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Abstract: The use of food industry waste as bioactive compounds in the modification of biodegrad-
able films as food packaging remains a major challenge. This study describes the preparation and
bioactivity characterization of poly(butylene succinate) (PBS)-based films with the addition of the
bioactive compounds curcumin (CUR) and carvacrol (CAR). Films based on PBS modified with
curcumin and carvacrol at different concentration variations (0%/0.1%/1%) were prepared by sol-
vent casting method. The antioxidant, antimicrobial, and antibiofilm properties were investigated
against bacteria (Escherichia coli, Staphylococcus aureus) and fungi (Candida albicans). As a result of
the modification, the films exhibited free radicals scavenging (DPPH up to 91.47% and ABTS up to
99.21%), as well as antimicrobial (6 log, 4 log, and 2 log reductions for E. coli, S. aureus, and C. albicans,
respectively, for samples modified with 1% CUR and 1% CAR) activity. Moreover, antibiofilm activity
of modified materials was observed (8.22–87.91% reduction of biofilm, depending on bioactive com-
pounds concentration). PBS films modified with curcumin and carvacrol with observed bifunctional
properties have many potential applications as active packaging.

Keywords: bioactive materials; poly(butylene succinate); curcumin; carvacrol; antibacterials;
antibiofilm activity; antioxidants

1. Introduction

The massive production of plastics and the problems with their management after
use contribute to environmental pollution on many levels [1,2]. A promising alternative
to traditional plastic-based materials may be biodegradable packaging. Groups such as
polymers derived from biomass (polysaccharides, proteins, and lipids), polymers from
biobased monomers, and polymers produced by microorganisms can be distinguished as
potential alternatives to plastics [3,4].

A biodegradable aliphatic polyester, poly(butylene succinate) (PBS), is of increas-
ing interest due to its interesting physical and biological properties. This is because its
physicochemical and thermal properties are similar to the polyolefins (polyethylene and
polypropylene) traditionally used in the industry. PBS is a derivative of succinic acid
(SA), which can be obtained from renewable resources or by microbial fermentation [5].
Furthermore, PBS is able to biodegrade under aerobic conditions, making it a more environ-
mentally friendly, promising material for packaging applications, which is in accordance
with the European Green Deal [6,7]. However, some of its disadvantages, such as slow
crystallization rate, low melt viscosity, and softness, have limited its processability and
applications, especially in injection molding [8,9]. In recent years, many attempts have fo-
cused on developing PBS-based blends and composites modified with natural compounds
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and/or inorganic additives to obtain improved properties and added value in terms of
bioactivity (such as antimicrobial and antioxidant) [10].

The increasing bacterial resistance to antibiotics and the occurrence of foodborne
infections, as well as the emergence of new mutations of microorganisms, pose a global
threat to consumer health [11]. Moreover, oxidative degradation is the leading cause of
food spoilage (after microbial growth), and the inclusion of natural antioxidants in food
packaging is a way to improve the stability of oxidation-sensitive foods [12,13]. Therefore,
developing new active packaging materials that can ensure the microbiological safety of
food for consumers and extend the shelf life of products has become a challenge [11,14,15].
Such packaging systems typically use active ingredients derived from natural sources that
exhibit antioxidant and/or antimicrobial activity [13,15,16]

Carvacrol (2-methyl-5-(1-methylethyl)-phenol) is a monoterpene that, along with thymol,
is contained in the essential oils of plants from the genus Origanum [17,18]. The outstanding
antimicrobial properties of carvacrol are repeatedly mentioned in the literature and are most
likely related to the interaction between the hydroxyl group of carvacrol and lipids in the
bacterial cytoplasmic membrane, which leads to its destabilization, increased fluidity, and
permeability to ions. In fungi, carvacrol is also likely to disrupt membrane integrity and
block ergosterol biosynthesis [18]. This antimicrobial activity has been demonstrated for
films from various polymeric matrices, such as PLA [19,20], starch [15], polypropylene [21],
carboxymethyl cellulose [22], or fruit/vegetable puree/pectin films [23].

Curcumin ((1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is
a natural hydrophobic phenolic component of turmeric (Curcuma longa L.), and its most
common uses are as a spice and in yellow food coloring (E100) [24–29]. Curcumin has
recently attracted much attention and has numerous applications due to its broad spec-
trum of biological functions, including its antimicrobial activity and excellent antioxidant
potential [30,31]. Curcumin is also considered non-toxic to humans and is safe even in very
high doses [29]. However, low water solubility limits the direct biomedical and packaging
applications of curcumin, which has already been reported as a bioactive additive for the
production of functional polymer films based on low-density polyethylene [32], poly(lactic
acid) [19,29,33], cellulose [34], carboxymethyl cellulose [22], carrageenan [35], cellulose
acetate [36], collagen [37], PBAT [28,38,39], pectin [40], and gelatin [27,41,42].

As demonstrated in previous studies, functional PBS-based films with value-added
antimicrobial, antioxidant, and radicals scavenging activities can be developed by adding
a bioactive compound (quercetin) to a polymer matrix [43]. Moreover, as shown in other
studies, bioactive compounds possessing multifunctionality (antimicrobial and antioxidant
activity) might show synergistic activity when incorporated into packaging materials [22].
With their potential as functional additives, curcumin and carvacrol are promising agents
in PBS-based packaging systems, and some synergies can be expected when these com-
pounds are used together. For instance, carvacrol and montmorillonite showed a synergistic
antimicrobial effect in biodegradable, starch-based films [15]. The use of synergistic combi-
nations allows the achievement of a desired antimicrobial and antioxidant performance at
lower concentrations of the active components [13]. Moreover, carvacrol and curcumin are
designated as generally recognized as safe (GRAS) by the United States Food and Drug
Administration (FDA) for use as food additives; thus, their use as additives in bioactive
biodegradable films appears to be an outstanding alternative for reducing food loss and
waste and improving food security [13,43].

To date, there are no studies on PBS films modified with carvacrol (CAR) or curcumin
(CUR). The first purpose of the study was to obtain PBS-based film modified with carvacrol
and/or curcumin that could be active against microorganisms and prevent the formation
of biofilm on polymeric surfaces. In addition, the synergistic effect of the chosen bioac-
tive compounds was examined. Another objective of this study was to determine the
antioxidant potential of the tested materials.
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2. Materials and Methods
2.1. Materials

Poly(butylene succinate) (PBS) (FZ91PM BioPBS™) was procured from Mitsubishi
Chemical (Tokyo, Japan). Carvacrol (natural, originated from thyme essential oil, 99%,
food grade), sodium chloride, disodium phosphate, monosodium phosphate, 2,2-diphenyl-
1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS),
potassium persulphate, potassium ferricyanide, trichloroacetic acid, ferric chloride, iron
sulphate, and tris(hydroxymethyl)aminomethane were purchased from Merck Chemi-
cal (Saint Louis, MO, USA). Curcumin and crystal violet were purchased from Merck
(Darmstad, Germany). Chloroform, ethanol, and methanol were procured from Chempur
(Piekary Śląskie, Poland). Agar—agar, Plate Count Agar, Potato Dextrose Agar, and Tryptic
Soy Broth were acquired from Merck Chemical (Saint Louis, MO, USA). All chemicals
were of analytical grade. Escherichia coli ATCC25922, Staphylococcus aureus ATCC43300, and
Candida albicans ATCC10231 were procured from ATCC (American Type Culture Collection,
Manassas, VA, USA).

2.2. Preparation of PBS-Based Films

PBS and chloroform were placed in glass bottles at a ratio of 8 g of PBS per 100 mL
of chloroform. Subsequently, the mixtures were stirred (magnetic stirrer Ika, Staufen im
Breisgau, Germany, 200 rpm) until the PBS was completely dissolved. Curcumin and
carvacrol were then added to the solutions in amounts suitable to obtain concentrations
of 0.1/1.0% (w/w) by weight (for CUR and CAR separately, as shown in Table 1) of PBS
used, and then waiting until completely dissolved. The film-forming solutions were cast
on glass Petri dishes (90 mm) and dried at 25 ◦C for 24 h. The dried films were peeled from
the plates and conditioned at 25 ◦C and 50% relative humidity (RH) in a temperature and
humidity clean room prior to any testing.

Table 1. CUR and CAR concentrations (w/w) per weight of PBS used.

Sample Name CUR Concentration (w/w) CAR Concentration (w/w)

PBS 0% 0%

CAR1% 0% 1%
CAR0.1% 0% 0.1%

CUR0.1% 0.1% 0%
CUR1% 1% 0%

CUR0.1%CAR0.1% 0.1% 0.1%
CUR0.1%CAR 1% 0.1% 1%
CUR1%CAR0.1% 1% 0.1%
CUR1%CAR 1% 1% 1%

2.3. Determination of Films Antimicrobial Activity

Antimicrobial activity analyses were performed based on ASTM E 2180-01 with
modifications described elsewhere [22]. In brief, film sections (2.5 cm × 2.5 cm) were cut
and sterilized under UV light. Agar slurries, prepared by combining 0.15 g agar-agar and
0.45 g NaCl in 50 mL of distilled water, were sterilized and, when cooled down, combined
with the suspensions of microorganisms to obtain a microbial cells concentration equivalent
to 0.5 on the McFarland scale. Subsequently, the mixtures (0.5 mL) were aseptically applied
on the surface of the samples, then incubated for 24 h at 30 ◦C with relative humidity at
90%. Afterwards, the samples were aseptically removed from the Petri dishes, transferred
into 10 mL of sterile physiological saline (0.9% NaCl), and thoroughly vortexed. The serial
dilutions were prepared and cultures were made on Plate Count Agar (E. coli and S. aureus)
and Potato Dextrose Agar (C. albicans) media and incubated at 37 ◦C for 24 h. Results are
expressed as mean values with standard deviations.
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2.4. Determination of Biofilm Formation on Films

The antibiofilm activity of the samples was assayed following the approach described
by Barros et al. [44] with our modification. The film sections (1.5 cm× 1.5 cm) were applied
to a 12-well cell culture plate and then each was flooded with 4 mL of Tryptic Soy Broth.
A 100 µL suspension of microorganisms with a concentration of 1.5 × 108 CFU/mL was
then added to each well. The plates were incubated at 37 ◦C for 24 h with static conditions.
Subsequently, the films were carefully removed from the broth and washed gently with
distilled water (to remove planktonic cells) and allowed to dry (at 25 ◦C for 6 h). The
samples were then transferred to 15 mL Falcon tubes and 4 mL of 0.1% crystal violet
solution were added. The samples were left static for 20 min in the dark. The crystal violet
solution was removed and the stained biofilms were washed with distilled water five times
to remove excess unbound dye. The samples were transferred to new 15 mL Falcon tubes
and 2 mL of 30% acetic acid solution were added to dissolve the dye. The tubes were shaken
at 150 rpm in the dark for 25 min. Then, the absorbance values at 595 nm were measured in
96-well plates using a microplate reader (Synergy LX, BioTek, Winooski, VT, USA) against
30% acetic acid as a blank.

2.5. Determination of Reducing Power and Free Radicals Scavenging Activity

The reducing power and DPPH and ABTS radicals scavenging activities analysis were
assayed following the methodology detailed elsewhere [45]. The reducing power was
determined by adding 1.25 mL of phosphate buffer (0.2 M, pH 6.6) to the film samples
(100 mg) and then adding 1.25 mL of 1% potassium ferricyanide solution. The samples were
then incubated at 50 ◦C for 20 min before the addition of 1.25 mL of trichloroacetic acid.
The sample tubes were centrifuged at 3000 rpm for 10 min and 1.25 mL of the supernatant
was then combined with 1.25 mL of distilled water. To finish, 0.25 mL of 0.1% ferric chloride
solution was added to the resulting mixtures and the absorbance was read at 700 nm.

DPPH radicals scavenging activity was assayed by placing 100 mg of film samples
in 25 mL of 0.01 mM DPPH methanolic solution and incubating for 30 min without light.
Subsequently, the absorbance was measured at 517 nm. The DPPH scavenging rate was
calculated from the formula:

%DPPH scavenging activity = 100−
Abssample × 100

Abscontrol
(1)

where
Abssample—absorbance of solution after incubation with modified films, and
Abscontrol—absorbance of solution after incubation with neat film.

ABTS radicals scavenging activity was determined by placing 100 mg of film samples
in 10 mL of ABTS radicals solution (produced by mixing 7 mM ABTS with 2.45 mM
potassium persulfate) and incubating in the dark for 6 min. Then, the absorbance at 734 nm
was measured. The ABTS scavenging rate was calculated according to the same equation
as the DPPH method.

2.6. Statistical Analysis

Statistical analyses were conducted using Statistica version 10 (StatSoft Polska, Kraków,
Poland). Differences between means were tested by Fisher’s LSD post hoc test with a
significance threshold of p < 0.05. All measurements were performed in triplicate.

3. Results
3.1. Antimicrobial and Antibiofilm Activity

The antimicrobial activity of neat and modified PBS films towards bacteria (Escherichia coli
and Staphylococcus aureus), as well as fungi (Candida albicans), is presented in Figures 1–3. As
expected, the neat PBS film did not exhibit any antibacterial and antifungal activity
(2.37 × 108 ± 1.94 CFU/mL, 7.38 × 107 ± 1.91 CFU/mL, and 6.40 × 106 ± 0.13 CFU/mL
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for E. coli, S. aureus, and C. albicans, respectively). For S. aureus and C. albicans, no an-
timicrobial effect was observed for both variants modified with curcumin (0.1% and 1%)
(p > 0.05), whereas for E. coli, a very weak reduction of microbial counts was noticed
(p < 0.05). Although CUR is known to have antimicrobial activity, its hydrophobic nature
and insolubility in water limit its efficiency [46]. This observation is generally in line with
the findings of Musso et al. [42], who observed that gelatin/curcumin films did not exhibit
antimicrobial activity against E. coli, S. aureus, S. enteritidis, and Bacillus cereus. The lack
of antimicrobial activity of gelatin/curcumin films was partly due to the low concentra-
tion of curcumin (0.4 wt% relative to gelatin), and also due to the interaction between
curcumin and gelatin. Similarly, Barros et al. reported that free curcumin did not have any
antibacterial effect on Pseudomonas putida [44]. Qiao et al. reported antimicrobial activity of
PVB films when a high concentration (5%) of CUR was used [47]. In order to improve the
solubility of CUR and enhance its antimicrobial mode, several delivery systems have been
reported, such as the application of nanocarriers, inclusion complexes, liposomes, solid
lipid nanoparticles, microemulsions, ionic liquids, and dimethylsulfoxide [12,44,46]. In
fact, Roy and Rhim [27] reported outstanding antimicrobial activity of gelatin/curcumin
composite films even at a low concentration of curcumin (0.25 wt%). The difference in
antimicrobial activity of the gelatin/curcumin films probably resulted from the difference
in the distribution of curcumin in the film matrix. In their study, treatment with the sodium
dodecylsulphate (SDS) emulsifier seemed to increase antimicrobial activity by dispersing
curcumin more uniformly in the polymer matrix, resulting in increased contact with the
test bacteria. However, due to the fat solubility of curcumin, the possibility of its migra-
tion into fat-containing products, such as dairy products (e.g., cheese), and thus, possible
interactions with the microbiota naturally present on these products, but also with food-
borne pathogens, should be taken into account. Due to possible migration from materials
(which requires further in-depth research), it is also potentially possible to deliver increased
amounts of bioactive components with food, which may affect the microbiota of consumers
as curcumin is active on the human microbiota [48]. For example, a recent study revealed
that the Curcuma longa extract with a high curcumin content modulates the microbiota of
patients with hypertension by improving the ratio of SCFAs, which strongly influences the
Enterobacteriaceae group and negatively influences the Bacteroides-Prevotella-Porphyromonas
groups [49].
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On the contrary, a significant reduction (p < 0.05) in the number of viable cells was
observed for PBS/CAR films (7.21 × 103 ± 0.41 CFU/mL, 2.14 × 103 ± 0.59 CFU/mL,
and 5.37 × 104 ± 0.11 CFU/mL, for E. coli, S. aureus, and C. albicans, respectively). CAR is
well known for its great antimicrobial properties due to interactions with the cytoplasmic
membranes of bacterial lipids and disruptions in fungal membranes [18,31]. It can be
concluded that CAR has an antibacterial and antifungal effect in the PBS polymer matrix.
These properties have been previously documented in the literature for films prepared
from CMC [22], starch [15], or polypropylene [21]. There are no significant differences
in microbial inhibition for CUR0.1%CAR0.1%, CUR0.1%CAR 1%, or CUR 1%CAR0.1%
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films compared to analogous films containing only CAR (p > 0.05). Only for E. coli for
CUR 1%CAR 1% film, an increased inhibition of microorganisms was noticeable (from
7.21 × 103 ± 0.41 CFU/mL for CAR 1% to 9.41 × 102 ± 0.19 CFU/mL for CUR1%CAR
1%; p < 0.05), whereas for S. aureus and C. albicans, no such dependence could be observed
(p > 0.05). It can be assumed that, in the case of E. coli, a synergistic effect of CUR and CAR
in 1% concentration occurred, which improved the antimicrobial properties of the film;
however, this mechanism requires further in-depth studies.

Biofilm formation is a problem in many areas of daily life. Wounds infected by
biofilm-forming microorganisms are extremely difficult to treat (antimicrobial treatments
are usually directed against planktonic cells, whereas biofilm can be thousands of times
more resistant to treatment) and often lead to the need for amputation of infected limbs [50].
In addition, biofilm-forming microorganisms pose a threat to the food industry by infecting
food and all kinds of equipment used in food processing [51], or by settling on the surface
of water pipes, leading to contamination of drinking water [52]; hence, any way to combat
biofilms is gaining the attention of researchers and industry.

Figure 4 shows the effect of neat PBS film and modified films on single-species mi-
crobial biofilm formation. The addition of CAR to the PBS films resulted in a significant
reduction in biofilm formation on the surface of the material (p < 0.05), which agrees
with literature reports on the effect of CAR on the viability and formation of biofilms,
including multispecies microbial communities [18]. Further, the addition of CUR resulted
in a decrease in biofilm to a lesser extent than CAR, but the decrease was still statisti-
cally significant (p < 0.05). CUR has been shown to affect biofilm formation by affecting
quorum-sensing when it is released from the polymer matrix [44,53]. The synergistic effect
of CUR and CAR additives on biofilm formation is clearly dependent on the concentration
of additives used for each of the three microorganism strains used. Films containing CUR
1%CAR1% showed the best inhibition of biofilm formation on the surface of the films,
which gives reason to suspect that these additives act synergistically to complement each
other, and to obstruct the adhesion of microorganisms to the surface of the material or
communication between microbial cells.
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3.2. Radicals Scavenging Activities and Reducing Power

The antioxidant activity of the films, quantified as the reducing power, as well as
the radicals scavenging activity of DPPH and ABTS, are summarized in Table 2. The
control PBS film showed no reducing ability or free radicals scavenging activity, as it
was previously shown [43]. The addition of carvacrol significantly enhanced reducing
power (p < 0.05), as well as both DPPH and ABTS radicals scavenging (p < 0.05). Similar
radicals scavenging properties were demonstrated for CMC [22], PVA [54], PLA [13], and
gelatin [41] films modified with carvacrol. Curcumin had a significant effect on all three
parameters studied, significantly improving the antioxidant properties of the films, which
was also shown in the literature for materials such as gelatin [27], PBAT [28], PLA [29],
and tara gum/polyvinyl alcohol [12]. The excellent antioxidant function of curcumin is
due to the donation of the H atom from the phenolic group. Similarly, Musso et al. [42],
as well as Roy and Rhim [27], also reported that the addition of curcumin increased the
antioxidant properties of gelatin-based films. In addition, a dose-dependent increase in
antioxidant activity was observed for CUR and CAR, which is in line with previously
reported findings [22]. It is worth noting that the combination of CUR and CAR showed
synergistic mechanisms and significantly improved the antioxidant properties of the films
(p < 0.05). They showed better results than for films with the same concentrations, but with
only one active ingredient used, indicating a synergistic effect of curcumin and carvacrol.
This observation is in line with the findings of a previous study where two antioxidants
(carvacrol and melanin) were used in CMC films [22]. This fact gives reason to conclude
that it is possible to achieve satisfactory antioxidant properties of films based on polymeric
matrices using the synergistic effect of two active components with lower concentrations
of these components than would be the case if these components were used separately.

Table 2. Reducing power (RP) and radicals scavenging activity of PBS-based films.

Sample RP (700 nm) DPPH (%) ABTS (%)

PBS 0.000 ± 0.000 f 0.00 ± 0.00 e 0.00 ± 0.00 f

CAR1% 0.169 ± 0.004 de 47.90 ± 3.68 b 88.84 ± 1.89 b

CAR0.1% 0.169 ± 0.001 de 20.38 ± 2.78 c 28.72 ± 1.89 c

CUR0.1% 0.173 ± 0.001 cd 25.14 ± 3.76 c 51.93 ± 4.00 d

CUR1% 0.190 ± 0.001 b 88.43 ± 2.74 a 98.21 ± 0.42 a

CUR0.1%CAR0.1% 0.175 ± 0.002 c 52.99 ± 4.78 b 76.93 ± 0.63 e

CUR0.1%CAR 1% 0.176 ± 0.002 c 68.22 ± 1.25 d 91.07 ± 0.00 b

CUR1%CAR0.1% 0.193 ± 0.004 ab 89.31 ± 0.23 a 97.77 ± 0.21 a

CUR1%CAR 1% 0.196 ± 0.007 a 91.47 ± 0.00 a 99.21 ± 0.00 a

Values are means ± standard deviation of triplicate determinations. Means with different letters in the same
column are significantly different at p < 0.05.

4. Conclusions

As a result of the study, the antimicrobial, antibiofilm, and antioxidant activity of PBS-
based films modified with carvacrol and curcumin, alone or in combinations, was shown.
Carvacrol showed higher influence on antimicrobial activity, whereas curcumin showed
higher influence on the antioxidant properties of the films. Antimicrobial efficacy synergy
was observed against E. coli. The significant synergistic effect of the two active ingredients
at lower concentrations than would occur if the ingredients were used separately may
be of particular importance from an economic standpoint. In conclusion, multifunctional
materials were obtained by using both compounds together. At present, further in-depth
studies should be carried out before addressing new uses (especially to determine the
suitability of the materials in food packaging, including migration tests into food stimulants
and food products) and to determine the influence of bioactive compounds on heat-sealing
strength and mechanical, thermal, and optical properties, as well as oxygen and water vapor
permeability. Moreover, as this study demonstrated the preparation of films in a laboratory



Materials 2021, 14, 7882 9 of 11

scale from a film-forming solution based on chloroform, further tests to obtain modified
films by other methods (e.g., machine cast film extrusion method) without harmful solvents
should be carried out to determine the possibility of large scale production of the films.

Author Contributions: Ł.Ł.—Conceptualization, data curation, formal analysis, investigation, method-
ology, supervision, and writing—original draft; S.M.—data curation, formal analysis, investigation,
visualization, and writing—original draft; A.B. and M.E.F.—formal analysis. All authors have read
and agreed to the published version of the manuscript.

Funding: This paper has received partial funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement no. 872152.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors thank Emilia Drozłowska, for her help with statistical analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, 1207–1221. [CrossRef]
2. Brouwer, M.T.; van Velzen, E.U.T.; Ragaert, K.; Klooster, R. ten Technical Limits in Circularity for Plastic Packages. Sustainability

2020, 12, 10021. [CrossRef]
3. Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M.D. Biodegradable Polymers for Food Packaging: A Review. Trends Food Sci. Technol.

2008, 19, 634–643. [CrossRef]
4. Aeschelmann, F.; Carus, M. Biobased Building Blocks and Polymers in the World: Capacities, Production, and Applications-Status

Quo and Trends towards 2020. Ind. Biotechnol. 2015, 11, 154–159. [CrossRef]
5. Jiang, M.; Ma, J.; Wu, M.; Liu, R.; Liang, L.; Xin, F.; Zhang, W.; Jia, H.; Dong, W. Progress of Succinic Acid Production from

Renewable Resources: Metabolic and Fermentative Strategies. Bioresour. Technol. 2017, 245, 1710–1717. [CrossRef] [PubMed]
6. Zarei, M.; el Fray, M. Synthesis of Hydrophilic Poly(Butylene Succinate-Butylene Dilinoleate) (PBS-DLS) Copolymers Containing

Poly(Ethylene Glycol) (PEG) of Variable Molecular Weights. Polymers 2021, 13, 3177. [CrossRef]
7. Cho, H.S.; Moon, H.S.; Kim, M.; Nam, K.; Kim, J.Y. Biodegradability and Biodegradation Rate of Poly(Caprolactone)-Starch

Blend and Poly(Butylene Succinate) Biodegradable Polymer under Aerobic and Anaerobic Environment. Waste Manag. 2011, 31,
475–480. [CrossRef]

8. Cheung, H.-y.; Ho, M.-p.; Lau, K.-t.; Cardona, F.; Hui, D. Natural Fibre-Reinforced Composites for Bioengineering and Environ-
mental Engineering Applications. Compos. Part B Eng. 2009, 40, 655–663. [CrossRef]

9. Ojijo, V.; Sinha Ray, S.; Sadiku, R. Role of Specific Interfacial Area in Controlling Properties of Immiscible Blends of Biodegradable
Polylactide and Poly[(Butylene Succinate)-Co-Adipate]. ACS Appl. Mater. Interfaces 2012, 4, 6690–6701. [CrossRef]

10. Alfei, S.; Marengo, B.; Zuccari, G. Nanotechnology Application in Food Packaging: A Plethora of Opportunities versus Pending
Risks Assessment and Public Concerns. Food Res. Int. 2020, 137, 109664. [CrossRef]

11. Ordon, M.; Nawrotek, P.; Stachurska, X.; Mizielí Nska, M. Polyethylene Films Coated with Antibacterial and Antiviral Layers
Based on CO2 Extracts of Raspberry Seeds, of Pomegranate Seeds and of Rosemary. Coatings 2021, 11, 1179. [CrossRef]

12. Ma, Q.; Ren, Y.; Wang, L. Investigation of Antioxidant Activity and Release Kinetics of Curcumin from Tara Gum/ Polyvinyl
Alcohol Active Film. Food Hydrocoll. 2017, 70, 286–292. [CrossRef]

13. Lukic, I.; Vulic, J.; Ivanovic, J. Antioxidant Activity of PLA/PCL Films Loaded with Thymol and/or Carvacrol Using ScCO2 for
Active Food Packaging. Food Packag. Shelf Life 2020, 26, 100578. [CrossRef]
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