion resistances. Therefore, the corrosive tendency of Cu strips under
different rolling reductions (ε) followed the order of ε0% < ε20.7% < ε50.6% < ε77.3%. The Cu surface
easily reacted with chlorine, sulfur, and carbon components from O/W emulsions to generate pitting
corrosion. Under the interactive effect of pitting corrosion and stress corrosion, pits expanded along
the rolling direction. The aggregation of anions in surface defects, such as dislocations, metastable
pits, and microcracks, further accelerated the pitting corrosion of the surface.

Keywords: copper strip; rolling reduction; surface microstructure; emulsion; pitting corrosion

1. Introduction

Copper (Cu) and its alloy strips have been widely applied in the fields of mechanical,
aviation, and electronic information due to their excellent electrical conductivity, thermal
conductivity, reliability, and workability [1–6]. Cold rolling is one of the key techniques of
the Cu strip manufacturing processes. Oil-in-water (O/W) emulsions are commonly served
as the technical lubricants to optimize the dimensional accuracy and to improve the surface
quality of the Cu strips during cold rolling [7]. Although Cu has good corrosion resistance in
an ordinary environment (dry atmosphere), it still suffers severe corrosion when exposed to
high temperature, high humidity, cold, shock, vibration, and high shear stress environments
during employment [8]. In particular, when Cu products are exposed to solutions such as
O/W emulsions with complicated components for a long time, their surface qualities and
usage performance will be weakened. This issue has attracted considerable attention from
researchers [9,10].

In our previous studies, it was found that copper corrosion possessed an incubation
period. Cu could react with O atoms in emulsions and gradually transformed to Cu+ and
Cu2+. Then, components that contained hydroxide and carboxylate anions would adsorb
on the Cu surface to generate copper compounds such as Cu2O, CuO, Cu(OH)2, CuCO3,
and Cu2(OH)2CuCO3 [11]. Furthermore, pH values, water hardness, additives, and other
auxiliary reagents influenced the corrosion properties of the Cu surface. Soluble ions in
hard tap water changed the electrochemical conductivity, resulting in the disruption of the
passive layers, which accelerated the pitting corrosion, and the weak alkaline solutions
contributed to the inhibition of pitting corrosion [12]. However, the above studies only
concerned the influences of properties of O/W emulsion itself on Cu corrosions. Cold
rolling is a complicated process. With the rolling reduction accumulated, cold working
deformations of Cu samples might develop in large evolutions on their grain boundaries
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and grain size [13]. These deformations not only affected the microstructure of Cu, but also
had a significant impact on its corrosion behavior.

Related scholars have studied the relationship between the deformation degree and
corrosion behavior of copper, but the conclusions are not consistent. Robin [14] investi-
gated the corrosion resistance of Cu grains in H2SO4 solutions during the cold-swaged and
cold-wiredrawn machining process, and found the corrosion resistance decreased with the
deformation degree. Lapeire [15] studied the influence of grain size on the electrochemical
behavior of pure copper in 0.1 M HCl and pointed out that for a smaller grain size, a
lower corrosion potential and higher corrosion current density were observed. On the
contrary, Deng and Nikfahm [16,17] stated that the ultrafine-grained copper enhanced
its anti-corrosion behavior. During the cold rolling process, although Cu grain has not
experienced recrystallization, the atomic arrangement and surface defect distribution on
the microstructure of Cu will be changed by rolling reduction, in which the corrosion
properties were still unclear. Furthermore, with the rolling reduction accumulated, the
distribution of residual stress on the Cu surface may also have an impact on its corrosive
order. Therefore, a deep understanding of these aspects, including electrochemical pro-
cesses, surface morphologies, microstructure evolutions, and mechanical properties on the
corrosion behavior of the cold-rolled Cu strips need to be studied.

In this paper, the electrochemical performances of the rolled Cu strips as electrodes
in O/W emulsions were investigated using potendiodynamic polarization and electro-
chemical impedance spectroscopy (EIS) measurements. The microstructure of Cu strips
under different rolling reductions was observed by electron back scattered diffraction
(EBSD) analysis. Their surface mechanical properties were also figured out and the pitting
corrosion mechanism of Cu surface was discussed based on surface and cross-section
characterizations.

2. Materials and Methods
2.1. Materials and O/W Emulsions Preparation

The component of experimental Cu sample is shown in Table 1, which was obtained
from the same raw strip as our previous study [18]. The strip was at hard state without
any heat treatment and was cut with a size of 10 mm × 10 mm × 1.98 mm. Ethanol and
de-ionized water were used for cleaning the Cu sample before the tests.

Table 1. Component of the raw Cu strip in this investigation.

Component Cu Pb S Cd P Fe

Wt.% 99.9900 0.0003 0.0016 0.0002 0.0013 0.0009

The O/W emulsion was composed of 95 wt.% tap water and 5 wt.% emulsified oils.
Mineral oil D130 and rapeseed oil are the main components of emulsified oils. Their
composition and physiochemical properties are shown in Table 2. The other reagents
included surfactants (sorbitan oleate); emulsifiers (oleic acid and triethanolamine), and
anti-wear additives (Dibutyl Phosphite). Sorbitan oleate (C24H44O6, ≥98%, AR), oleic acid
(C8H17CH = CH(CH2)7COOH, ≥99%, AR) and triethanolamine (N(CH2CH2OH)3, ≥99%,
AR) were purchased from Sinopharm Chemical Reagent Beijing Co., Ltd., Beijing, China.
Dibutyl phosphite ((C4H90)2POH, ≥99%, AR) was provided by Qianyang Technology
Hangzhou Co., Ltd., Hangzhou, China. All chemicals were newly produced and used as
received without further purification.
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Table 2. Details on composition and physiochemical properties of mineral oil D130 and rapeseed oil.

Properties Mineral Oil D130 Rapeseed Oil

Main compositions
Direct alkane,

Branched alkane,
Cycloalkanes

Erucic acid,
Arachidic acid,
Linoleic acid,
linolenic acid

Aromatics content (wt.%) 0.5 -
Sulfur content (wt.%) <0.1 <0.1

Phosphorous content (wt.%) <0.1 <0.1
Viscosity for 40 ◦C (mm2/s) 6.12 13.5~14.0

Flash point (◦C) >140 >110

Suppliers Sinopec Group Shanghai Co.,
Ltd., Shanghai, China

Red Oil Chengdu Ltd.,
Chengdu, China

Year of production 2017 2019

The preparation process of O/W emulsions is presented in Figure 1. Firstly, 1.4 g
rapeseed oil, 2.1 g surfactants, 0.6 g emulsifiers, and 0.65 g anti-wear additives were
gradually dissolved into 15.25 g base oil and mixed at 25 ◦C for 10 min to obtain the
equably emulsified oils. Subsequently, the mixture was heated at 60 ◦C with a reactor and
stirred for 20 min. It was then diluted with tap water to 5 wt.% at the same temperature.
After stirring and cooling, and the O/W emulsion was completely prepared. The ionic
concentration compositions of O/W emulsions were measured using ion chromatography,
and the result is shown in Table 3.
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Table 3. Ionic concentration of the prepared O/W emulsion.

Ionic Types Cl− NO−3 SO2−
4 PO3−

4 K+ Ca2+ Na+ Mg2+

Concentrations
(ppm) 15.62 21.78 71.52 6.35 - 67.26 13.94 6.39

2.2. Cold Rolling Tests

Cold rolling test of the Cu strip was conducted using a Φ130 × 220 mm two-high mill
with a velocity of 13 r/min and a rolling power of 5.5 kW at 25 ◦C. O/W emulsions that
served as lubricants were added at the deformation zone to obtain thinner strip with higher
surface quality. The reduction ratio of each pass was constantly restricted at 20%. The
rolled thickness of each pass is shown in Table 4. Due to the influence of the spring-back
error, the actual strip thickness of each pass was larger. In this work, Cu strips under a
different accumulated reduction of 0% (raw strip), 20.7% (small reduction strip), 58.6%
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(moderate reduction strip), and 77.3% (large reduction strip) were recollected as samples
for subsequent electrochemical measurements and EBSD analysis.

Table 4. Actual rolled thickness of each pass.

Rolling Pass 0 1 2 3 4 5

Thickness (mm) 1.98 1.85 1.57 1.16 0.82 0.45

2.3. Electrochemical Measurement

Electrochemical measurements were performed by a multichannel potentiodynamic
system (VersaSTAT, AMETEK, Berwyn, PA, USA) equipped with a conventional three-
electrode cell. A 4 cm2 platinum sheet was utilized as the auxiliary electrode, a saturated
calomel electrode (SCE) functioned as the reference electrode, and the cold-rolled Cu strips
were used as the working electrodes. The working electrodes were connected with Cu
wire and embedded into epoxy resin, leaving a 1 cm2 cross-sectional area exposure for
electrochemical experiments. All of the Cu electrodes were abraded with 800 to 2000 grit
silicon carbide papers gradually and then polished with 0.5 SiO2 anti-scuffing paste to
obtain a minor-like appearance before the electrochemical measurements.

The open circuit potential (OCP) was first measured to achieve a steady state. Subse-
quently, EIS tests were performed at a frequency ranging from 105 to 10−2 Hz, using an
AC signal with an amplitude of 10 mV. The EIS data were analyzed carefully by Zsimpwin
software (3.30d, Echem, Ann Arbor, MI, USA). Finally, potentiodynamic polarization mea-
surements were carried out and the results were recorded from a potential ranging from
−1.5 V to 1.5 V at a scan rate of 1 mV/s. Before the tests, the electrodes were immersed in
the same O/W emulsion with a pH value of 7.8, which served as the corrosive medium.
All of the electrochemical experiments performed referred to the OCP in a temperature-
controlled water bath at 25 ± 2 ◦C for 2 h. All of the measurements were performed thrice
to ensure a satisfactory reproducibility.

2.4. Surface Observations

The surface morphologies of the corroded Cu electrodes were observed with laser
scanning confocal microscopy (LSCM, LEXT OLS4100, OLYMPUS, Tokyo, Japan) and field
emission scanning electron microscopy (FE-SEM, Nova Nano-SEM450, FEI, Hillsboro, OR,
USA). X-ray photoelectron spectroscopy (XPS, ESCALAB 250 Xi, Thermo Fisher Scientific,
Bedford, MA, USA) was carried out to analyze the components of the corrosion products on
the surface. The cross-section microstructure of the pits was analyzed by the combined use
of FIB/SEM (Helios Nanolab 600i, FEI, Hillsboro, OR, USA). The dislocation configurations
on the microstructure of the rolled Cu strips were observed by transmission electron
microscopy (TEM, FEI Tecnai G2 F20, FEI, Hillsboro, OR, USA).

2.5. EBSD Characterizations

For the preparation of the EBSD samples, these four Cu samples were electropolished
using a voltage of 3.0 V for 40 s in a phosphoric acid electrolyte, which consisted of
175 mL phosphoric acid and 825 mL deionized water. The microstructure of the Cu
sample was examined in a JSM-7900F FE-SEM equipped with an EDAX OIM EBSD system
and the operation voltage was set as 20 keV. The characterizations were conducted by
scanning a large area of 500 × 500 µm2 with a step size of 0.8 µm to ensure that the results
presented the real microstructure. All of the EBSD samples were placed with one accord,
exposing the rolling directions (RD) and the transverse direction (TD) for microstructural
observations. OIM Analysis software (6.2, EDAX, Philadelphia, PA, USA) was used for the
EBSD data processing.
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2.6. Mechanical Properties Tests

The microhardness of the near-pit sites on the Cu strips was implemented through
an EM-1500L Vickers indentation instrument. As shown in Figure 2, under the effect of
indentation load, the material began to crack at the top corner and the crack length could
be measured when it was unloaded. The hardness (H) was calculated as follows,

H =
P
S
=

P× 2 sin θ
2

d2 = 1.854× P
d2 (1)

where P is the preload; d is the diagonal length of indentation; and θ is 136◦, representing
the angle between the diamond indenter and sample plane.
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Subsequently, referring to Lawn’s theory, two mechanical properties, namely the
fracture toughness (KIC) and residual stress (σγ), in Cu strips were deduced from the
following data. Assuming the influence of σγ was uniform, KIC could be calculated using
Formula (2) [19],

KIC = χ
p

C2/3 +
2√
π

σγC1/2 − 2√
π

σγ
t

C1/2 (2)

t and χ are the parameters that were further obtained by Formulas (3) and (4),

t =
d

2 tan θ
(3)

χ = δ

(
E
H

)1/2
(4)

where δ is the indenter geometry factor, E is the elastic modulus of Cu strips, and C is the
crack length.

3. Results and Discussion
3.1. Electrochemical Corrosion Properties

Table 5 shows the detail electrochemical parameters, including the corrosion potential
(Ecorr), corrosion current density (icorr), anodic Tafel slope (βa), and cathodic Tafel slope (βc),
which are deduced through the Tafel linear extrapolation method (as shown in Figure 3a). It
is found that the initial anodic current density linearly increases with the potentials. When
the Cu electrode passes the Tafel polarization region, a “potential plateau” phenomenon
is observed at this stage and the logicorr value hardly moves with the increase of Ecorr.
This “potential plateau” commonly referred to as a passivation region, which is due to the
formation of intermediate species such as CuO2 and CuCl−2 on the electrode surface via the
chemical reaction between Cu electrodes and solutions [20,21]. When the potential reaches
a certain value, logicorr increases again and the corrosion of the Cu electrode is accelerated.
This generally causes pitting corrosion on the electrode surface and the potential value in
this case is defined as the pitting potential (Ep) [22].
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Table 5. Potentiodynamic polarization parameters of Cu electrodes under different rolling reduction.

Reduction Ecorr (mV) icorr (A/cm2) βa (V/dec) βc (V/dec) Ep (V)

0% −134 1.23 × 10−6 3.09 −1.92 0.58
20.7% −425 9.55 × 10−6 2.98 −2.01 0.45
58.6% −505 1.76 × 10−5 2.75 −2.09 0.41
77.3% −527 2.56 × 10−5 2.99 −1.98 0.11
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Potentiodynamic polarization curves of Cu electrodes under different cold rolling
reduction in the O/W emulsions are shown in Figure 3b. It is observed that there are not
significant changes for both of the anodic slope (βa) and cathodic slope (βc) reflecting the
similar polarization behavior of these four curves. The icorr of the raw Cu electrode in
the O/W emulsion is 1.23 × 10−6 A/cm2. With the accumulation of the rolling reduction,
the values of logicorr gradually increase and Ecorr shifts towards being more negative in
the anodic region. This indicates Cu suffers more serious corrosion as the rolling process
extends. In particular, when the Cu strip experienced a 77.3% reduction, the Ep of the Cu
electrode abruptly decreases and the passivation region subsequently disappears, which
means that pitting corrosion occurs easily on the Cu surface with a larger reduction.

The Nyquist plots of the Cu electrodes in the O/W emulsions are displayed in
Figure 4a. The curves show depressed semicircles in the high-frequency region, followed
by straight lines in the low-frequency region. Generally, the semicircles are related to
charge transfer resistance and double-layer capacitance. The low-frequency impedances
are ascribed to Warburg impedances, which can be explained by the mass diffusion of the
corrosion reactants and products towards or away from the Cu surface [23–25]. At the
high-frequency impedance region, the electrode of the raw Cu strip exhibits the largest
impedance and its diameter reduces with the increase of cold rolling reduction. Affected
by O/W emulsion, Cu bulks are adsorbed by some soluble ions, then the film resistance
and film capacitance are existed on its surface. Therefore, the R(Q(R(Q(RW)))) equivalent
electrochemical circuit model is most suitable to fit this measurement, wherein Rs is the so-
lution resistance in O/W emulsions, and Rf and Rct represent the protective film resistance
and charge transfer resistance, respectively. The polarization resistance Rpo (Rpo = Rf + Rct)
is dominantly controlled by the charge transfer process, as the value of Rf is relatively
smaller. W stands for Warburg impedance. Qf and Qdl are the constant phase elements
(CPE), representing the film capacitance and double-layer capacitance, respectively [24].
The parameters of the EIS results of different reduced Cu electrodes in the O/W emulsions
are shown in Table 6.
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Table 6. Parameters of the EIS results of different reduced Cu electrodes in O/W emulsions.

Reduction Rct
(kΩ cm2)

Rf
(kΩ cm2)

Rpo
(kΩ cm2)

Rs
(kΩ cm2)

Qf
(µF cm−2)

Qdl
(µF cm−2)

W
(×10−2 Ω cm2 S1/2)

0% 107.82 1.12 108.94 2.81 12.68 25.64 18.62
20.7% 44.08 0.42 44.50 2.82 18.86 38.40 15.64
58.6% 28.31 0.38 28.69 2.81 24.42 50.42 31.08
77.3% 20.27 0.32 20.59 2.82 28.82 340.64 40.12

Figure 4b,c presents the Bode absolute plots and Bode phase plots of different rolled
Cu electrodes in the O/W emulsions. The impedance values of the Cu samples were found
to significantly decrease with cold rolling reduction over the whole frequency range. Mean-
while, their phase angles at low frequencies decreased with the accumulated reduction.
Generally, larger values of log |Z| always represent a superior protection performance [21],
while low phase angle values at low frequencies usually indicate corrosion. From these
figures, it can be inferred that the rolling procedure could weaken the corrosion resistance
of copper.

3.2. Surface Analysis

The Cu electrodes after 2 h of electrochemical measurements were dried subsequently
and further observed with a laser scanning confocal microscope. The 3D topographies and
height profiles of the Cu samples before and after the electrochemical tests are displayed
in Figure 5. As all of the Cu electrodes were fresh polished before the tests, as shown
in Figure 5a,c,e,g, their topographies seemed smooth. With the reduction accumulated,
a small quantity of shallow rolling trace appeared on the Cu surface. The topographies
became much rougher after the electrochemical tests. From the 3D topography in Figure 5b,
it is found that some dispersive pits appeared on the raw strip surface. These pits became
denser with the increase of the rolling reduction (as shown in Figure 5d,f,h). In particular,
while Cu experienced the largest deformation of 77.3% reduction, the small pits aggregated
and propagated to form larger corrosion pits. The height profile includes the information
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of mean height of profile irregularities (Ra), maximum height of profile peak (Rp), and
maximum depth of profile valley (Rv) of the Cu samples. As shown in the figures, the
Ra values of uncorroded electrodes were around 0.05 µm. However, with the corrosion
occurring, the height profile of these electrodes became fluctuant. It can be seen that each
graph exhibits larger absolute values of Rv than Rp, indicating that pitting corrosion largely
exists on the Cu surface. As the rolling reduction increases, the height profile curves of
the rolled Cu strips exhibited fluctuations. The topographies became rougher with severer
pitting corrosion occurring on the surface.
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Figure 5. The 3D topographies and height profiles of the Cu electrodes before and after the electrochemical tests under
different rolling reductions: (a,b) 0%, (c,d) 22.7%, (e,f) 58.6%, and (g,h) 77.3%.

Figure 6 shows the FE-SEM images of the Cu electrodes under different cold rolling
reductions before and after the electrochemical experiments. After mechanical polishing, a
small polish trach existed on the electrode surface, and the surface morphologies showed
different degrees of pits after the electrochemical tests. The surface morphology of the
raw strip electrode (Figure 6b) was relatively uniform and appeared to have less scattered
corrosion pits. Corrosion pits exhibited various degrees of expansion as the rolling pro-
ceeded. As shown in Figure 6d, 20.7% rolling reduction was found to cause some small
pits to connect with other pits. When the reduction increased to 58.6% (Figure 6f), the
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density of the pits increased significantly, becoming dense and covering the entire surface.
These corrosion pits eventually existed in the form of huge pitting corrosion when the Cu
strip experienced 77.3% reduction (Figure 6h), and its morphology was seriously damaged
under this circumstance.
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Figure 6. SEM morphologies of Cu electrodes before and after the electrochemical tests under different rolling reductions:
(a,b) 0%, (c,d) 22.7%, (e,f) 58.6%, and (g,h) 77.3%.

The corrosion characteristics of these pits were further investigated using high-
resolution scanning electron microscopy (HR-SEM). Taking the 58.6% rolled Cu strip
as an example, as shown in Figure 7a,b, some large sphere-like pits (marked by white
arrows) and small metastable pits (marked by red arrows) were observed on the surface.
The diameter of the large pits was around 7 µm, and with metastable pits ranging from
0.7 to 1.3 µm. Clearly, the whole surface could be divided into three parts, including the
uncorroded layer, interface, and corroded layer, as shown in Figure 7c. The morphology
of the uncorroded layer seemed clean and flat. The interface was loose and accompanied
by the occurrence of some cracks. Pits grew on the corroded surface and formed the
granulate corrosion products. The EDS surface scanning mappings are shown in Figure 7d,
and it can be seen that Cu element was mainly distributed on the uncorroded surface,
while the Cl, S, and C elements were mostly distributed on the corroded surface. This
phenomenon indicates that pitting corrosion is derived from these Cl, S, and C contents in
the O/W emulsions.

The XPS analysis of the corrosion pits on the rolled Cu strip was performed after the
morphology observation, and the results are shown in Figure 8. The binding energy of
some of the standard compounds of Cu, O, C, S, Cl, and P contents are listed in the plots,
which were obtained from the NIST XPS database. Firstly, as shown in Figure 8a, the peaks
detected at the binding energy of 952.56 eV, 952.7 eV, and 952.5 eV (Cu 2p1/2) represent
metallic Cu, CuO, and Cu2O, respectively [26–28]. On the other hand, the fitted peak
detected at 932.5 eV (Cu 2p3/2) could be constructed by five separation peaks, indicating
the presence of some Cu (I) and Cu (II) compounds. In the O 1s spectrum, as Figure 8b
shows, the peaks at 532.81 eV were indicative of C = O/C-O organic compounds. The other
peak appeared at 532.2 eV, combined with 935.0 eV in the Cu 2p3/2 spectrum (Figure 8a)
and 168.15 eV in the S 2p spectrum (Figure 8c), and the existence of CuSO4 could be con-
firmed [29]. Furthermore, the binding energy of the C 1s spectrum (Figure 8d) showed a
strong peak at 284.6 eV, representing the existence of C-C and C-H in the emulsifier oils [11].
In addition to the saturated carbon chain, a weak peak was detected at 287.3 eV. This is
related to the carbonate groups (CO2−

3 ), indicating the existence of CuCO3 compounds [30].
From Figure 8e, it is seen that P element did not experience any chemical reactions with
Cu and the peak detected at 134.1 eV was therefore indicative of undecomposed phos-
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phate [31]. Another important finding is depicted in the Cl 2p spectrum (Figure 8f). The
peak was significantly divided into two separation peaks located at 199.1 eV and 198.2 eV,
representing CuCl and CuCl−2 , respectively [32,33]. These compounds were the main
factors that caused severe pitting corrosion on the Cu surface.
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3.3. Microstructure and Mechanical Properties

It is widely believed that cold rolling changes the microstructure and properties of met-
als. The variation of the metal corrosion property is related to its microstructure [14,34,35].
Figure 9 presents the EBSD mapping for the microstructure of Cu strips under different
cold rolling reductions. The statistical data of the grain size and grain boundaries (GBs)
variations are shown in Table 7. It is apparent that the average grains size (Dadv) of the
Cu strips were refined from 5.21 µm to 2.42 µm, while the total number of GBs increased
with the cold rolling operations. As shown in Figure 9a, the grains of the raw Cu strip
were relatively homogenous and a small portion of twin boundaries (TBs) occurred at the
surface. With the accumulation of the rolling reduction (shown in Figure 9b–d), the grains
became blurry and the GBs were gradually broken. Generally, a 15◦ criterion was employed
to define high-angle boundaries (HAGBs) vs. low-angle boundaries (LAGBs) [36]. As
shown in Table 5, the fraction of HAGBs was found to decrease with the rolling reduction,
meanwhile that of LAGBs increased.
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(d) 77.3% reduction (in the EBSD mappings, red, green, and blue lines represent the angle of 2–5◦,
5–15◦, and 15–180◦ boundaries, respectively.).
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Table 7. Statistical data of the grain size and grain boundary variations.

Reduction 0% 20.7% 58.6% 77.3%
Dadv (µm) 5.21 5.14 3.08 2.42

Number of GBs 285,646 463,615 971,524 13,543,64
Number of LAGBs 82,266 305,522 745,159 10,672,39

Fraction of LAGBs (%) 28.8 65.9 76.7 78.8
Number of HAGBs 203,380 158,093 226,365 287,125

Fraction of HAGBs (%) 71.2 34.1 23.3 21.2

Figure 10 shows the variations of the misorientation distribution and inverse polar
figure (IPF) of the rolled Cu strips. The peaks of misorientation distributions were mainly
located at 55–65◦ on the misorientation axis and 0–10◦ on the misorientation axis. The peak
of distribution located at 55–65◦ on the misorientation axis probably represents the <1 1 1>
TBs. It was found that the fraction of 55–65◦ on the misorientation axis exhibited a reduction
tendency (from 39.7 to 5.1%). Similarly, from the IPF results, the maximum values of TBs
also reduced from 5.59 to 3.48. As cold deformation promoted the grain boundaries to be
elongated or rotated along the rolling direction [37], the role of deformation compatibility
caused an increase of LAGBs.
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From the perspective of the microstructure, the variations of the grain size and grain
boundary were derived from the presence of rolling residual stress on metal, which is
the key characteristic that deteriorates the corrosion properties of the material [38,39].
In the case of the rolled Cu strips, the variation of the mechanical properties caused by
deformation strengthening played a vital role in its subsequent corrosion.

Table 8 presents the mechanical properties of the near-pit regions on the rolled Cu
strip surfaces. The fracture toughness (KIC) of the Cu strips was found to be decreased
with the rolling extensions, while the absolute value of the residual stress (σγ) increased.
σγ of the 77.3% rolled strip increased to −593.38 MPa, and a negative value represented
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the compressive stress. In the case of a large reduction, more crystal defects and cracks
were be generated at the surface microstructure of the Cu strip. Due to the accumulation of
residual stress, it was easy to induce stress corrosion in the material interior, which further
increased the corrosive tendency and caused the expansion of the pitting corrosion [40].

Table 8. Mechanical properties of the near-pit regions on Cu strip surfaces with different reductions.

ε D/µm H/MPa C/µm KIC/MPa·m1/2 σγ/MPa

0% 165.79 221.76 69.48 15.38 −35.69
20.7% 1297.67 251.64 106.76 11.25 −238.43
58.6% 356.36 286.67 139.47 8.78 −296.45
77.3% 386.37 357.73 156.98 3.21 −598.38

3.4. FIB and TEM Results

In order to give an in-depth study on the corrosion mechanism of Cu strips under
different cold rolling reductions, the FIB technique was performed to characterize the
cross-sectional microstructure of the corrosion pits. The cross-section microstructure of
the corrosion pits on the 20.7% reduced Cu sample is shown in Figure 11a. It was found
that the size along the depth of the entire pit was around 2.32 µm. A small portion of
metastable pits and microcracks was observed inside the corrosion pit. Nevertheless, as
the cold rolling reduction accumulated to 77.3% (Figure 11b), the depth of pit increased to
3.18 µm. Meanwhile, the metastable pits and microcracks became more intensive and larger
accordingly. These metastable pits and microcracks were distributed along the rolling
directions, indicating that pitting corrosion tends to be distributed in regions with more
defects and deformations.
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Figure 11. FIB-SEM cross-section microstructure of the corrosion pits of Cu strips under small and
large reductions: (a) 22.7% reduction and (b) 77.3% reduction.

A similar phenomenon can be observed from the TEM micrographs. The disloca-
tion configurations on the microstructure of the 20.7% reduced Cu strip are shown in
Figure 12a,b. It can be seen that only a few dislocation sources appeared in the uncorroded
site, whereas a large number of dislocation cells appeared in the near-pits region. As for
the 77.3% reduced strip (shown in Figure 12c), some modulated structures were observed
in the uncorroded region, which could be regarded as the sub-structure that appeared at
the local region. This phenomenon is related to the broken of grain boundaries caused by
large plastic deformation. Additionally, in the near-pits region (Figure 12d), the number
of dislocations was found to increase remarkably in comparison with the 20.7% reduced
strip. It can be clearly seen that a long dislocation wall formed on the microstructure by
dislocation entanglements. These results are consistent with the previous surface and
microstructure observations.
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3.5. Discussions

On the basis of the above results, it was found that the corrosivity tendency of Cu
strips under different cold rolling reductions (ε) in O/W emulsions followed the order of
ε0% < ε20.7% <ε50.6% < ε77.3%., The residual stress on the surface microstructure increased
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GBs, increase of LAGBs, and decrease of HAGBs. Furthermore, surface defects such as
metastable pits, microcracks, and dislocation cells were found to increase with the reduction
accumulations. With the role of O/W emulsions, Cl, C, and S elements were significantly
distributed on the corroded surface. Among them, Cu was likely to react with the Cl−

component in the anodic region [41,42]:

Cu + Cl− → CuCl + e− (5)

CuCl + Cl− → CuCl−2 (6)

CuCl−2 → Cu2+ + 2Cl− + e− (7)

Meanwhile, the oxygen in the emulsion solutions as well as other anions such as SO2−
4

and CO2−
3 also play significant roles in the electrode reaction:

2Cu + 1/2O2 → Cu2O (8)

2CuCl−2 + H2O→ Cu2O + 2H+ + 4Cl− (9)
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Cu2+ + 2RCOO− → CuCO3 + R–R + CO (10)

Cu2+ + SO4
2− → CuSO4 (11)

Furthermore, the corrosion products were proven to be CuCl, CuCl−2 , Cu2O, CuCO3,
and CuSO4 [11,30,43–45], appearing in the form of pitting corrosion on the Cu surface.
These corrosion products eventually caused the presence of large cathodic areas surrounded
by small anodic corrosion sites [46]. Therefore, under the interactive effect of pitting
corrosion and stress corrosion, pits expanded along the rolling direction. Anions aggregated
in surface defects such as dislocations, metastable pits, and microcracks, thus the corrosion
eventually evolved into pitting corrosion, which is more serious. The mode of the whole
corrosion behavior of the Cu strip rolled with O/W emulsions is depicted as Figure 13a,
and the mechanism of corrosion expansion is shown in Figure 13b.
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(b) mechanism of pitting corrosion expansion.

4. Conclusions

In this paper, the effect of cold rolling reduction on the pitting corrosion behavior and
microstructure of Cu strips in O/W emulsions were systematically investigated through a
combination of electrochemical experiments, surface and corroded microstructural obser-
vations, and mechanical property analysis. The primary conclusions are drawn as follows:

(1) The electrochemical results show the corrosion current densities of Cu strips in the
O/W emulsions increased with accumulated reduction, while the corrosion potentials
shifted towards being more negative in the anodic region. The pitting potentials and
corrosion resistances were both decreased with the processing of cold rolling. These
phenomena demonstrated that the corrosive tendency of Cu strips under different
rolling reduction (ε) followed the order of ε0% < ε20.7% < ε50.6% < ε77.3%.

(2) Surface observations indicated that there were different degrees of pit expansions
that occurred on the rolled Cu surfaces. These pits became denser and the surface
became rougher with the increase of rolling reduction. Some metastable pits existed
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in the larger pits. Cu reacted easily with chlorine, sulfur, and carbon components
from the O/W emulsions, Then, the corrosion products, i.e., CuCl, CuCl−2 , Cu2O,
CuCO3, and CuSO4 were generated, which appeared in the form of pitting corrosion
on the Cu surface.

(3) EBSD mappings demonstrated the average grain size of Cu strips refined from 5.21 µm
to 2.42 µm with the accumulated reduction. The fraction of low-angle boundaries
increased, while that of high-angle boundaries decreased. This was due to the accu-
mulation of residual stress, which induced stress corrosion in the material interior,
further increased the corrosive tendency, and contributed to the expansion of the
pitting corrosion.

(4) From the TEM and FIB characterizations, it is concluded that corrosion pits expanded
along the rolling direction under the interactive effect of pitting corrosion and stress
corrosion. Meanwhile, anions aggregated in the surface defects, such as dislocations,
metastable pits, and microcracks, which thereby accelerated the pitting corrosion of
the surface.
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