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Abstract: The determination of structural dynamic characteristics can be challenging, especially for
complex cases. This can be a major impediment for dynamic load identification in many engineering
applications. Hence, avoiding the need to find numerous solutions for structural dynamic charac-
teristics can significantly simplify dynamic load identification. To achieve this, we rely on machine
learning. The recent developments in machine learning have fundamentally changed the way we
approach problems in numerous fields. Machine learning models can be more easily established to
solve inverse problems compared to standard approaches. Here, we propose a novel method for
dynamic load identification, exploiting deep learning. The proposed algorithm is a time-domain
solution for beam structures based on the recurrent neural network theory and the long short-term
memory. A deep learning model, which contains one bidirectional long short-term memory layer, one
long short-term memory layer and two full connection layers, is constructed to identify the typical
dynamic loads of a simply supported beam. The dynamic inverse model based on the proposed
algorithm is then used to identify a sinusoidal, an impulsive and a random excitation. The accuracy,
the robustness and the adaptability of the model are analyzed. Moreover, the effects of different
architectures and hyperparameters on the identification results are evaluated. We show that the
model can identify multi-points excitations well. Ultimately, the impact of the number and the
position of the measuring points is discussed, and it is confirmed that the identification errors are not
sensitive to the layout of the measuring points. All the presented results indicate the advantages of
the proposed method, which can be beneficial for many applications.

Keywords: dynamic load identification; time-domain solution; simply supported beam; recurrent
neural network; long short-term memory

1. Introduction

External excitation is the main source of basic dynamic data for many engineering
applications, such as structural dynamic characteristics, vibration response analysis, health
monitoring, vibration fatigue analysis and vibration fault diagnosis [1–5], among others. In
the majority of these applications, measuring dynamic loads directly is not possible. Such
measurements are often limited by the accuracy of the test technology and the complexity
of large equipment structures where force sensors are difficult to install. How to identify
various forms of dynamic load is a fundamental question that has been discussed in
numerous studies. However, the traditional dynamic load identification methods are
deeply dependent on determining the dynamic characteristics of a structure first [6].

Dynamic load identification is usually achieved in the time or the frequency domain.
In the frequency domain, it is necessary to inverse the structural dynamic characteristics
matrix, which is often ill conditioned. This can result in a major impact on the accuracy,
especially in noisy environments [7]. Similarly, in the time domain, the identification
results often diverge or deviate due to the errors accumulation over the time span of
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interest. Therefore, the accuracy of dynamic load identification is difficult to guarantee and
the structural dynamic characteristic information is difficult to obtain, especially for large
complex structures [8,9]. However, this remains an important research field where many
industrial and academic experts are committed to promoting the study of dynamic load
identification [10].

Constructing the inverse model of a vibration response and the associated external
excitation is the basic premise of dynamic load identification. With decades of development
since the 1970s [11], dynamic load identification has developed in three diverse directions,
namely, frequency-domain identification methods, time-domain identification methods
and intelligent algorithms. Among these, frequency-domain methods are the earliest, and
are considered by many to be the classical methods. These methods are usually based on
building an inverse model between the response and the excitation [12,13]. Frequency-
domain methods mainly rely on either the direct inversion, the least square approach or
the modal coordinate transformation method. All these methods involve inverting the
matrix of the frequency response function, which more often than not suffers from severe
ill-conditioning issues [14,15]. Although scholars have studied numerous regularization
methods for ill-conditioned problems [16–20], there are still many difficulties with the
implementation details of frequency-domain methods. Nevertheless, frequency-domain
methods are still considered by industrial users to be more mature than the other methods.
Hence, they are intensively used to identify excitations in many engineering applications,
such as wind load, six-force-factor and the load on mining machinery [21–23].

Compared to the frequency domain, time-domain methods can be considered to be
more intuitive as they take into account time as a variable. Utilizing the model parameters
of a structure to establish the inverse model of the system and identifying the input
based on the output of the system is the general procedure of time-domain methods [24].
Nowadays, the existing time-domain methods are basically based on modal decomposition
technology and Duhamel integral technology [25–29]. Most of the time-domain methods
cannot identify dynamic loads with high accuracy due to the restrictions imposed by
several factors, such as ill-posedness, cumulative error and the unclear parameters of the
studied dynamic system [30–32]. Additionally, noisy environments, complex structures,
structures with repeated frequencies, as well as the resonance and anti-resonance points of
a structure, can also have a great impact on the identification accuracy [33–35].

As early as 1998, Cao et al. [36] used neural networks to solve the dynamic load
identification problem facing aircraft wings. Nevertheless, neural network had not been
further developed in load identification owing to limitations in computing technologies.
With the rapid development of deep learning in recent years, more and more intelligent
algorithms have been developed for dynamic load identification. For instance, Liu et al. [37]
presented a novel method based on support vector regression to establish the uncertain
load caused by heterogeneous responses. Wang et al. [38] proposed a deep regression
adaptation network method with model transfer learning to improve the accuracy and
efficiency of neural networks for dynamic load identification. Zhou et al. [39] proposed
a novel impact load identification method based on a deep recurrent neural network for
nonlinear structures. Cooper et al. [40] developed an artificial neural network model to
predict the static load applied on a wing rib. All the above-mentioned literature shows an
increasing trend which suggests that intelligent algorithms will be very important for the
future of dynamic load identification.

Given the features of dynamic load identification, it can be classified as a regression
problem of deep learning. Both a vibration response signal and an external excitation signal
are considered to involve change over time. The inverse model of a single-channel response
or a multi-channel response and a force signal can be established, which is the core idea of
load identification. According to different data characteristics and final objectives, different
deep learning models can be applied under different engineering scenarios. For instance,
multilayer perceptron (MLP) is widely used in table data processing, convolutional neural
networks play an important role in image processing and support vector machines have



Materials 2021, 14, 7846 3 of 30

great advantages in limited samples learning. Given that the initial vibration data are
often collected in the time domain, we propose using a recurrent neural network (RNN)
for dynamic load identification without needing the structural dynamic characteristics.
RNN is essentially a model for establishing the nonlinear relationship between multiple
variables [41], which is suitable for processing time-domain data. Additionally, in an
RNN model, the input of the current time and the output of the previous time can be
effectively connected by a basic operation [42]; that is, the amplitude of vibration response
data at each time point can be related through time. The RNN models are suitable for
solving the identification problem faced by time series models, of which dynamic load
identification is a representative problem. To solve the problem of gradient explosion or
gradient disappearance in an ordinary RNN model [43], we propose applying the concept
of the long short-term memory (LSTM) here. Moreover, bidirectional long short-term
memory (BLSTM) is also introduced, which can connect previous and future information
in the time domain. These variants of the RNN model are useful for multi-series prediction
problems. Compared with RNN, the structure of LSTM is more complex. Specifically,
LSTM adds a structure that can remember longer sequences of information, adds an
input gate, a forgetting gate and an output gate, and reduces the probability of gradient
disappearance or gradient explosion [44]. In other fields, LSTM was initially developed for
natural languages processing. More recently, its application in other fields has also been
explored by several scholars. For instance, Graves et al. [45] used bidirectional long short-
term memory (BLSTM) networks to classify the framewise phoneme. Ordóñez et al. [46]
proposed a generic deep framework for activity recognition based on convolutional and
LSTM-recurrent units to capture the temporal dynamics of human activity recognition.
Han et al. [47] proposed a novel architecture of neural networks, referred to as the long
short-term neural network (LSTM NN), to capture nonlinear dynamic traffic in an effective
manner. Liu et al. [48] proposed a tree structure-based traversal method, and introduced a
new gating mechanism within LSTM to learn the reliability of the sequential input data.
Li et al. [49] deployed LSTM networks to predict out-of-sample directional movements for
the constituent stocks of the S&P500 from 1992 until 2015.

Dynamic load identification is important to several areas of system engineering,
including forward dynamics, system modelling, parameter identification and the inverse
problem, among others. The error introduced in any segment will greatly affect the
ultimate identification result, which is similar to other fuzzy fields [50–52]. Moreover,
different material properties will affect the solution for the problem relating to structural
dynamic characteristics [53–56], which makes identification difficult. Scholars usually use
the metaphor of the “black box” to describe the problem of dynamic load identification and
neural networks. Here, we combine the two black box problems to reduce the difficulty of
dynamic load identification.

After considering a range of different aspects, we believe that deep learning has
great potential in the field of dynamic load identification. However, there is no complete
dynamic load identification theory based on deep learning. Starting with RNN and LSTM,
we establish a complete dynamic load identification system in order to apply this method to
engineering practice, and to successfully identify common dynamic loads. In this approach,
sinusoidal, impulse and random excitations are identified on a simply supported beam.
Furthermore, the effects of changing the network structure and the hyperparameters on
the identification results are also evaluated. We show the possibility of using this method
for multi-points excitations. To our satisfaction, we find that the identification results are
not sensitive to the layout of measuring points. This is a significant advantage that can be
beneficial if the proposed method is extended to other engineering applications.

2. Dynamic Load Identification Framework Based on RNN
2.1. Basic Description

A beam, which is the most primitive type of continuous structure, can be an efficient
simplification for different applications. A Bernoulli–Euler beam with simply supported
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boundary conditions and a homogeneous material is shown in Figure 1. The cross-section
area, the density and the elastic modulus are given as A, ρ and E, respectively. The moment
of inertia of the interface is I.
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The dynamic equation [25] of the beam can be written as:

EI
∂4u
∂x4 + EIc0

∂u
∂t

+ EIc1
∂5u

∂t∂x4 + ρA
∂2u
∂x2 = f (1)

where EI is the section stiffness, ρA is the mass per unit length, u is the transverse deforma-
tion, c0 is the viscous damping coefficient of an external medium, c1 is the internal damping
coefficient and f is the external load on the beam. It is assumed that the beam is subjected
to a concentrated simple harmonic load. Then, the above differential equation [57] can be
depicted in modal coordinates as:

••
q j + 2ξ jω

2
j
•
qj + ω2

j qj = Qj(t) (2)

in which ω2
j , ξ j and qj are the natural frequency, damping ratio and modal coordinates,

respectively. The terms in this equation are defined by:

2ξ jω
2
j = c0

EI
ρA + c1ω2

j
Qj(t) = f (xa, t)ϕj(xa) sin(ωt)/Mj

Mj =
L∫

0
ρAϕ2

j (x)dx
(3)

Here, Mj, ϕj(ω) and ϕj(xa) are the modal mass, modal shape and the value of the jth
modal shape, respectively. Additionally, f (xa) is the load value at point a and Qj(t) is the
modal force. Solving Equation (2), the convolution integral form of the solution can be
detailed as:

qj(t) =
∫ t

0
hj(t− τ)Qj(τ)dt (4)

Therefore, we can derive the expression of displacement response as:

u(x, t) =
2

ρAl

∞

∑
n=1

sin(
nπx

l
)[ f (xa, t) sin(

nπxa

l
) +

∫ t

0

··
hn(t− τ) f (xa, t) sin(

nπxa

l
)dτ] (5)

where
··

hn(t) = 1
ω′n

eξnωnt
{[

(ξnωn)
2 − (ω′n)

2
]

sin(ω′nt) + (−2ξnωnω′n) cos(ω′nt)}.
The load is fitted by a set of orthogonal polynomials [58,59], which can be written as:

f (xa, t) =
∞

∑
i=1

aiPi(t) (6)
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where ai and Pi(t) are the coefficient of orthogonal polynomials and the ith element of
orthogonal polynomials, respectively. When the fitting accuracy can be satisfied, the last
equation can be rewritten as:

f (xa, t) =
∞

∑
i=1

aiPi(t) =
{

P1 P2 · · · Pn f

}
a1
a2
...

an f

 (7)

Assume that the number of quantities to be identified, the number of samples in
the time domain and the sampling time are n f , Ns and ts, respectively. The following
relationships can be derived as:

··
u

t1

k
··
u

t2

k
...
··
u

ts

k


=

1
M

∞

∑
n=1

Snk


H

pt1
1 H

pt1
2 · · · H

pt1
n f

Hpt2
1 H

pt2
2 · · · H

pt2
n f
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a1
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an f
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where
..
uts

k is the value of
..
u(x, t) on a point k at the time t and Snk is the value of Sn at the point

k. Subsequently, HPts
n f is the value of HP

n f
at the time ts. In addition, Sn = sin

( nπx
l
)

sin
( nπxa

l
)

and HP
n f

= Pn f +
∫ t

0

..
h(h− τ)dτ, which is the element of transfer function. In Equation (8),

the items to be identified are a1, a2, . . . , an f . Eventually, Equation (8) can be abbreviated as:{∼
uts×1

}
=

[∼
Hts×n f

]{
An f×1

}
(9)

When Ns = n f , H̃, which is the transfer function, can be inversed directly and the
coefficients of the equations are calculated as:

{A} =
[∼

H
]−1{∼

u
}

(10)

While Ns > n f , the coefficients of the system of contradictory equations can be
obtained through the generalized inverse solution of the least squares, which can be
derived as:

{A} =
[[∼

H
]T[∼

H
]]−1[∼

H
]T{∼

u
}

(11)

Equation (11) is the mathematical model of dynamic load identification based on
the generalized orthogonal polynomial under the action of time-varying concentrated
force. In general, measuring the acceleration is easier than the displacement or the velocity.
Therefore, in this paper, we construct the identification model of the beam structure based
on the acceleration.

It can be seen from the above derivation that most time-domain identification methods
need the model parameters of the structure. Obtaining an impulse response function
for complex structures is often an exhausting process. Due to this difficulty and the
characteristics of RNN models, this paper combines a deep RNN model with dynamic load
identification to reduce the difficulty of load identification in engineering applications.

2.2. Recurrent Neural Network Implementation

The selection of training data is the first step that needs to be considered for deep
learning models [60]. With dynamic load identification, the application of RNN requires
identifying the load type in advance. The types to be considered here include a simple
harmonic load, an impact load, a random load or a superposition of sinusoidal loads.
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These types in general cover most of the dynamic loads to be identified in engineering
applications. Taking the dynamic load of a piece of rotating machinery as an example,
its dynamic load is generally a quasi-harmonic signal with the motor frequency as the
main frequency and the coupling frequency of other parts or noise interference as the
auxiliary [61]. Therefore, when the motor parameters of a piece of rotating machinery are
known, the shape of the force signal acting on the structure by the motor can be roughly
inferred. Hence, the load type can be assumed, and the recorded dynamic load can be
used for training. The vibration response and the assumed dynamic load are the input
in this case. Repeated training is carried out to establish the inverse model. Additionally,
the historical data of real dynamic loads can also be used as the input for RNN. Taking
the impact excitation as an example, we can obtain multiple impact loads by continuously
knocking and recording the vibration response. Subsequently, the load data of the previous
times can then be used as training data to identify the dynamic impact loads of the later
impacts [39].

The structure of a single hidden layer in RNN is shown in Figure 2, in which x, s and
o are the discrete vibration response time series, the output of the hidden layers and the
output, respectively. U, V and W are the weights of the input layer to the hidden layer, the
hidden layer to the output layer and the self-recursion, respectively. Hence, the output of
the hidden layer [62] can be written as:

st = f (Uxt + Wst−1) (12)

where f is the activation function. Moreover, the output of output layer can be described as:

ot = g(Vst) (13)

in which g is also an activation function.
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The propagation process of a single hidden layer can be defined as:

ot = g(Vst)
= V f (Uxt + Wst−1)
= V f (Uxt + W f (Uxt−1 + Wst−2))
= V f (Uxt + W f (Uxt−1 + W f (Uxt−2 + Wst−3)))
= V f (Uxt + W f (Uxt−1 + W f (Uxt−2 + W f (Uxt−3 + . . .))))

(14)
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Therefore, the predicted dynamic load can be derived using Equation (14). Stacking
the single hidden layer in Figure 2 to establish a deep network, the output can be written as:

ot = g(Visi
t + Visi

t)

si
t = f (Uisi−1

t + Wist−1)

si−1
t = f (Ui−1si−2

t + Wi−1st−1)
...
s1

t = f (U1xt + W1st−1)

(15)

The process of forward propagation can be described using Equation (12), which in
matrix form is:


st

1
st

2
...

st
n

 = f (


U11 U12 · · · U1m
U21 U22 · · · U2m

...
...

...
...

Un1 Un2 · · · Unm




x1
x2
...

xm

+


W11 W12 · · · W1m
W21 W22 · · · W2m

...
...

...
...

Wn1 Wn2 · · · Wnm




st−1
1

st−1
2
...

st−1
n

) (16)

The back propagation calculation of RNN has two directions, namely, back prop-
agation along time and along the layer. Moreover, the first kind of process of forward
propagation [63] can be abbreviated as:

nett = Uxt + Wst−1
st−1 = f (nett−1)

(17)

in which nett is an alternative parameter to st. Specifically, the relationship between two
adjacent moments of nett can be written as:

∂nett

∂nett−1
=

∂nett

∂st−1

∂st−1

∂nett−1
(18)

where the two terms to the right of the equal sign can be described with the following
equations.

Substituting Equation (19) into Equation (18), we can obtain the following:

∂nett
∂st−1

=



∂nett
1

∂st−1
1

∂nett
1

∂st−1
2

· · · ∂nett
1

∂st−1
n

∂nett
2

∂st−1
1

∂nett
2

∂st−1
2

· · · ∂nett
2

∂st−1
n

...
...

...
...

∂nett
n

∂st−1
1

∂nett
n

∂st−1
2

· · · ∂nett
n

∂st−1
n


=


W11 W12 · · · W1n
W21 W22 · · · W2n

...
...

...
...

Wn1 Wn2 · · · Wnn

 = W

∂st−1
∂nett−1

=



∂st−1
1

∂nett−1
1

∂st−1
1

∂nett−1
2

· · · ∂st−1
1

∂nett−1
n

∂st−1
2

∂nett−1
1

∂st−1
2

∂nett−1
2

· · · ∂st−1
2

∂nett−1
n

...
...

...
...

∂st−1
n

∂nett−1
1

∂st−1
n

∂nett−1
2

· · · ∂st−1
n

∂nett−1
n


=


f ′(nett−1

1 ) 0 · · · 0
0 f ′(nett−1

2 ) 0 0
...

...
. . .

...
0 0 · · · f ′(nett−1

n )

 = diag[ f ′(nett−1)]

(19)

∂nett
∂nett−1

= ∂nett
∂st−1

∂st−1
∂nett−1

= Wdiag[ f ′(nett−1)]

=


w11 f ′(nett−1

1 ) w12 f ′(nett−1
2 ) · · · w1n f ′(nett−1

n )

w21 f ′(nett−1
1 ) w22 f ′(nett−1

2 ) · · · w2n f ′(nett−1
n )

...
...

...
...

wn1 f ′(nett−1
1 ) wn2 f ′(nett−1

1 ) · · · wnn f ′(nett−1
1 )


(20)
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Therefore, δT
k , which is the error per neuron, can be derived as:

δT
k = ∂E

∂netk

= ∂E
∂nett

∂nett
∂netk

= ∂E
∂nett

∂nett
∂nett−1

∂nett−1
∂nett−2

· · · ∂netk+1
∂netk

= Wdiag[ f ′ (nett−1)]Wdiag[ f ′(nett−2)] · · ·Wdiag[ f ′(netk)]δ
l
t

= δT
t

t−1
∏
i=k

Wdiag[ f ′(neti)]

(21)

in which E, k and l are the loss function, the initial moment and the ordinal number of the
network layer, respectively. Just as with an ordinary multi-layer perceptron (MLP), the
forward propagation of RNN between network layers can be written as:

netl
t = Ual−1

t + Wst−1
al−1

t = f l−1(netl−1
t )

(22)

Similarly, the relationship between two adjacent layers is:

∂netl
t

∂netl−1
t

= ∂netl

∂al−1
t

∂al−1
t

∂netl−1
t

= Udiag
[

f ′l−1(netl−1
t )

] (23)

The derivation process is the same as with that of Equation (19) to Equation (21). In
this way, the gradient of each network layer can be detailed as:(

δl−1
t

)T
= ∂E

∂netl−1
t

= ∂E
∂netl

t

∂netl
t

∂netl−1
t

=
(

δl
t

)T
Udiag

[
f ′l−1(netl−1

t )
] (24)

As can be seen from the foregoing, nett is the key intermediate quantity in forward
and back propagation. Furthermore, the expanded form of nett can be detailed as:

nett
1

nett
2

...
nett

n

 = Uxt + Wst−1

= Uxt +


W11 W12 · · · W1n
W21 W22 · · · W2n

...
...

...
...

Wn1 Wn2 · · · Wnn




st−1
1

st−1
2
...

st−1
n



= Uxt +


W11st−1

1 W12st−1
2 · · · W1nst−1

n
W21st−1

1 W22st−1
2 · · · W2nst−1

n
...

...
...

...
Wn1st−1

1 Wn2st−1
2 · · · Wnnst−1

n



(25)

The gradient of the loss function E to the weight W can be written as:

∂E
∂wji

= ∂E
∂nett

j

∂nett
j

∂wji

= δt
j st−1

i

(26)
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Hence, the gradient of W at time t is:

∇WtE =


δt

1st−1
1 δt

1st−1
2 · · · δt

1st−1
n

δt
2st−1

1 δt
2st−1

2 · · · δt
2st−1

n
...

...
...

...
δt

nst−1
1 δt

nst−1
2 · · · δt

nst−1
n

 (27)

Further, the sum of the gradients of W at each time instant can be given by:

∇W E =
t

∑
i=1
∇Wi E

=


δt

1st−1
1 δt

1st−1
2 · · · δt

1st−1
n

δt
2st−1

1 δt
2st−1

2 · · · δt
2st−1

n
...

...
...

...
δt

nst−1
1 δt

nst−1
2 · · · δt

nst−1
n

+ · · ·+


δ1

1s0
1 δ1

1s0
2 · · · δ1

1s0
n

δ1
2s0

1 δ1
2s0

2 · · · δ1
2s0

n
...

...
...

...
δ1

ns0
1 δ1

ns0
2 · · · δ1

ns0
n


(28)

Equally, the calculation of the weight u using the loss function can be described as:

∇Ut E =


δt

1xt
1 δt

1xt
2 · · · δt

1xt
m

δt
2xt

1 δt
2xt

2 · · · δt
2xt

m
...

...
...

...
δt

nxt
1 δt

nxt
2 · · · δt

nxt
m


∇UE =

t
∑

i=1
∇Ut E

(29)

Finally, the weights are updated using a gradient descent algorithm. The fundamental
process of our work is summarized in Figure 3.

Taking sinusoidal excitation as an example, using the amplitude at time t as the
previous information from which to infer the amplitude at time t + 1 is the continuous
process by which one can predict the dynamic load with the RNN model. However,
vibration data often have a long time record where the excitation amplitude and the
frequency will change with time. Under these circumstances, the simple RNN model is no
longer suitable for the dynamic load identification process.

The method proposed here is based on LSTM, which is a variant of RNN. LSTM can
save a long-term time record, which makes it possible to establish a relationship between
the vibration response information and the dynamic load for the entire time domain. This
feature enables the use of the change over time under a certain frequency and amplitude as a
training data set to identify the dynamic loads under different frequencies and amplitudes.
Moreover, LSTM can also better avoid the gradient disappearance problem caused by
lengthy time histories compared to RNN.
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2.3. Long Short-Term Memory Implementation

In vibration tests, the sampling rate is generally large and the acquisition time is
long. Therefore, a vibration time series is often classified as a long series. In the process of
calculating weight updates, the gradient will disappear because time-domain vibration
data is usually a long time series [64]. Furthermore, the gradient will explode due to
the increase in the number of neural network layers [65]. Consequently, the use of long
short-term memory is necessary in our work. The LSTM layer is shown in Figure 4.
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In contrast to RNN, LSTM neurons add a forgetting gate, a memory gate, an input
gate and an output gate. In Figure 4, ft, it, ct, ot and ht are outputs of the forgetting gate,
the input gate, the combination of forgetting and input gates, the output gate and the final
result, respectively. σ and tanh are the sigmoid function and hyperbolic tangent function,
respectively. Furthermore, W f , Wi, Wc and Wo are the weights of each part. These outputs
can be written as:

ft = σ(W f [ht−1, xt] + b f )
it = σ(Wi[ht−1, xt] + bi)
ct = ft ∗ ct−1 + it ∗ tanh(Wc[ht−1, xt] + bc)
ot = σ(Wo[ht−1, xt] + bo)
ht = ot ∗ tanh(ct)

(30)

in which b f , bi, bc and b0 are the biases. Thus, the parameters to be learned for LSTM
training are the weights and the biases in the above. Just as with the RNN derivation, we
again use net as an intermediate variable. In this fashion, the intermediate output of each
part can be obtained as:

net f ,t = W f [ht−1, xt] + b f = W f hht−1 + W f xxt + b f
neti,t = Wi[ht−1, xt] + bi = Wihht−1 + Wixxt + bi
netc,t = Wc[ht−1, xt] + bc = Wchht−1 + Wcxxt + bc
neto,t = Wo[ht−1, xt] + bo = Wohht−1 + Woxxt + bo

(31)

Moreover, the chain structure of LSTM is similar to that of RNN. Finally, the error
transmitted from time t to any time k can be depicted as:

δT
k =

t−1

∏
j=k

δT
o,jWoh + δT

f ,jW f h + δT
i,jWih + δT

∼
c ,j

Wch (32)

where the error of each part can be detailed as:

δT
o,t = δT

t ∗ tanh(ct) ∗ ot ∗ (1− ot)

δT
f ,t = δT

t ∗ ot ∗ (1− tanh(ct)
2) ∗ ct−1 ∗ ft ∗ (1− ft)

δT
i,t = δT

t ∗ ot ∗ (1− tanh(ct)
2) ∗ ∼c t ∗ it ∗ (1− it)

δT
∼
c ,t

= δT
t ∗ ot ∗ (1− tanh(ct)

2) ∗ it ∗ (1−
∼
c

2
)

∼
c t = tanh(Wc[ht−1, xt] + bc)

(33)
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Similarly, the gradient between layers can be written as:

∂E
∂netl−1

t
= (δT

f ,tW f x + δT
i,tWix + δT

∼
c ,t

Wix + δT
o,tWox) ∗ f ′(netl−1

t ) (34)

Eventually, the backpropagation through time (BPTT) algorithm is used to update the
weight and the bias to complete the training of the model, and refers this to the RNN.

3. Numerical Studies

The dynamic load identification steps of a beam structure based on RNN are:

• Step A: Establish the deep network with the BLSTM layers, LSTM layers and full
connection layers.

• Step B: Two groups of vibration response data are prepared. The first is the vibration
response under an unknown dynamic load which is to be identified. The second is
the vibration response under a known dynamic load which is different from the first
group and used for training. The proposed algorithm is then trained using the second
group with the known dynamic load, while the responses obtained from the first
group are used to identify the unknown load. Furthermore, these data groups are
divided into a training set, a verification set and a test set on the basis of equipment
computational ability.

• Step C: The backpropagation through time (BPTT) algorithm is used as a model
training method to update the parameters of the model. In addition, the initial
learning rate and batch size are set in the light of available computer memory. To
accelerate the training speed, the training process is run on a GPU device.

• Step D: The new vibration response data are used to test the identification effect
of the model. In this paper, two methods are introduced to appraise the effect of
identification: the peak relative error method (PREM) and the signal-to-noise ratio
(SNR). PREM is the maximum value of the peak error of the load identification result
and can be written in Equation (35) as:

PREM(X, Y) =
|maxY(i)−maxX(i)|

maxX(i)
× 100% (35)

in which X(i) and Y(i) are the actual load and the identified load signal, respectively.
Moreover, SNR is the signal-to-noise ratio of dynamic load identification results, which
describes the overall effect of dynamic load identification. The calculation of SNR can be
detailed as:

SNR(X, Y) = 10 log10


ns
∑

i=1
X(i)2

ns
∑

i=1
(X(i)−Y(i))2

 (36)

where ns is the number of acquisition points in the analysis period.
Additionally, we compare the results based on RNN with MLP. The two methods use

the same vibration response data to identify the same dynamic load. Furthermore, the best
MLP structure is selected to identify the dynamic load and the overlapping parameters are
set to be the same as MLP.

3.1. Model Parameters

We analyze the dynamic load identification cases of the simply supported beam under
three kinds of excitation: sinusoidal dynamic load, impact dynamic load or random load.
All the loads are applied at one point, as shown in Figure 1. The simply supported beam is
5 m long, 0.25 m wide and 0.05 m thick. Moreover, the elastic modulus, Poisson’s ratio and
the density of the simply supported beam are 210 Gpa, 0.31 and 7800 Kg/m3, respectively,
as shown in Table 1. In addition, the simply supported beam is divided into 10 sections
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and 11 nodes. Table 2 describes the distance from each node to the coordinate’s origin. We
have carried out modal analysis on the simply supported beam and the first ten natural
frequencies are shown in Table 3.

Table 1. Parameters of the simply supported beam.

Parameters Value

Length l 5 m
Width a 0.25 m

Thickness b 0.05 m
Elastic modulus E 210 GPa
Poisson’s ratio ε 0.31

Density ρ 7800 Kg/m3

Table 2. Specific location of measuring points.

Measuring Point 1 2 3 4 5 6 7 8 9

Position (m) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Table 3. Natural frequency of the simply supported beam.

Modal Order 1 2 3 4 5

Frequency (Hz) 4.7 18.8 42.3 52.6 74.9

Modal Order 6 7 8 9 10

Frequency (Hz) 116.4 117.1 142.6 165.4 219.1

3.2. Considered Cases

In order to evaluate the proposed method, three numerical cases are analyzed using
RNN and MLP. Furthermore, three SNRs (10 dB, 20 dB, 30 dB) are added to the input
vibration response data to compare the robustness of RNN and MLP. The dynamic load
parameters of the three cases are:

Case 1: A sinusoidal excitation F = 85 sin(30πt) is applied at a = 1.5 m. The time
interval is 0.0001 s and the full considered time span is 1 s. The sinusoidal load function
used for training is F = 50 sin(15πt).

Case 2: An impact excitation is applied at a = 1.5 m and the function is:

F =

{
30 sin(50πt), tε[0.56, 0.58]
50 sin(50πt), tε[0.64, 0.66]

.

The time interval is 0.0001 s and the full considered time span is 0.22 s. The dynamic
load data for training are made up of continuous hammering from 0 s to 0.56 s using F and
the vibration response data for training are obtained under this load.

Case 3: A random excitation is applied at a = 1.5 m. The variance of the excitation is
100 and the mean value is 0. Moreover, the time interval is 0.0001 s and the full considered
time span is 0.2 s. The dynamic load used for training is a random excitation with a
variance of 25 and a mean value of 0 while the vibration response data for training are
obtained under this load. The parameters of the three dynamic loads are described in detail
in Table 4.

The RNN used for these cases has one BLSTM layer, one LSTM layer and two fully
connected layers. The BLSTM is a form of LSTM that allows the current output to be
obtained by the combination of the previous output and the future output. Consequently,
we added the BLSTM layer based on the statistical regularity of conventional excitation data.
In order to reflect the comparison, the number of neurons and layers in the fully connected
layers in RNN is the same as that in MLP. Dropout regularization is used to improve the
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generalization ability of the model. The computations are performed on an intel i5-9300H
CPU and an NVIDIA GTX1650 GPU. In addition, we use both the GPU and the CPU to
calculate the dynamic loads. The GPU is only used to improve the computing efficiency
compared with the CPU, and its influence on the calculation accuracy is insignificant
and can be ignored. Hence, the identification results are only presented with the GPU in
this paper.

Table 4. Load conditions of the three considered cases.

Case Dynamic Load Excitation Parameters Sampling Parameters

1 Sinusoidal
x = 1.5 m, F = 85 ∗ sin(30πt)
The excitation for training is
x = 1.5 m, F = 50 ∗ sin(15πt)

∆t = 0.0001 s,
t = 1 s

2 Impact

x = 1.5 m, F =

{
30 ∗ sin(50πt), t ∈ [0.56, 0.58]
50 ∗ sin(50πt), t ∈ [0.64, 0.66]

The excitation for training is

x = 1.5 m, F =


30 ∗ sin(50πt)
t ∈ [0.08, 0.10], [0.24, 0.26], [0.40, 0.42]
50 ∗ sin(50πt)
t ∈ [0.16, 0.18], [0.32, 0.34], [0.48, 0.50]

∆t = 0.0001 s,
t = 0.22 s

3 Random

white Gaussian noise
x = 1.5 m, variance = 100, mean = 0

The excitation for training is
white Gaussian noise

x = 1.5 m, variance = 25, mean = 0

∆t = 0.0001 s,
t = 0.2 s

3.3. Identification Results and Comparisons

Case 1: The data concerning the sinusoidal excitation applied on the beam was
recovered with the RNN and MLP networks that were trained using the method previously
described above. The results without noise and the absolute errors of identification result
are shown in Figure 5, in which we show comparisons of deep RNN, MLP and the actual
load, as well as the absolute errors of deep RNN and MLP. The abscissa unit is s and the
ordinate unit is N.

Figure 6 presents the results with different noise levels, specifically, 10 dB, 20 dB and
30 dB, and shows comparisons for deep RNN under these three noises, and the errors
compared with the actual load. The abscissa unit is s and the ordinate unit is N. Table 5
describes the PREM and SNR of RNN and MLP without noise as well as PREM and
SNR of RNN for the different considered noise levels. The results show that the error
of the sinusoidal load identification based on RNN is smaller than that based on MLP
without noise. Moreover, PREM and SNR are within the acceptable range. After adding the
noise, the error increases significantly when compared to a noise-free environment. Under
10 dB of noise, the PREM reaches a maximum of 6.18% and the SNR is 24.50. Overall,
however, even when the noise is considered, the errors remain within an acceptable level
for engineering accuracy. The obtained results indicate the accuracy and the robustness of
the proposed method.
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Figure 5. Identification results from sinusoidal excitation: (a) comparison of results of the use of deep
RNN and MLP with a sinusoidal excitation; (b) comparison of errors of the use of deep RNN and
MLP with a sinusoidal excitation.

Case 2: A half sine wave F =

{
30 sin(50πt), tε[0.56, 0.58]
50 sin(50πt), tε[0.64, 0.66]

is used as an excitation on

the beam at a = 1.5 m. Again, we first compare the results of RNN and MLP where no noise
is used. Next, the resilience of the RNN method is evaluated under noisy conditions. The
presentation of the results is similar to Case 1. Figure 7 shows the comparison of the RNN
and MLP identifications. The performance of RNN under noisy conditions are presented
in Figure 8. Moreover, Table 6 shows the PREM and SNR for the different considered
solutions. It can be inferred that the identification results of MLP concerning the impact
load are unsatisfactory. This is especially so compared to the high accuracy of RNN and its
ability to recover the load curve with good precision. Clearly, the MLP results capture the
time instants of the two impacts, but the amplitude of the largest impact is significantly
missed. Additionally, the robustness of the RNN model to the impact load is acceptable,
given that its PREM reaches the maximum value of 9.37% at 10 dB, while the SNR is 22.52.
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Figure 6. Identification results from sinusoidal excitation with noises: (a) comparison of results of
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Table 5. The evaluation of sinusoidal excitation identification results.

No Noise RNN with Noise

RNN MLP 10 dB 20 dB 30 dB

PREM 0.22% 29.51% 6.18% 4.24% 2.66%
SNR 55.07 13.39 24.50 22.73 32.11
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Case 3: The considered random load applied in this example is a Gaussian white
noise with a variance of 100 and a mean value of 0. The dynamic load is again applied
at a = 1.5 m. As with before, the results of RNN and MLP are compared for a noise-free
environment, while only the performance of RNN is evaluated under noise. The results
without noise are plotted in Figure 9 and the results with noise in Figure 10, in which the
abscissa unit is s and the ordinate unit is N. The PREM and SNR for different solutions are
presented in Table 7. The results are consistent with before and indicate the advantages of
RNN in the time domain compared with MLP. The RNN shows a high level of identification
accuracy in noise-free environments. When adding noise to the load identification input,
the RNN results remain acceptable. The PREM reaches the maximum value of 1.69% at
10 dB, while the SNR is 25.29 under a 10 dB noise level.
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Table 6. Evaluation of impact excitation identification results.

No Noise RNN with Noise

RNN MLP 10 dB 20 dB 30 dB

PREM 2.94% 19.16% 9.37% 5.70% 4.64%
SNR 34.10 17.15 22.52 27.01 28.62
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Figure 9. Identification results from random excitation: (a) comparison of results of the use of deep
RNN and MLP with a random excitation; (b) comparison of errors of the use of deep RNN and MLP
with a random excitation.
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Table 7. Evaluation of random excitation identification results.

No Noise RNN with Noise

RNN MLP 10 dB 20 dB 30 dB

PREM 1.71% 40.65% 1.69% 1.43% 0.82%
SNR 43.27 14.85 25.29 35.98 47.20

4. Experimental Results
4.1. Experimental Setting

In this section, experimental results are used to further validate the reliability and
feasibility of the proposed approach. A simply supported beam is set up with vibration
analysis equipment, acceleration and force sensors, as well as vibration exciters. The test
setting is shown in Figure 11. Nine acceleration sensors (PCB Unidirectional acceleration
sensor) are arranged on the beam to collect the vibration response information. A vibration
exciter (NTS Vibration exciter) is applied 0.21 m away from the left end of the beam and
a vibration analyzer (M+P VibMoblie) is used to collect vibration data, as can be seen
in the figure. Two types of load are applied, namely, sinusoidal excitation and random
excitation. Additionally, the vibration responses under these two types of excitations are
measured at the same location where the exciter is applied, i.e., 0.21 m from the left end.
The function of the sinusoidal excitation is F = 1.8 sin(150πt) and the random excitation
is again Gaussian white noise with a variance of 100 and a mean value of 0. It should be
noted that, for the training purposes, the sinusoidal excitation is F = 10 sin(100πt) and the
random excitation is Gaussian white noise with 25 variance and a mean value of 0. The
sample rate is set to 6400. The time span of the calculations for the sinusoidal excitation
and the random excitation is fixed at 0.5 s. Moreover, the experimental validation measures,
PREM and SNR, are used to evaluate the identification accuracy. The parameters of the
simply supported beam are shown in Table 8 and the parameters of the dynamic loads in
Table 9.
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Table 8. Parameters for the simply supported beam experiment.

Parameters Value

Length l 0.7 m
Width a 0.04 m

Thickness b 0.008 m
Elastic modulus E 210 GPa
Poisson’s ratio ε 0.3

Density ρ 7800 kg/m3

Table 9. Load conditions for two cases of experiments.

Case Dynamic Load Excitation Parameters Sampling
Parameters

1 Sinusoidal
x = 0.21 m, F = 1.8 ∗ sin 150(πt)

The excitation for training is
x = 0.21 m, F = 10 ∗ sin(100πt)

∆t = 1
6400 s, t = 0.5 s

2 Random

white Gaussian noise
x = 0.21 m, variance = 100, mean = 0

The excitation for training is
white Gaussian noise

x = 0.21 m, variance = 25, mean = 0

∆t = 1
6400 s, t = 0.5 s

4.2. Experimental Results

The excitations mentioned in Table 9 were applied to the simply supported beam. The
vibration responses that were obtained were transferred through the proposed model as
described in Section 3.2. The results of the sinusoidal excitation are presented in Figure 12
and those of the random excitation in Figure 13, in which the abscissa unit is s and the
ordinate unit is N, similar to the presentation of the results of the numerical analysis. The
PREM and SNR for the different obtained solutions are displayed in Table 10. The results
again reflect the high reliability and accuracy of the proposed model. The PREMs of the
sinusoidal excitation and random excitation are 1.27% and 1.26%, respectively, while the
SNRs of these two excitations are 36.42 and 46.28. The precision and robustness of the
proposed method mean that it is of great practical value for many engineering applications.
However, the proposed method requires a relatively large amount of vibration response
data, which also means that an extended amount of time is needed to train the model. In
addition, this method requires a priori data of the dynamic load, that is, historical data or
similar data of the target’s dynamic load. For completely unknown dynamic loads, this
method might face difficulties predicting the load accurately.

Table 10. Evaluation of experimental results.

Excitation

Sinusoidal Excitation Random Excitation

PREM 1.27% 1.26%
SNR 36.42 46.28
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Figure 12. Identification results for sinusoidal excitation from the practical experiment: (a) results of
the use of deep RNN compared with actual load with a sinusoidal excitation in an experiment; (b)
absolute error of the use of deep RNN with a sinusoidal excitation in an experiment.
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5. Implementation Factors

Taking the simply supported beam in Figure 11 with the sinusoidal excitations as an
example, we now aim to perform a detailed analysis of the proposed method. We first
evaluate the influence of the hyperparameters on the dynamic load identification results.
The impact of the RNN models with different structures on the identification results is
also studied. Then, we evaluate the proposed method of identifying dynamic loads under
multi-points excitations. Finally, we check if the identification results are affected by the
layouts or the measuring points. To this end, we build three models using different layers
and adjust the hyperparameters, which consist of each neuron’s number and learning rate
and the training time, and compare the performance relative to PREM and SNR of the
obtained results.

5.1. Effect of Different Architectures and Hyperparameters

To discuss the impression of the model structure on the identification results, we
constructed three different models: an RNN model (two layers without LSTM), an LSTM
model (two layers with LSTM) and a BLSTM model (one BLSTM and one LSTM layer).
Furthermore, the number of neurons, which affects the learning ability of the network, and
the learning rate, which represents the calculation step size of the update algorithm, are
changed to evaluate the influence of the hyperparameters on the identification results. All
the considered variations and their relevant accuracy results are presented in Table 11. For
reference we also show in the table the respective GPU and CPU times in minutes needed
to perform the computations.

Table 11. Identification results with changing structures and hyperparameters.

Hyperparameter
Training Time by
GPU(CPU) in min PREM SNRNumber of

Neurons
Learning

Rate

1BLSTM+
1LSTM+

2FC

128
0.01 18(25) 1.35% 33.28
0.005 41(68) 1.27% 44.29
0.001 52(86) 1.27% 45.42

256
0.01 29(48) 1.25% 46.42
0.005 58(77) 1.27% 45.20
0.001 85(132) 1.22% 45.58

2LSTM+
2FC

128
0.01 12(17) 2.86% 28.17
0.005 28(36) 1.52% 35.74
0.001 46(66) 1.48% 37.55

256
0.01 25(40) 4.79% 30.74
0.005 65(88) 2.87% 38.26
0.001 85(125) 2.76% 38.65

2RNN+
2FC

128
0.01 12(15) 8.78% 22.93
0.005 21(32) 6.42% 25.66
0.001 32(47) 7.29% 27.31

256
0.01 22(25) 5.31% 23.75
0.005 34(47) 4.10% 28.12
0.001 41(56) 4.08% 31.07

In general, the proposed approach remains effective for the different cases shown in the
table. However, the changes in the structure and the hyperparameters shows a meaningful
impact on the identification results, especially for the structure without LSTM. The value of
PREM increases and of SNR decreases without LSTM. This behavior is consistent with the
fact that RNN cannot deal with vanishing and exploding gradients. The model with BLSTM
shows an improved identification ability but it also requires longer training times. It is to
be noted that the BLSTM model is the structure considered in Sections 3 and 4. Finally,
the increase in the number of neurons and the reduction of the learning rate improve the



Materials 2021, 14, 7846 24 of 30

identification accuracy. Nevertheless, using an excessive number of neurons will result in
data being over-fitted, while a very low learning rate will prevent the convergence of the
network’s gradients.

5.2. Effect of Multi-Point Excitations

To evaluate the effect of multi-point excitations, we apply two sinusoidal loads on
the simply supported beam considered Section 4. The first sinusoidal load (Excitation 1)
is F1 = 1.8 sin(150πt) and applied at a = 0.21 m from the left support, while the second
(Excitation 2) is F2 = 2.5 sin(100πt) and at a = 0.56 m. The BLSTM model in Section 5.1 is
then used to identify the loads that are applied simultaneously. The identification results
are presented in Figure 14 and the accuracy is shown in Table 12. Clearly, the identification
results of the two-point excitation is worse than that under a single-point excitation, which
is consistent with the research results for multi-point excitations in [66,67]. However, the
proposed method can accurately identify the excitation curves, as can be seen in the figure.
Moreover, the absolute error, PREM and SNR are acceptable.
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Table 12. Evaluation of the results of multi-point excitation.

Excitation

Excitation 1 Excitation 2

PREM 7.07% 3.52%
SNR 20.52 24.27

5.3. Effect of Different Measuring Points

Finally, we want to evaluate the impact of using different numbers and positions of
points to take the measurements on the accuracy. Thus, we assess the impact of choosing a
specific measurement profile compared to others on the identification accuracy of RNN.
We propose five layouts of measurement points on the simply supported beam defined in
Section 4. Each layout is different based on the positions and the number of considered
points, as shown in Figure 15. The distance from the measuring point to the left end, the
distance from the excitation point to the right end and the distance between the measuring
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points are all fixed at 0.21 m. The BLSTM network defined in Section 5.1 is again used
here. The impact of different layouts on the identification results is shown in Figure 16 and
Table 13.

It can be inferred from the results that the identification accuracy is not affected by
changing the measurement layout. Furthermore, the dynamic loads can be accurately
identified even when using only one measuring point. In many engineering applications,
this can be an important feature for the proposed approach, given that the accuracy of the
RNN model is insensitive to the measurement layout. This feature can significantly reduce
the complexity of the vibration measurements.
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Table 13. Evaluation of the results of multi-point excitation.

Different Layouts of Measuring Points

Layout 1 Layout 2 Layout 3 Layout 4 Layout 5

PREM 1.60% 2.42% 0.90% 2.35% 1.61%
SNR 34.02 29.41 30.47 30.32 28.43

6. Conclusions

In this paper, a novel method based on a recurrent neural network is proposed for the
dynamic load identification of a simply supported beam. The model is based on RNN and
LSTM. The data needed to train and validate the model are created from different types of
dynamic loads, i.e., sinusoidal, impact and random loads. The model is then used to identify
the dynamic load using the vibration response from different excitations. The results show
that the proposed method has a good identification accuracy and is reliable even when
used with noisy measurements or when considering multiple excitations simultaneously.
To evaluate the stability of the proposed algorithm, we also considered its performance
using different network structures and different values for the hyperparameters. We finally
analyze the sensitivity of the proposed algorithm to the number and the layout of the
points where measurements are taken. Based on the presented results, the proposed model
has the following advantages:

1. Compared with conventional methods, the proposed algorithm can avoid the need
to solve the model parameters of the structure. This can significantly reduce the
difficulty of dynamic load identification as assessing the dynamic properties of a
structure cannot always be possible.

2. The presented results shows that the proposed algorithm for dynamic load identifica-
tion is accurate, stable and robust.

3. The proposed method is suitable for single-point or multi-point excitations. Similarly,
the method does not display sensitivity to changing the vibration measurement layouts.

4. Using different structures for the model network and the choice of the hyperparam-
eters has a limited impact on the identification results. The choice of the structure
and the hyperparameters can then be made based on balancing the required accuracy
against the time available to train the network.

Despite the different advantages of models built with RNN for change-over-time
applications, this work is the first to utilize such models to identify different dynamic loads
applied to a simply supported beam. We hope the work can bring some fresh ideas into
the dynamic load identification academic and industrial communities.
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