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Abstract: In this paper, a novel soft computing technique is designed to analyze the mathematical
model of the steady thin film flow of Johnson–Segalman fluid on the surface of an infinitely long
vertical cylinder used in the drainage system by using artificial neural networks (ANNs). The
approximate series solutions are constructed by Legendre polynomials and a Legendre polynomial-
based artificial neural networks architecture (LNN) to approximate solutions for drainage problems.
The training of designed neurons in an LNN structure is carried out by a hybridizing generalized
normal distribution optimization (GNDO) algorithm and sequential quadratic programming (SQP).
To investigate the capabilities of the proposed LNN-GNDO-SQP algorithm, the effect of variations
in various non-Newtonian parameters like Stokes number (St), Weissenberg number (We), slip
parameters (a), and the ratio of viscosities (φ) on velocity profiles of the of steady thin film flow of non-
Newtonian Johnson–Segalman fluid are investigated. The results establish that the velocity profile is
directly affected by increasing Stokes and Weissenberg numbers while the ratio of viscosities and slip
parameter inversely affects the fluid’s velocity profile. To validate the proposed technique’s efficiency,
solutions and absolute errors are compared with reference solutions calculated by RK-4 (ode45) and
the Genetic algorithm-Active set algorithm (GA-ASA). To study the stability, efficiency and accuracy
of the LNN-GNDO-SQP algorithm, extensive graphical and statistical analyses are conducted based
on absolute errors, mean, median, standard deviation, mean absolute deviation, Theil’s inequality
coefficient (TIC), and error in Nash Sutcliffe efficiency (ENSE). Statistics of the performance indicators
are approaching zero, which dictates the proposed algorithm’s worth and reliability.

Keywords: drainage problems; Johnson Segalman model; computational fluid dynamics; weighted
legendre neural networks; hybrid soft computing; generalized normal distribution optimization;
sequential quadratic programming

1. Introduction

In recent times, the importance of non-Newtonian fluids has become prominent with
developments in industries like pulp, petroleum and polymer and so forth. Many industrial
applications, such as the melting of polymers, asphalts, biological solutions, paints and
glues, fall into this category. Due to the complex nature of non-Newtonian fluids, it is
difficult to establish a single mathematical model that can describe all properties of the fluid.
As a result, several fluid models have been presented to predict non-Newtonian behaviour
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of various materials. The Generalized third grade fluid model has received significant
attention among these [1]. Denson [2], N. V. Lavrik [3], Tasawar Hayat [4] studied various
third grade fluid models. M.M Bhatti [5] studied the sinusoidal motion of small particles
through a Darcy–Brinkman–Forchheimer microchannel filled with non-Newtonian fluid
under electro-osmotic forces. Landau and Lifshitz [6] for the first time discuss thin-film
flow of non-Newtonian Johnson–Segalman fluid. Siddiquie [7] found analytical results for
drainage problem of fourth graded fluid over a vertical cylinder and also calculated exact
solutions for Phan Thein Tanner (PTT) fluid for lifting and drainage problems [8]. Alam [9]
studied thin-film flow of Johnson Segalman fluid on vertical surfaces.

Various models of fluids explain the non-Newtonian behavior of fluids. However,
Johnson–Segalman fluid has gained many researchers’ interest because it includes excep-
tional cases of classical Newtonian fluid like Oldroyd B fluid and Maxwell fluid [10]. The
Johnson–Segalman fluid model is considered a viscoelastic model developed to allow
non-affine deformations [11]. Many researchers discuss spurt phenomena of this non
Newtonian fluid model [12–14]. Rao [15] investigated the flow of Johnson–Segalman fluid
model with and without suction on rotating coaxial cylinders. Rajagopal [16] studied three
different cylindrical Poiseuille flows of Johnson–Segalman fluid. Unlike most other fluid
models, Johnson–Segalman fluid allows a nonmonotonic relationship between the rate of
share and shear stress in a simple shear flow for different material parameters. T. Hayat [17]
used the concept of this model for peristaltic flow.

Most of the fluid models, are governed by partial and ordinary differential equations
and generally, finding a solution to such a models is always a challenging task. Theo-
retical researchers in mathematics have developed various methods to find analytical
expressions and approximate solutions with proven convergence for nonlinear differential
equations. Adomian decomposition methods (ADM) [18,19], Variational iteration method
(VIM) [20], Finite difference method (FDM) [21,22] and Optimal homotopy perturbation
method (OHAM) [23,24] are used to solve variety of ordinary and partial differential equa-
tion models. GM Sobamowo [25] used Galerkin’s weighted residuals method to present an
approximate solution for heat transfer in a pipe with Johnson-Segalman fluid. The motion
of Johnson–Segalman fluid in an inclined channel subject to radiative flux was studied by
Hayat [26] using the perturbation method. In terms of consistency, convergence, robustness,
and applicability, all of these implemented techniques have their advantages and limita-
tions. These methods are based on well established deterministic procedures. On the other
hand, soft computing techniques based on neural networks are relatively less exploited and
rapidly convergent in obtaining a solution to non-linear differential equations. In the recent
past, numerical solutions based on artificial intelligence (AI) through neural networks,
optimized with bio/nature-inspired global and local optimization techniques have gained
the research community’s attention. Raja [27] designed a bio-inspired approach using the
hybridization of genetic algorithm and an active set algorithm (GA-ASA) to solve Johnson’s
steady thin-film flow Segalman fluid through vertical cylinder for drainage problems. N.A
Khan [28] used Legendre neural networks (LeNN) and optimized the model of counter-
current imbibition phenomena during the secondary oil recovery process by using the
nature-inspired whale optimization algorithm and the Nelder–Mead algorithm. Some
recent applications of stochastic computational techniques or learning algorithms based
on artificial neural networks (ANN’s) with novel metaheuristic and heuristic techniques
includes the solution of wire coating dynamics with Oldroyd 8-constant fluid [29,30], non-
linear problems arising in heat transfer [31,32], absorption of CO2 into solution of phenyl
glycidyl ether (PGE) [33], mathematical models of CBSC over wireless channels [34] and
electrohydrodynamic (EHD) flow in a circular cylindrical conduit [35]. Recent develop-
ments in stochastic algorithms for such problems motivated authors to explore and exploit
machine learning algorithms and use Legendre neural networks to develop an alternative,
accurate, and reliable framework to solve nonlinear multi-singular initial or boundary
value problems representing drainage problems.
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Salient features of the presented study are summarized as follows:

• The Mathematical formulation for non Newtonian Johnson–Segalman fluid is pre-
sented using the law of conservation of mass and momentum under sufficient bound-
ary conditions that result in partial differential equations. The drainage problem is
further reduced to non-linear ordinary differential equation employing similarity
transformation;

• This study aims to introduce a novel solution computing that involves Legendre
artificial neural networks and two algorithms: generalized normal distribution opti-
mization (GNDO) and sequential quadratic programming (SQP). GNDO is used as a
global search technique while SQP is utilized as a local search algorithm;

• Effect of variations in different parameters like Weissenberg number (We), Stokes
number (St), slip parameter (a) and the ratio of viscosities (φ) on velocity profile of
steady thin film flow of non-Newtonian Johnson–Segalman fluid is investigated.

• Performance indicators are used for different cases of drainage problem studied in this
paper to validate the efficiency and correctness of the LNN-GNDO-SQP algorithm;

• Extensive statistical and graphical analysis in terms of absolute errors, fitness evalua-
tion, MAD, RMSE, TIC, and ENSE are provided, that demonstrated the ability of our
proposed algorithm in solving real-world problems.

2. Mathematical Formulation of Drainage Problem

In this section, the mathematical formulation of non-Newtonian Johnson–Segalman
fluid on the outer surface of a long vertical cylinder for a drainage problem is briefly
discussed [9].

2.1. Basic Equations

Basic equations governing the flow of incompressible fluid neglecting the thermal
effects are given as:

∇.V = 0, (1)

ρ
DV
Dt

= ∇.σ + ρf, (2)

where V is velocity vector of fluid, f is body force, D
Dt is material time derivative, ρ denotes

density, Cauchy stress tensor is presented by σ and in case of Johnson–Segalman fluid, it is
defined by [10]:

σ = T− pI, (3)

T = S + 2µD, (4)

S + m
[

DS
Dt

+ S(W− aD) + (W− aD)TS
]
= 2ηD, (5)

DS
Dt

=
∂S
∂t

+ (gradS)V, (6)

in Equation (3), −pI is an intermediate part of stress due to incompressibility, a is slip
parameter and viscosities are denoted by µ and η.

D =
1
2

[
L + LT

]
, W =

1
2

[
L− LT

]
, (7)

where D and W are symmetric and skew symmetric components of velocity gradient
respectively. L which is defined as gradV. In case of η = µ = 0 and a = 1, non-
Newtonian Johnson–Segalman fluid is transformed into the newtonian model and Maxwell
fluid respectively.
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2.2. Formulation

A vertically long cylinder of radius R is considered with non-Newtonian John-
son–Segalman fluid on its outer surface as shown in Figure 1. The fluid is considered
in the form of uniform axisymmetric thin film with thickness δ and in stationary contact
with air. It is assumed that time has no effect on flow (steady state), surface tension is
zero and the pressure acting on fluid is atmospheric pressure, so the velocity profile V is
given as

V = [0, 0, w(r)]. (8)

 
Q 

g

 

𝛿 

𝑅 

𝑧 

𝑟 

𝑤𝑧(𝑡) 

Stationary 

Air 

Figure 1. Schematic view of drainage problem.

Radial direction is considered parpendicular to cylinder while z-axis is in downward
direction horizontal to cylinder as prescribed in Figure 1. Boundary conditions for free
space are given as:

at r = R + δ, Trz = 0, (9)

In case of no slip conditions, we have:

at r = R, w = 0; (10)

here, Trz denotes component of shear stress. Continuity equation Equation (1) is satisfied
identically by using Equations (3) and (4) thus Equation (2) is reduce to

0 = −∂p
∂r

+ ρ f1, (11)

0 = −1
r

∂p
∂θ

+ ρ f2, (12)

0 = −∂p
∂z

+
1
r

d(rTrz)

dr
+ ρ f3, (13)

components of force in polar coordinates r,θ and z components are presented by f1, f2 and
f3 respectively. Since pressure is assumed to be constant and gravitational force is acting
vertically downward, therefore Equation (13) can be written as:

0 =
1
r

d
(
rTxy

)
dr

+ ρg. (14)
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The non-zero component of S is obtained by using Equations (6) and (7); in Equation (5),
we get:

Srr =
(a− 1)ηm

(
dw
dr

)2

1− (a2 − 1)m2
(

dw
dr

)2 , (15)

Srz = Szr =
η
(

dw
dr

)
1 + m2(1− a2)

(
dw
dr

)2 , (16)

Szz =
ηm(1 + a)

(
dw
dr

)2

1− (a2 − 1)m2
(

dw
dr

)2 . (17)

By using Equations (15)–(17) in Equation (4), the following components of Cauchy
stress tensor T are obtained:

Trr =
(a− 1)ηm

(
dw
dr

)2

1− (a2 − 1)m2
(

dw
dr

)2 , (18)

Trz = Tzr = µ

(
dw
dr

)
+

η
(

dv
dr

)
1− (a2 − 1)m2

(
dw
dr

)2 , (19)

Tzz =
ηm(1 + a)

(
dw
dr

)2

1 + m2(1− a2)
(

dw
dr

)2 . (20)

Now, Equation (13) can be written as:

d
dr

r

µ

(
dw
dr

)
+

η
(

dw
dr

)
1 + m2(1− a2)

(
dw
dr

)2


 = −ρgr, (21)

with boundary conditions

at r = R + δ,
dw
dr

= 0 (free surface), (22)

at r = R, w = 0 (no slip condition) . (23)

Now, using similarity transformation by defining the following dimensionless parameters,

w∗ =
w
U0

, r∗ =
r
δ

, δ∗ =
δ

R
, T∗rz =

Trz

(µ + η)U0
δ

, φ =
µ

(µ + η)
, (24)

using the equations in (24) and omitting ∗ in Equation (21), we have:

d
dr

r

φ

(
dw
dr

)
+

(1− φ)
(

dw
dr

)
1 + W2

e (1− a2)
(

dw
dr

)2


 = −rSt, (25)

with conditions
at r = R + δ,

dw
dr

= 0 (free surface) , (26)

at r = 1, w = 0 (no slip condition) , (27)
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where We and St are Weissenberg and Stokes numbers respectively and defined are as

We =
mUo

δ
, St =

ρgδ2

µe f f U0
and µe f f = (η + µ). (28)

Integration of Equation (25) yields the drainage problem as under

dw
dr

+ φW2
e

(
1− a2

)(dw
dr

)3
− St

2
W2

e

(
1− a2

)(
(1 + δ)2 1

r
− r
)(

dw
dr

)2

=
St

2

(
(1 + δ)2 1

r
− r
)

, w(1) = 0,
(29)

w(r) denotes the velocity profile of Johnson–Segalman fluid in the radial direction.

3. The LNN-GNDO-SQP Algorithm

The designed scheme consists of two major parts; first, a Legendre polynomials-based
artificial neural networks (LNNs) model is developed and, secondly, the neurons in LNN
architecture for the drainage problem are optimized by using hybridization of GNDO and
SQP algorithms.

3.1. Series Solution Based on LNN Structure

A mathematical model of an approximate solution for the drainage problem is de-
veloped by using an LNN structure in terms of weighted Legendre polynomials. A trial
or approximate series solution w(r) with first order derivative w′(r) in terms of layers in
LNN is mathematically expressed as:

w(r) =
m

∑
j=1

αjLn
(
ωjr + β j

)
, (30)

where αi, ωi and βi are design weights and n shows the number of Legendre polynomials
involved in Equation (30) and

dw
dr

(r) =
m

∑
j=1

αj
dLn

dr
(
ωjr + β j

)
, (31)

where Ln denotes Legendre polynomials. The first three Legendre polynomials are given as:

L1(r) = 1, L2(r) = r, L3(r) =
1
2

(
3r2 − 1

)
, L4(r) =

1
2

(
5r3 − 3r

)
. (32)

Higher order polynomials are generated by:

Ln+1(r) =
1

n + 1
[(2n + 1)rLn(r)− nLn−1(r)]. (33)

The ANN structure for the drainage problem in terms of the input and hidden and
outer layer is shown in Figure 2.
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Figure 2. Legendre polynomial based artificial neural networks architecture for drainage problem.

3.2. Construction of Fitness Function

An objective function also known as a fitness function or merit function is constructed
based on mean square errors in candidate solutions to train unknown weights in LNN.
Structure of fitness function is formulated as:

min ε = ε1 + ε2, (34)

ε1 is mean square error in candidate solution by using it in the drainage problem which is:

ε1 =
1
n

n

∑
m=1

 dŵm
dr + φW2

e
(
1− a2)( dŵm

dr

)3
− St

2 W2
e
(
1− a2)

×
(
(1 + δ)2 1

r − r
)(

dŵm
dr

)2
− St

2

(
(1 + δ)2 1

r − r
)


2

, (35)

where N = 1
h , ŵm = ŵ(rm), rm = mh ε2 is the mean square error in the candidate solution

by putting it in the initial condition, which is

ε2 = (w(1)− 0)2. (36)

3.3. Optimization Framework Used to Compute Best Weights

A novel methodology is adopted for calculating unknown weights in LNN by op-
timizing a fitness function; see Equation (35) for the drainage problem using a hybrid
procedure of a generalized normal distribution optimization (GNDO) technique and se-
quential quadratic programming (SQP). An illustrative flowchart of the LNN-GNDO-SQP
algorithm is given in Figure 3.

3.3.1. Brief Introduction of Generalized Normal Distribution Optimization (GNDO)
Algorithm

The generalized normal distribution optimization technique was developed by
Zhang et al. [36], a novel metaheuristic algorithm inspired by normal distribution theory
in which each individual’s location is modified using a generalized normal curve for distri-
bution. The GNDO algorithm is an effective and efficient technique for finding optimal
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solutions for constrained and unconstrained optimization problems by enhancing and
extracting the precision of unknown parameters. The working framework of the GNDO
algorithm is classified into two main categories, named exploitation and exploration. The
two phases are of equal importance in GNDO, and have the same probability of being
chosen in order to optimize a problem.
(a) Exploitation: It is a process of finding optimum solutions around the candidate space
containing the current position of individuals. This phase’s working procedure is based
on a relation between the normal distribution of population and the distribution of each
individual in a population. The model for optimization can be expressed as:

ut
i = δi × η + µi, i = 1, 2, 3, . . . , N, (37)

where δi, η and µi are defined as:

δi =

√
1
3

[(
xt

i − µ
)2

+ (M − µ)2 +
(
xt

Best − µ
)2
]
, (38)

η =

{ √
− log(λ1)× cos(2πλ2), if a ≤ b,√
− log(λ1)× cos(2πλ2 + π), otherwise,

(39)

µi =
1
3
(
xt

i + xt
Best + M

)
, (40)

ut, µi and δi are trial vector, generalized mean and generalized variance of ith individual at
any time t. Penalty factor is denoted by η. a, b, λ1 and λ2 are randomly chosen numbers
between 0 and 1. xt

Best, which is the so far best position of individual while its mean
position is denoted by M and defined as:

M =
∑N

i=1 xt
i

N
. (41)

(b) Exploration: It is a process of searching a population space globally to find promising
solutions. The global search phase in GNDO is subjected to three arbitrarily selected
individuals, which are modeled as:

ut
i = xt

i + β× (|λ3| × u1) + (1− β)× (|λ4| × u2), (42)

local information is presented by xt
i + β× (|λ3| × v1) while global information is shared by

(1− β)× (|λ4| × v2). u1 and u2 are trail vectors while β is adjustment parameter between
0 and 1. u1 and u2 can be calculated as

u1 =

{
xt

i − xt
pl, if f

(
xt

i
)
< f

(
xt

p1

)
,

xt
p1 − xt

i , otherwise ,
(43)

and

u2 =

{
xt

p2 − xt
p3, if f

(
xt

p2

)
< f

(
xt

p3

)
,

xt
p3 − xt

p2, otherwise ,
(44)

where p1 6= p2 6= p3 6= i are integers between 1 to N.

3.3.2. Sequential Quadratic Programming

To enhance the local search characteristic of our solution technique, we have combined
SQP with GNDO. SQP is a well-established single path following the local search algorithm,
which has considerably enhanced our algorithm’s convergence speed. SQP is considered
a classical method developed in 1963 for solving constrained/unconstrained linear and
nonlinear optimization problems [37]. The SQP algorithm is known to be one of the
basic approaches to be used in the context of public and commercial sector problems of
significant importance. Some recent applications of SQP include numerical simulation of
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shakedown analysis of structure [38], economic load dispatch problem [39] and turbulent
flow [40].
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Figure 3. Flowchart of the LNN-GNDO-SQP Algorithm.

3.4. Hybridization of GNDO-SQP Algorithm

Working procedure of LNN-GNDO-SQP algorithm is summarized as:
Step 1 Initialization: Trial solution Equation (30) for drainage problem is considered and
unknown parameters of LNN are initialized with randomly generated real values for
population space. Mathematically, individuals can be listed as:
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C = [(α, ω, β)] = [α1, α2, . . . αn, ω1, ω2, . . . ωn, β1, β2, . . . βn], (45)

where n denotes the number of weights in LNN model. Parameter setting for GNDO
algorithm is given in Table 1.
Step 2 Fitness calculation: GNDO evaluates the fitness function Equation (35) and updates
the weights when required until termination criteria is achieved.
Step 3 Ranking: Unknown parameters attained with GNDO for error based function (fit-
ness function) during multiple runs are ranked in ascending order.
Step 4 Initializing SQP: The unknown parameters corresponding to minimum value of
fitness function achieved by GNDO are considered as the initial guess or initial weights to
supervise sequential quadratic programming.
Step 5 Fitness calculation: Fitness function for drainage problem is calculated by using
SQP algorithm with updated weights of GNDO.
Step 6 Stopping criteria: The weights are updated with GNDO-SQP algorithm and the
process is stopped when minimum criteria on fitness value is achieved. Parameter settings
for SQP is given in Table 1.
Step 7 Storage: Weights, fitness value, residual and absolute errors are stored for the op-
timization of drainage problem. Graphical overview of the LNN-GNDO-SQP algorithm
given in Figure 3.

Table 1. Parameter settings for GNDO and SQP algorithms.

Parameter Setting Parameter Setting
Algorithm GNDO Bounds [lower, upper] [−1,1]

Maximum Iterations 6000 X-tolerance (TolX) 10−20

Maximum function evaluations 150,000 Search Agents 70

Fitness 10−20 Function tolerance (TolFun) 10−20

Algorithm SQP Bounds [lower, upper] [−1,1]

Maximum Iterations 3000 Function tolerance (TolFun) 10−18

Maximum function evaluations 200,000 X-tolerance (TolX) 10−20

The LNN-GNDO-SQP algorithm has a simple structure and easy to implement. The
GNDO algorithm updates the position of individual using generalized normal distribution
formula and SQP complements its local convergence. Since Legendre polynomials are
orthogonal on [−1, 1], the experimental analysis shows that proposed algorithm converges
to best solutions for number of real world problems by training the weights from the
interval [−1, 1]. It has been noticed that the convergence of the design scheme is slightly
affected by increasing the domain.

Computational complexity analysis (CCA) is evaluated for the proposed algorithm
based on the average time taken to calculate unknown neurons in the LNN structure using
the GNDO-SQP algorithm. Values of complexity operators for different drainage problem
scenarios show execution time and fitness evaluation in terms of mean and standard
deviations are dictated in Table 2. The results show the consistency of the proposed
algorithm. All calculations and evaluations for this research were conducted on an HP
laptop Elitebook 840 G2 with intel(R) Core(TM) i5-5300 CPU @ 2.30 GHz, 8.00 GB RAM, 64
bit operating in Microsoft Windows 10 Education edition running the R2018a version of
MATLAB.
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Table 2. Computational complexity analysis of the proposed algorithm for different cases of the drainage problem.

Time (s) Fitness Evaluation
GNDO SQP LNN-GNDO-SQP LNN-GNDO-SQP

Scenarios Cases Mean Std Mean Std Mean Std Mean Std
I 18.4108 3.4887 4.5928 0.0705 23.8861 3.8476 89,004.8 16,731.3

I II 19.0551 3.3897 4.5532 0.0368 24.8434 3.3793 93,340.1 14,831.1
III 20.2797 4.5199 8.6643 0.8056 30.4264 5.2021 92,509.5 9581.3
I 22.2363 3.3865 5.5877 0.099 29.3197 3.3619 90,013.6 12,904.2

II II 21.7863 2.9221 5.5285 0.1559 28.8605 2.8051 90,002.5 12,910.1
III 22.8682 6.1756 5.3493 0.1791 28.0621 3.7356 96,845.3 6833.2
I 19.2665 2.1826 4.7025 0.5069 25.2665 1.9573 92,503.7 17,079.5

III II 22.0751 3.4185 5.5411 0.1166 29.1795 3.433 90,014.1 11,906.1
III 21.8293 4.0707 5.3898 0.2011 28.8158 4.2539 93,378.8 9146.3
I 20.5727 3.4724 5.4403 0.1086 27.6455 3.6496 97,547.2 12,852.6

IV II 22.3783 4.5886 5.5063 0.1848 29.5412 4.7723 91,364.9 8806.3
III 20.1867 1.9982 5.6793 0.2979 27.4167 2.2246 95,010.9 8228.1

4. Experimental Setup and Statistical Evaluation

In this section, the statistical analysis of different drainage problems based on mean,
standard deviation and minimum values is presented. Performance indications like Mean
absolute deviation (MAD), Theil’s inequality coefficient (TIC), Root mean square error
(RMSE), and Error in Nash Sutcliffe efficiency (ENSE) are defined to study the efficiency of
the proposed algorithm. Global performance indicators like GMAD, GTIC, GRMSE, and
GENSE are also defined to study our novel computing approach’s overall performance.
Formulation of performance metrics are given as:

MAD =
1
n

n

∑
i=1

(∣∣w(ri)− wapprox(ri)
∣∣), (46)

TIC =

√
1
n ∑n

i=1
(
w(ri)− wapprox(ri)

)2√
1
n ∑n

i=1(w(ri))
2 +

√
1
n ∑n

i=1
(
wapprox(ri)

)2
, (47)

RMSE =
1
n

√
n

∑
i=1

(
w(ri)− wapprox(ri)

)2, (48)

NSE =

{
1− ∑n

i=1
(
w(ri)− wapprox(ri)

)2

∑n
i=1(w(ri)− w̄(ri))

2 , w̄(ri) =
n

∑
i=1

(w(ri)), (49)

ENSE = |1− NSE|, (50)

here, ŵ(ri) = wapprox(ri).
In the case of a perfect solution, the values of these performance indices must approach

zero. The formulations of global performance indices are given as:

GMAD =
1

Rn

Rn

∑
j=1

MAD, GTIC =
1

Rn

Rn

∑
j=1

TIC, GRMSE =
1

Rn

Rn

∑
j=1

RMSE, GENSE =
1

Rn

Rn

∑
j=1

ENSE, (51)

where Rn denotes the number of independent runs.

Numerical Simulation and Discussion

In this section, different scenarios of non-linear drainage problem is considered with
different cases depending on the variations in parameters like St, We, φ and a. The detailed
overview of the problems discussed in the paper are shown through Figure 4.
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Figure 4. Graphical overview of the problem considered in this paper.

SCENARIO I: Effect of variation in Stokes number St on drainage problem. Following
three cases are considered CASE I: St = 0.1 , CASE II: St = 0.3 and CASE III: St = 0.4
where We = φ = 1 , a = 0.1 and thickness δ = 1.

Fitness function of Equation (35) for the scenario I is formulated as

ε = 1
n ∑n

m=1

(
dŵm

dr + 0.99
(

dŵm
dr

)3
− 0.495St

(
4
r − r

)(
dŵm

dr

)2
− St

2

(
4
r − r

) )2
+ (w(1))2. (52)

SCENARIO II: Effect of variation in Weissenberg number We on drainage problem. Fol-
lowing three cases are considered CASE I: We = 0.0 , CASE II: We = 1.0 and CASE III:
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We = 2.0 where St = 0.5 , φ = 0.80 , a = 0.50 and thickness δ = 1.0.

Fitness function of Equation (35) for the scenario II is formulated as

ε = 1
n ∑n

m=1

(
dŵm

dr + 0.6W2
e

(
dŵm

dr

)3
− 0.1875W2

e

(
4
r − r

)(
dŵm

dr

)2
− 0.25

(
4
r − r

) )2
+ (w(1))2. (53)

SCENARIO III: Effect of variation in ratio of viscosities φ on drainage problem. Following
three cases are considered CASE I: φ = 1.0 , CASE II: φ = 2.0 and CASE III: φ = 3.0 where
St = 0.5 , We = 1.0 , a = 0.50 and thickness δ = 1.0.

Fitness function of Equation (35) for the scenario III is formulated as

ε = 1
n ∑N

m=1

(
dŵm

dr + 0.75φ
(

dŵm
dr

)3
− 0.1875

(
4
r − r

)(
dŵm

dr

)2
− 0.25

(
4
r − r

) )2
+ (w(1))2. (54)

SCENARIO IV: Effect of variation in slip parameter a on drainage problem. Following
three cases are considered CASE I: a = 1.0 , CASE II: a = 0.8 and CASE III: a = 0.5 where
St = 0.70 , We = 1.30 , φ = 0.60 and thickness δ = 1.0.

Fitness function of Equation (35) for the scenario IV is formulated as

ε1 =
1
n

n

∑
m=1

(
dŵm

dr + 1.014
(
1− a2)( dŵm

dr

)3
− 0.5915

(
1− a2)( 4

r − r
)(

dŵm
dr

)2
− 0.35

(
4
r − r

) )2
+ (w(1))2. (55)

In this paper, the mathematical model of the thin film flow of non Newtonian fluid
is formulated for drainage. Four scenarios are considered depending on the variations in
parameters, including Stokes number St, Weissenberg number We, a ratio of viscosities φ,
and slip parameter a. A novel soft computing technique is developed to solve the non-
linear mathematical model for drainage problem, see Equation (29). Approximate solutions
obtained by our proposed technique, the LNN-GNDO-SQP algorithm, are compared
with MATLAB solver RK-4 and hybrid of genetic algorithm and active set algorithm
(GA-ASA) [27].

Fitness functions as in Equations (52)–(55) corresponding to four scenarios of the
drainage problem are optimized by performing 100 independent runs using the LNN-
GNDO-SQP algorithm. It is evident from Figure 5 that best approximated solutions
obtained by proposed scheme overlaps the numerical and GA-ASA solutions for each
scenario. Furthermore, it can be seen from Figure 5a,b that with increase in Stokes and
Weissenberg number the velocity profile w(r) of Johnson–Segalman fluid increases while
from Figure 5c,d it is observed that w(r) decreases with an increase in the ratio of viscosity
and slip parameters. The magnitude of the velocity of the fluid decreases as the fluid
becomes thicker and vice versa. Also, the Newtonian flow behaviour of the fluid was
observed for We = 0.0, α = 1 and φ = 1.0.
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Figure 5. Comparison of dimensionless velocity profile obtained by LNN-GNDO-SQP algorithm with RK-4 method for
variants of drainage problem. (a) SCENARIO I. (b) SCENARIO II. (c) SCENARIO III. (d) SCENARIO IV.

Graphical illustration for performance of the designed algorithm in obtaining change
in velocity profile and absolute errors in best solutions for all scenarios are shown in
Figures 6 and 7. The convergence of fitness values for each scenario with different cases is
shown in Figure 8. Approximate solution and absolute errors in the best solution for each
scenario are listed in Tables 3–6. Percentage errors are calculated for each case of scenario
I, II, III and IV. The average %Errors for different cases of each scenario are 0.36%, 0.58%,
0.53%, 0.74%, 0.86%, 0.60%, 0.57%, 0.20%, 0.17%, 1.01%, 0.63% and 1.00% respectively. It is
obvious from these errors that our approach is successful in calculating best solutions with
less errors. Weights obtained by proposed scheme for optimization of fitness functions
(Equations (52)–(55)) are given in Tables 7–10. These weights are useful in producing
our results.

The comparison of statistical data for absolute errors in terms of minimum, mean,
and standard deviation for scenario I obtained by the LNN-GNDO-SQP algorithm are
compared with GA-ASA [27] as shown in Table 11. It can be seen that minimum values,
mean and standard deviation at each step size r = 0.05 obtained by the design algorithm
dominates the results available in the latest literature [27]. Statistical data of MAD, TIC,
RMSE, and ENSE in terms of minimum, mean and standard deviation are presented
in Tables 12–15. Minimum values of fitness, MAD, TIC, RMSE and ENSE for different
cases of each scenarios lies around 10−11 to 10−12, 10−6 to 10−7, 10−6 to 10−7 and 10−9 to
10−11 respectively. Bar and box graphs are plotted through Figures 9 and 10 to illustrate
values of the global performance indicators such as MAD, TIC, RMSE, and ENSE. Global
values of performance indices lie between 10−6 and 10−7, which establishes our algorithm’s
superiority. The series solutions for each of scenario I, II, III and IV are given in Appendix A.
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Figure 6. Effect of variations in St, We, φ and a on w′ of the flow of Johnson–Segalman fluid. (a) SCENARIO I. (b) SCENARIO
II. (c) SCENARIO III. (d) SCENARIO IV.
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Figure 7. Absolute error in solutions calculated by the LNN-GNDO-SQP algorithm for different scenarios of drainage
problem. (a) SCENARIO I. (b) SCENARIO II. (c) SCENARIO III. (d) SCENARIO IV.
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Figure 8. Behaviour of fitness value during the 100 executions of the proposed LNN-GNDO-SQP algorithm for various
scenarios of the flow of Johnson Segalman fluid on the surface of an infinitely long vertical cylinder. (a) SCENARIO I.
(b) SCENARIO II. (c) SCENARIO III. (d) SCENARIO IV.

Table 3. Approximate solutions and Absolute errors obtained by the LNN-GNDO-SQP algorithm for
SCENARIO I of the drainage problem.

Solutions Absolute Errors

r Case I Case II Case III Case I Case II Case III

1.0 −1.17× 1−09 −2.93× 10−08 6.62× 10−10 7.36× 10−15 1.46× 10−13 7.92× 10−15

1.1 0.013812 0.041437 0.055248 2.22× 10−13 4.19× 10−12 3.18× 10−13

1.2 0.025464 0.076393 0.101857 9.24× 10−13 1.15× 10−11 1.77× 10−12

1.3 0.035223 0.105669 0.140892 5.42× 10−13 6.59× 10−13 1.59× 10−12

1.4 0.043295 0.129884 0.173178 7.71× 10−14 6.31× 10−12 3.22× 10−14

1.5 0.049843 0.149529 0.199372 5.64× 10−13 1.99× 10−13 1.35× 10−12

1.6 0.055001 0.165002 0.220003 8.59× 10−16 5.31× 10−12 5.64× 10−14

1.7 0.058876 0.176627 0.235503 5.17× 10−13 3.23× 10−14 1.08× 10−12

1.8 0.061557 0.184672 0.246230 4.41× 10−13 5.84× 10−12 1.15× 10−12

1.9 0.063121 0.189363 0.252483 6.69× 10−14 3.74× 10−12 1.88× 10−13

2.0 0.063630 0.190888 0.254518 1.44× 10−15 1.53× 10−13 3.73× 10−15

Table 4. Approximate solutions and Absolute errors obtained by the LNN-GNDO-SQP algorithm for
SCENARIO II of the drainage problem.

Solutions Absolute Errors

r Case I Case II Case III Case I Case II Case III

1.0 1.60× 10−08 3.22× 10−07 −3.79× 10−08 1.36× 10−12 4.02× 10−12 8.29× 10−12

1.1 0.069061 0.073286 0.079469 3.16× 10−11 9.00× 10−11 3.04× 10−10

1.2 0.127322 0.134214 0.145147 4.85× 10−11 1.19× 10−10 1.22× 10−09

1.3 0.176115 0.184630 0.198951 1.53× 10−12 1.37× 10−12 2.25× 10−10

1.4 0.216473 0.225933 0.242478 2.22× 10−11 5.98× 10−11 6.80× 10−10

1.5 0.249216 0.259191 0.277061 8.46× 10−13 4.37× 10−12 1.33× 10−10

1.6 0.275004 0.285236 0.303803 1.49× 10−11 3.50× 10−11 7.24× 10−10

1.7 0.294379 0.304720 0.323602 1.64× 10−13 6.82× 10−12 4.98× 10−11

1.8 0.307788 0.318167 0.337161 8.70× 10−12 3.03× 10−11 8.39× 10−10

1.9 0.315605 0.325992 0.345010 3.80× 10−12 2.07× 10−12 5.67× 10−10

2.0 0.318148 0.328535 0.347552 4.01× 10−13 4.65× 10−14 3.25× 10−11
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Table 5. Approximate solutions and Absolute errors obtained by the LNN-GNDO-SQP algorithm for
SCENARIO III of the drainage problem.

Solutions Absolute Errors

r Case I Case II Case III Case I Case II Case III

1.0 2.78× 10−08 1.20× 10−09 2.25× 10−08 4.35× 10−13 2.14× 10−14 4.41× 10−14

1.1 0.069061 0.057570 0.051729 7.19× 10−12 9.73× 10−13 5.33× 10−13

1.2 0.127322 0.107809 0.097514 2.55× 10−11 4.13× 10−12 1.59× 10−12

1.3 0.176115 0.151207 0.137633 3.95× 10−12 1.41× 10−12 1.12× 10−12

1.4 0.216473 0.188122 0.172252 1.03× 10−11 1.40× 10−12 1.25× 10−13

1.5 0.249216 0.218821 0.201457 2.40× 10−12 1.01× 10−12 9.50× 10−13

1.6 0.275004 0.243515 0.225278 8.30× 10−12 9.73× 10−13 3.04× 10−14

1.7 0.294379 0.262388 0.243717 1.39× 10−12 7.36× 10−13 9.64× 10−13

1.8 0.307787 0.275618 0.256782 8.39× 10−12 5.05× 10−13 4.97× 10−13

1.9 0.315604 0.283396 0.264522 4.71× 10−12 6.68× 10−13 3.53× 10−14

2.0 0.318148 0.285937 0.267060 3.78× 10−13 6.83× 10−14 2.76× 10−15

Table 6. Approximate solutions and Absolute errors obtained by the LNN-GNDO-SQP algorithm for
SCENARIO IV of the drainage problem.

Solutions Absolute Errors

r Case I Case II Case III Case I Case II Case III

1.0 3.30× 10−08 1.39× 10−07 8.89× 10−06 6.40× 10−12 9.89× 10−15 8.73× 10−11

1.1 0.096686 0.118626 0.133905 1.22× 10−10 5.24× 10−12 1.43× 10−09

1.2 0.178252 0.213761 0.240778 2.32× 10−10 1.91× 10−11 2.21× 10−08

1.3 0.246561 0.290113 0.325136 1.23× 10−12 6.64× 10−12 1.35× 10−08

1.4 0.303063 0.351164 0.391060 1.40× 10−10 4.51× 10−13 1.18× 10−09

1.5 0.348903 0.399427 0.441979 2.86× 10−14 2.21× 10−12 7.60× 10−09

1.6 0.385007 0.436712 0.480563 1.20× 10−10 6.22× 10−14 3.52× 10−11

1.7 0.412130 0.464339 0.508748 3.26× 10−13 2.41× 10−16 7.55× 10−09

1.8 0.430903 0.483280 0.527879 1.47× 10−10 6.13× 10−13 2.46× 10−10

1.9 0.441847 0.494259 0.538894 7.02× 10−11 7.23× 10−13 1.05× 10−10

2.0 0.445406 0.497823 0.542465 3.18× 10−12 3.27× 10−14 6.17× 10−10

Table 7. Best set of weights obtained by the LNN-GNDO-SQP algorithm using a fitness function as in Equation (52). Here
three cases are studied by varying St in the drainage problem.

Case I Case II Case III

Index αj ωj βj αj ωj βj αj ωj βj

1 −0.267240 −0.002610 0.304056 −0.161130 0.245666 0.153137 −0.642690 −0.817430 0.856846
2 0.199856 0.083281 0.361633 0.540048 −0.082950 −0.133580 −0.500960 −0.085350 0.282074
3 0.574441 −0.211200 −0.000280 0.999999 0.004495 0.031383 −0.502540 −0.411400 0.346607
4 0.939992 0.009259 −0.304090 −0.609000 −0.206300 −0.187450 0.986752 −0.145940 0.599804
5 −0.411700 0.102550 0.009940 −0.952670 −0.488120 0.153461 0.627584 0.615380 −0.986650
6 −0.280860 0.091810 −0.271960 0.042458 0.321851 −0.117770 0.271924 −0.325700 −0.085320
7 0.172679 −0.600230 0.705329 −0.101030 −0.283540 0.999321 0.243758 0.265845 −0.090110
8 0.065151 0.313916 0.079046 −0.277050 0.204757 0.353785 −0.863580 −0.368860 0.070886
9 0.159743 −0.031440 0.179555 0.373401 −0.330670 0.288077 −0.155260 −0.116030 −0.412520

10 0.433358 −0.300480 0.174122 0.363993 0.240191 0.020892 0.825776 −0.133910 0.119581
11 −0.362530 −0.225430 0.133951 0.999719 0.041990 0.288770 −0.148830 −0.229960 −0.050250
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Table 8. Best set of weights obtained by the LNN-GNDO-SQP algorithm using a fitness function as in Equation (53). Here
three cases are studied by varying We in the drainage problem.

Case I Case II Case III

Index αj ωj βj αj ωj βj αj ωj βj

1 −0.277180 −0.928610 0.990229 −0.984680 −0.867220 0.370173 −0.575380 −0.988420 0.997400
2 −0.744240 0.990077 −0.999960 −0.801200 0.555550 −0.024790 −0.999990 0.131423 0.343622
3 −0.553260 −0.988500 0.923460 −0.002580 0.129594 −0.998370 0.143249 −0.854240 0.140163
4 −0.404730 0.398152 0.127399 −0.047010 0.700149 −0.999990 −0.119360 0.373826 0.207802
5 −0.809510 0.036150 0.140306 −0.690450 0.398839 −0.196860 −0.856660 −0.352810 0.010636
6 0.698433 0.464628 0.151832 0.301364 0.237875 0.160810 −0.797780 −0.322780 0.999999
7 −0.003180 0.192692 0.395066 0.423747 0.272096 −0.176540 −0.645030 −0.182700 −0.655790
8 −0.150320 −0.098370 −0.558090 −0.997780 −0.212630 −0.417770 0.012084 0.257723 −0.149790
9 −0.992840 −0.329570 0.734408 0.274115 −0.255500 0.001304 −0.753090 −0.306120 0.466878

10 0.182691 −0.066350 −0.374700 −0.428760 −0.199540 0.929899 0.498251 0.125154 0.236910
11 −0.629380 −0.361980 0.101130 −0.138360 −0.138270 0.103016 0.079987 0.174965 0.126845

Table 9. Best set of weights obtained by the LNN-GNDO-SQP algorithm using a fitness function as in Equation (54). Here
three cases are studied by varying φ in the drainage problem.

Case I Case II Case III

Index αj ωj βj αj ωj βj αj ωj βj

1 −0.578170 0.090627 0.621742 −0.719570 0.999994 −0.664540 −0.841870 0.915168 −0.247580
2 0.642790 −0.552250 0.999977 0.863347 −0.300220 0.348017 0.456016 0.271674 0.687734
3 −0.984330 0.465779 −0.162840 −0.759410 −0.863760 0.994778 0.408307 −0.370890 0.016365
4 −0.620110 0.128942 0.566053 −0.413700 0.378054 0.137548 0.125005 −0.162090 −0.313500
5 0.924819 −0.630340 0.993488 −0.284960 −0.285900 0.692566 −0.316870 0.173333 0.750680
6 −0.282300 0.331916 0.220188 −0.354880 −0.672930 −0.554160 −0.118880 0.196454 −0.250040
7 0.999998 −0.258550 −0.093070 −0.000860 0.398419 −0.803340 0.886842 0.542877 −0.637760
8 −0.934180 0.280345 −0.632150 0.218599 −0.235300 −0.046750 −0.225580 −0.157780 −0.417790
9 −0.179500 −0.705000 0.207103 −0.460840 −0.145630 0.673652 0.425031 0.174465 0.278200

10 0.000931 0.269963 0.264995 −0.163930 0.280319 −0.353570 −0.998280 −0.306190 0.186654
11 0.367440 0.270983 −0.105050 0.161173 0.188646 −0.083490 −0.547840 0.271897 0.005882

Table 10. Best set of weights obtained by the LNN-GNDO-SQP algorithm using a fitness function as in Equation (55). Here
three cases are studied by varying a in the drainage problem.

Case I Case II Case III

Index αj ωj βj αj ωj βj αj ωj βj

1 −0.937800 0.260055 −0.599770 −0.996410 0.505919 −0.254550 −1.357140 1.301247 −1.342750
2 0.373960 −0.384460 −0.286000 0.308871 0.389527 0.441955 1.620159 −0.810600 −0.543930
3 0.862114 0.210662 −0.163780 0.841584 0.082865 0.640732 0.153404 −1.187130 −0.400690
4 −0.996400 0.758110 −0.974980 0.992297 −0.456590 −0.13996 0.025061 0.244749 0.341770
5 −0.616540 −0.416200 0.113885 −0.844170 0.661252 −0.369140 −1.162260 −0.289160 −0.150160
6 −0.729390 0.223456 0.069204 0.348376 −0.289810 0.556567 −1.254670 −0.224680 −0.178620
7 0.810262 0.262491 −0.492080 −0.999670 −0.061340 −0.055630 1.221794 0.082876 0.282458
8 0.885861 −0.200570 −0.356040 0.256956 −0.775240 0.414591 0.300091 0.123791 0.165290
9 0.690933 0.109413 0.407307 0.054504 −0.465980 −0.080880 −1.119120 0.256081 0.135531

10 −0.702680 −0.316270 0.484328 0.289438 −0.128410 0.146051 0.830104 0.241196 0.291386
11 −0.080280 −0.212490 0.046098 −0.616560 0.295517 −1.000000 −1.171850 −0.266330 −0.063730
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Table 11. Statistical analysis of the results obtained by the LNN-GNDO-SQP algorithm, GA-ASA technique on the 21 steps within the interval [1 2], It is evident that LNN-GNDO-SQP is
superior in accuracy and stability. Three cases of drainage problem are considered based on variations in St.

Case I Case II Case III
Min Mean Std Min Mean Std Min Mean Std

GA-ASA GNDO-SQP GA-ASA GNDO-SQP GA-ASA GNDO-SQP GA-ASA GNDO-SQP GA-ASA GNDO-SQP GA-ASA GNDO-SQP GA-ASA GNDO-SQP GA-ASA GNDO-SQP GA-ASA GNDO-SQP

1 5.7× 10−13 7.36× 10−15 5.0× 10−09 7.72× 10−10 3.8× 10−08 2.73× 10−09 4.0× 10−12 1.46× 10−13 1.3× 10−07 1.90× 10−08 5.7× 10−07 5.22× 10−08 1.9× 10−12 7.92× 10−15 2.7× 10−07 2.58× 10−08 8.4× 10−07 7.13× 10−08

1.05 1.1× 10−08 5.74× 10−12 1.2× 10−06 2.01× 10−09 7.6× 10−07 4.24× 10−09 6.8× 10−08 5.04× 10−11 2.4× 10−06 5.48× 10−08 1.5× 10−06 8.88× 10−08 2.0× 10−09 2.36× 10−11 1.8× 10−06 1.08× 10−07 1.4× 10−06 1.65× 10−07

1.1 1.6× 10−08 2.22× 10−13 3.8× 10−06 2.76× 10−09 2.6× 10−06 8.25× 10−09 1.7× 10−07 4.19× 10−12 6.6× 10−06 7.09× 10−08 3.9× 10−06 1.60× 10−07 1.0× 10−07 3.18× 10−13 4.9× 10−06 1.14× 10−07 4.0× 10−06 2.52× 10−07

1.15 3.0× 10−08 5.15× 10−15 5.5× 10−06 1.19× 10−09 3.9× 10−06 4.56× 10−09 1.7× 10−07 2.08× 10−17 9.0× 10−06 2.88× 10−08 5.4× 10−06 8.43× 10−08 1.2× 10−08 2.75× 10−14 6.4× 10−06 3.53× 10−08 5.6× 10−06 1.15× 10−07

1.2 1.0× 10−08 9.24× 10−13 5.7× 10−06 2.52× 10−10 4.4× 10−06 5.98× 10−10 1.1× 10−07 7.62× 10−16 8.7× 10−06 6.22× 10−09 5.5× 10−06 1.04× 10−08 2.9× 10−09 1.77× 10−12 5.9× 10−06 1.04× 10−08 5.6× 10−06 1.13× 10−08

1.25 2.1× 10−08 2.96× 10−16 4.7× 10−06 4.58× 10−10 4.0× 10−06 5.55× 10−10 5.5× 10−08 2.20× 10−13 6.5× 10−06 1.23× 10−08 4.3× 10−06 1.47× 10−08 1.1× 10−09 6.32× 10−14 4.1× 10−06 2.91× 10−08 4.1× 10−06 3.52× 10−08

1.3 4.5× 10−08 2.74× 10−17 3.1× 10−06 9.68× 10−10 3.2× 10−06 2.47× 10−09 2.4× 10−08 6.00× 10−16 3.6× 10−06 2.43× 10−08 2.6× 10−06 4.66× 10−08 1.2× 10−08 5.12× 10−13 2.0× 10−06 4.42× 10−08 2.1× 10−06 8.52× 10−08

1.35 2.8× 10−09 1.27× 10−13 1.6× 10−06 1.13× 10−09 2.2× 10−06 3.96× 10−09 1.7× 10−09 1.15× 10−14 1.1× 10−06 2.69× 10−08 1.4× 10−06 7.11× 10−08 1.3× 10−08 1.29× 10−12 8.0× 10−07 3.97× 10−08 1.1× 10−06 1.17× 10−07

1.4 6.9× 10−10 1.46× 10−14 7.1× 10−07 8.67× 10−10 1.4× 10−06 3.39× 10−09 5.7× 10−09 8.39× 10−13 1.2× 10−06 2.01× 10−08 1.1× 10−06 5.99× 10−08 1.3× 10−08 3.22× 10−14 1.6× 10−06 2.57× 10−08 1.4× 10−06 8.77× 10−08

1.45 1.4× 10−08 1.57× 10−13 6.4× 10−07 4.80× 10−10 8.0× 10−07 1.50× 10−09 8.3× 10−09 1.73× 10−12 1.4× 10−06 1.13× 10−08 1.4× 10−06 2.61× 10−08 4.1× 10−08 3.36× 10−15 1.7× 10−06 1.65× 10−08 1.5× 10−06 3.38× 10−08

1.5 2.2× 10−09 2.32× 10−17 6.4× 10−07 2.58× 10−10 9.0× 10−07 3.57× 10−10 1.2× 10−09 3.64× 10−15 1.0× 10−06 6.80× 10−09 1.8× 10−06 9.65× 10−09 8.4× 10−09 4.54× 10−14 1.3× 10−06 1.52× 10−08 1.5× 10−06 2.22× 10−08

1.55 3.8× 10−08 3.18× 10−13 1.8× 10−06 3.25× 10−10 1.4× 10−06 4.87× 10−10 1.3× 10−07 3.50× 10−12 3.2× 10−06 8.48× 10−09 2.3× 10−06 1.14× 10−08 3.3× 10−08 2.49× 10−13 2.7× 10−06 1.75× 10−08 2.0× 10−06 2.40× 10−08

1.6 5.6× 10−08 1.10× 10−16 3.2× 10−06 5.95× 10−10 2.2× 10−06 1.98× 10−09 6.6× 10−08 4.75× 10−14 5.9× 10−06 1.38× 10−08 3.6× 10−06 3.38× 10−08 3.1× 10−08 5.64× 10−14 4.7× 10−06 2.14× 10−08 3.8× 10−06 5.59× 10−08

1.65 1.9× 10−08 4.89× 10−14 4.5× 10−06 8.48× 10−10 3.2× 10−06 3.19× 10−09 6.3× 10−08 2.24× 10−12 8.2× 10−06 1.87× 10−08 5.2× 10−06 5.42× 10−08 1.6× 10−10 1.05× 10−12 6.3× 10−06 2.50× 10−08 5.8× 10−06 8.37× 10−08

1.7 1.1× 10−07 5.40× 10−16 5.3× 10−06 8.23× 10−10 3.9× 10−06 2.71× 10−09 3.3× 10−09 1.42× 10−17 9.6× 10−06 1.84× 10−08 6.3× 10−06 4.62× 10−08 1.6× 10−08 2.83× 10−16 7.2× 10−06 2.65× 10−08 7.0× 10−06 6.74× 10−08

1.75 1.6× 10−07 3.07× 10−14 5.5× 10−06 4.88× 10−10 4.0× 10−06 1.05× 10−09 1.3× 10−08 2.94× 10−12 9.7× 10−06 1.21× 10−08 6.5× 10−06 1.92× 10−08 2.4× 10−09 1.92× 10−14 7.2× 10−06 2.14× 10−08 7.2× 10−06 3.10× 10−08

1.8 3.0× 10−08 7.97× 10−14 5.0× 10−06 1.65× 10−10 3.6× 10−06 2.47× 10−10 3.6× 10−09 5.84× 10−12 8.3× 10−06 4.86× 10−09 5.6× 10−06 7.95× 10−09 9.1× 10−08 7.91× 10−13 6.0× 10−06 1.07× 10−08 6.0× 10−06 1.66× 10−08

1.85 2.8× 10−08 1.28× 10−14 3.8× 10−06 4.91× 10−10 3.1× 10−06 1.74× 10−09 1.9× 10−09 1.06× 10−13 5.7× 10−06 1.01× 10−08 3.8× 10−06 2.84× 10−08 3.9× 10−09 1.81× 10−14 3.9× 10−06 1.44× 10−08 3.9× 10−06 4.67× 10−08

1.9 4.7× 10−08 6.64× 10−14 2.4× 10−06 1.45× 10−09 3.1× 10−06 4.59× 10−09 7.2× 10−08 2.93× 10−12 2.7× 10−06 3.12× 10−08 2.0× 10−06 7.28× 10−08 3.8× 10−09 1.88× 10−13 1.9× 10−06 4.69× 10−08 1.6× 10−06 1.13× 10−07

1.95 3.1× 10−08 1.31× 10−12 1.4× 10−06 1.33× 10−09 3.3× 10−06 3.11× 10−09 2.8× 10−09 1.73× 10−11 1.3× 10−06 3.14× 10−08 2.0× 10−06 5.16× 10−08 1.3× 10−08 2.77× 10−12 1.7× 10−06 5.29× 10−08 1.8× 10−06 8.46× 10−08

2 3.5× 10−08 1.44× 10−15 1.3× 10−06 2.64× 10−10 2.7× 10−06 9.19× 10−10 2.8× 10−09 7.27× 10−14 1.2× 10−06 5.42× 10−09 2.1× 10−06 1.43× 10−08 2.1× 10−08 3.73× 10−15 1.6× 10−06 7.45× 10−09 1.9× 10−06 2.13× 10−08

Table 12. Fitness values, MAD,TIC RMSE and ENSE for SCENARIO I of the drainage problem.

Fit MAD TIC RMSE ENSE

Cases Min. Mean Std. Min. Mean Std. Min. Mean Std. Min. Mean Std. Min. Mean Std.

I 1.49× 10−12 1.63× 10−09 4.68× 10−09 4.99× 10−08 1.84× 10−06 2.44× 10−06 2.49× 10−07 9.04× 10−06 1.23× 10−05 6.13× 10−08 2.22× 10−06 3.03× 10−06 1.36× 10−10 5.07× 10−07 1.46× 10−06

II 1.20× 10−11 3.96× 10−08 8.33× 10−08 1.70× 10−07 8.94× 10−06 1.05× 10−05 2.51× 10−07 1.47× 10−05 1.76× 10−05 1.85× 10−07 1.09× 10−05 1.30× 10−05 1.76× 10−10 1.15× 10−06 2.59× 10−06

III 4.51× 10−12 6.43× 10−08 1.30× 10−07 2.12× 10−07 1.08× 10−05 1.12× 10−05 2.59× 10−07 1.35× 10−05 1.42× 10−05 2.55× 10−07 1.33× 10−05 1.40× 10−05 1.54× 10−10 8.26× 10−07 1.72× 10−06

Table 13. Fitness values, MAD,TIC RMSE and ENSE for SCENARIO II of the drainage problem.

Fit MAD TIC RMSE ENSE

Cases Min. Mean Std. Min. Mean Std. Min. Mean Std. Min. Mean Std. Min. Mean Std.

I 4.34× 10−11 1.18× 10−07 2.35× 10−07 1.86× 10−07 1.87× 10−05 1.98× 10−05 1.86× 10−07 1.81× 10−05 1.96× 10−05 2.29× 10−07 2.22× 10−05 2.41× 10−05 7.57× 10−11 1.61× 10−06 3.32× 10−06

II 1.05× 10−10 2.78× 10−07 6.38× 10−07 2.67× 10−07 2.28× 10−05 2.58× 10−05 2.59× 10−07 2.18× 10−05 2.53× 10−05 3.31× 10−07 2.79× 10−05 3.24× 10−05 1.47× 10−10 2.43× 10−06 5.93× 10−06

III 1.50× 10−09 3.21× 10−07 6.88× 10−07 3.51× 10−07 1.66× 10−05 1.76× 10−05 3.10× 10−07 1.49× 10−05 1.55× 10−05 4.23× 10−07 2.03× 10−05 2.11× 10−05 2.29× 10−10 1.08× 10−06 2.60× 10−06
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Table 14. Fitness values, MAD,TIC RMSE and ENSE for SCENARIO III of the drainage problem.

Fit MAD TIC RMSE ENSE

Cases Min. Mean Std. Min. Mean Std. Min. Mean Std. Min. Mean Std. Min. Mean Std.

I 6.63× 10−12 6.37× 10−08 1.48× 10−07 3.67× 10−07 1.45× 10−05 1.53× 10−05 3.54× 10−07 1.46× 10−05 1.57× 10−05 4.35× 10−07 1.79× 10−05 1.93× 10−05 2.95× 10−10 9.69× 10−07 2.16× 10−06

II 1.08× 10−12 1.42× 10−08 4.90× 10−08 1.76× 10−07 4.45× 10−06 6.15× 10−06 1.93× 10−07 5.09× 10−06 7.07× 10−06 2.10× 10−07 5.53× 10−06 7.68× 10−06 8.21× 10−11 1.52× 10−07 5.00× 10−07

III 1.08× 10−12 9.66× 10−09 2.72× 10−08 2.82× 10−07 3.52× 10−06 5.31× 10−06 3.51× 10−07 4.30× 10−06 6.37× 10−06 3.53× 10−07 4.32× 10−06 6.40× 10−06 2.39× 10−10 1.21× 10−07 3.61× 10−07

Table 15. Fitness values, MAD,TIC RMSE and ENSE for SCENARIO IV of the drainage problem.

Fit MAD TIC RMSE ENSE

Cases Min. Mean Std. Min. Mean Std. Min. Mean Std. Min. Mean Std. Min. Mean Std.

I 7.66× 10−11 1.95× 10−07 3.96× 10−07 2.25× 10−06 3.62× 10−05 3.49× 10−05 1.43× 10−06 2.49× 10−05 2.45× 10−05 2.47× 10−06 4.29× 10−05 4.23× 10−05 5.63× 10−09 2.81× 10−06 5.56× 10−06

II 3.20× 10−12 1.47× 10−06 3.08× 10−06 3.17× 10−06 8.21× 10−05 8.21× 10−05 1.99× 10−06 5.13× 10−05 5.26× 10−05 3.90× 10−06 0.000101 0.000103 9.23× 10−09 1.23× 10−05 2.57× 10−05

III 5.00× 10−09 1.25× 10−06 2.93× 10−06 4.37× 10−06 4.59× 10−05 6.62× 10−05 2.31× 10−06 2.48× 10−05 3.57× 10−05 4.99× 10−06 5.36× 10−05 7.72× 10−05 1.50× 10−08 5.05× 10−06 1.17× 10−05
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Figure 9. Global performance indicators for four scenarios of the drainage problem. (a) SCENARIO I. (b) SCENARIO II.
(c) SCENARIO III. (d) SCENARIO IV.
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Figure 10. Boxplots showing distribution of ENSE values for four scenarios of the drainage problem. (a) SCENARIO I.
(b) SCENARIO II. (c) SCENARIO III. (d) SCENARIO IV.
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5. Conclusions

This paper has investigated the steady thin film flow of non-Newtonian fluid on
the vertical cylinder’s outer surface used in drainage problems. The drainage problem is
mathematically modeled using basic concepts of continuity and a momentum equation that
results in partial differential equations. Furthermore, the problem is reduced to a nonlinear
ordinary differential equation by incorporating a similarity transformation technique. To
study the velocity profile of Johnson–Segalman fluid under the influence of variations
in Stokes number, Weissenberg numbers, ratio of viscosities, and slip parameter, a novel
soft computing technique is designed in which Legendre polynomials are weighted with
neurons in artificial neural networks (ANN) that is used to model approximate solutions
for Equation (29).

In order to determine the accuracy of candidate solutions, fitness functions are con-
structed. We have used an efficient global search mechanism, namely, generalized normal
distribution optimization (GNDO), and a local search technique known as sequential
quadratic programming algorithm to minimize the fitness function. Better approximate
series solutions are calculated for different cases of each scenario shown in Figure 5. Our
results are validated by comparing the statistical values of absolute errors in terms of
minimum, mean, and standard deviation obtained by the proposed algorithm with the
GA-ASA algorithm as shown in Table 11.

We have investigated the variations in velocity profile due to variations in Stokes
number, Weissenberg numbers, ratio of viscosities and slip parameter. It is established that
changes in velocity profile are directly proportional to Stokes number and Weissenberg
numbers. In contrast, variations in the ratio of viscosities and slip parameters have an
inverse relation with the velocity profile. Extensive statistical and graphical analysis for
drainage problems illustrates the stability, efficiency, and effectiveness of the proposed
algorithm in solving real-world problems.

In the future, the LNN-GNDO-SQP algorithm can be used to solve problems involving
systems of differential equations. Furthermore, the given scheme’s applicability domain
can be readily extended to solve tumor growth and HIV infection dynamics, financial
mathematics problems, econometric problems, optimal control models, and many other
systems where convention methodologies fail.
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Abbreviations
LNN Legendre Neural Networks
GNDO Generalized Normal Distribution Optimization
SQP Sequential Quadratic Programming
ANN Artificial Neural Networks
MAD Mean Absolute Deviation
TIC Theil’s inequality coefficient
NSE Nash Sutcliffe Efficiency
ENSE Error In Nash Sutcliffe Efficiency
RMSE Root Mean Square Error
MHD Magnetohydrodynamic
We Weissenberg number
M Mean Position
St Stokes Number
a Slip Parameter
φ Ratio of Viscosities
V Velocity Vector
ρ Density
σ Cauchy Stress Tensor
µ, η Viscosities
ut Trial vector
δ Thinkness of Thin Film
µi generalized Mean
δi Generalized Variance
β Adjustment Parameter

Appendix A

Approximate series solutions obtained by LNN-GNDO-SQP algorithm for different cases
of scenario I.
Case I

w(r) = −0.267240 + (0.083281r + 0.361633)(0.199856) + . . .

+

(
90090(−0.225430r + 0.133951)6 − 30030(−0.225430r + 0.133951)4

256

)
(−0.362530)

+

(
3465(−0.225430r + 0.133951)2 − 63

256

)
(−0.362530)

(A1)

Case II

uapprox(ξ) = −0.161130 + (−0.082950r− 0.133580)(0.540048) + . . .

+

(
90090(0.041990r + 0.288770)6 − 30030(0.041990r + 0.288770)4

256

)
(0.999719)

+

(
3465(0.041990r + 0.288770)2 − 63

256

)
(0.999719)

(A2)

Case III

uapprox(ξ) = −0.642690 + (−0.085350r + 0.282074)(−0.500960) + . . .

+

(
90090(−0.229960r− 0.050250)6 − 30030(−0.229960r− 0.050250)4

256

)
(−0.148830)

+

(
3465(−0.229960r− 0.050250)2 − 63

256

)
(−0.148830)

(A3)

Approximate series solutions obtained by LNN-GNDO-SQP algorithm for different cases
of scenario II.
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Case I

w(r) = −0.277180 + (0.9900770r− 0.999960)(−0.744240) + . . .

+

(
90090(−0.744240r + 0.101130)6 − 30030(−0.744240r + 0.101130)4

256

)
(−0.629380)

+

(
3465(−0.744240r + 0.101130)2 − 63

256

)
(−0.629380)

(A4)

Case II

uapprox(ξ) = −0.984680 + (0.555550r− 0.024790)(−0.801200) + . . .

+

(
90090(−0.138270r + 0.103016)6 − 30030(−0.138270r + 0.103016)4

256

)
(−0.138360)

+

(
3465(−0.138270r + 0.103016)2 − 63

256

)
(−0.138360)

(A5)

Case III

uapprox(ξ) = −0.575380 + (0.131423r + 0.343622)(−0.999990) + . . .

+

(
90090(0.174965r + 0.126845)6 − 30030(0.174965r + 0.126845)4

256

)
(−0.148830)

+

(
3465(0.174965r + 0.126845)2 − 63

256

)
(−0.148830)

(A6)

Approximate series solutions obtained by LNN-GNDO-SQP algorithm for different cases
of scenario III.
Case I

uapprox(ξ) = −0.578170 + (−0.552250r + 0.999977)(0.64279) + . . .

+

(
90090(0.270983r− 0.10505)6 − 30030(0.270983r− 0.10505)4

256

)
(−0.148830)

+

(
3465(0.270983r− 0.10505)2 − 63

256

)
(−0.148830)

(A7)

Case II

uapprox(ξ) = −0.719570 + (−0.300220r + 0.348017)(0.863347) + . . .

+

(
90090(0.188646r− 0.08349)6 − 30030(0.188646r− 0.08349)4

256

)
(0.161173)

+

(
3465(0.188646r− 0.08349)2 − 63

256

)
(0.161173)

(A8)

Case III

uapprox(ξ) = −0.84187 + (0.271674r + 0.687734)(0.456016) + . . .

+

(
90090(0.271897r + 0.005882)6 − 30030(0.271897r + 0.005882)4

256

)
(−0.547840)

+

(
3465(0.271897r + 0.005882)2 − 63

256

)
(−0.547840)

(A9)

Approximate series solutions obtained by LNN-GNDO-SQP algorithm for different cases
of scenario IV.
Case I

uapprox(ξ) = −0.937800 + (−0.384460r− 0.286000)(0.373960) + . . .

+

(
90090(−0.212490r + 0.046098)6 − 30030(−0.212490r + 0.046098)4

256

)
(−0.080280)

+

(
3465(−0.212490r + 0.046098)2 − 63

256

)
(−0.080280)

(A10)
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Case II

uapprox(ξ) = −0.996410 + (0.389527r + 0.441955)(0.308871) + . . .

+

(
90090(0.295517r− 1.000000)6 − 30030(0.295517r− 1.000000)4

256

)
(−0.616560)

+

(
3465(0.295517r− 1.000000)2 − 63

256

)
(−0.616560)

(A11)

Case III

uapprox(ξ) = −1.357140 + (−0.810600r− 0.543930)(1.620159) + . . .

+

(
90090(−0.266330r− 0.063730)6 − 30030(−0.266330r− 0.063730)4

256

)
(−1.171850)

+

(
3465(−0.266330r− 0.063730)2 − 63

256

)
(−1.171850)

(A12)
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24. Herişanu, N.; Marinca, V. Optimal homotopy perturbation method for a non-conservative dynamical system of a rotating
electrical machine. Zeitschrift für Naturforschung A 2012, 67, 509–516. [CrossRef]

25. Sobamowo, G.M. On Heat transfer analysis in pipe flow of Johnson-Segalman Fluid: Analytical Solution and Parametric Studies.
AUT J. Mech. Eng. 2019, 3, 187–196.

26. Hayat, T.; Aslam, N.; Khan, M.I.; Khan, M.I.; Alsaedi, A. MHD peristaltic motion of Johnson–Segalman fluid in an inclined
channel subject to radiative flux and convective boundary conditions. Comput. Methods Programs Biomed. 2019, 180, 104999.
[CrossRef]

27. Raja, M.A.Z.; Shah, F.H.; Khan, A.A.; Khan, N.A. Design of bio-inspired computational intelligence technique for solving steady
thin film flow of Johnson–Segalman fluid on vertical cylinder for drainage problems. J. Taiwan Inst. Chem. Eng. 2016, 60, 59–75.
[CrossRef]

28. Khan, N.A.; Sulaiman, M.; Aljohani, A.J.; Kumam, P.; Alrabaiah, H. Analysis of Multi-Phase Flow Through Porous Media for
Imbibition Phenomena by Using the LeNN-WOA-NM Algorithm. IEEE Access 2020, 8, 196425–196458. [CrossRef]

29. Khan, N.A.; Sulaiman, M.; Kumam, P.; Aljohani, A.J. A new soft computing approach for studying the wire coating dynamics
with Oldroyd 8-constant fluid. Phys. Fluids 2021, 33, 036117. [CrossRef]

30. Ellahi, R. Recent Trends in Coatings and Thin Film: Modeling and Application. Coatings 2020, 10, 777. [CrossRef]
31. Khan, N.A.; Sulaiman, M.; Kumam, P.; Bakar, M.A. Thermal analysis of conductive-convective-radiative heat exchangers with

temperature dependent thermal conductivity. IEEE Access 2021, 9, 138876–138902. [CrossRef]
32. Khan, N.A.; Khalaf, O.I.; Romero, C.A.T.; Sulaiman, M.; Bakar, M.A. Application of Euler Neural Networks with Soft Computing

Paradigm to Solve Nonlinear Problems Arising in Heat Transfer. Entropy 2021, 23, 1053. [CrossRef] [PubMed]
33. Khan, N.A.; Sulaiman, M.; Tavera Romero, C.A.; Alarfaj, F.K. Theoretical Analysis on Absorption of Carbon Dioxide (CO2) into

Solutions of Phenyl Glycidyl Ether (PGE) Using Nonlinear Autoregressive Exogenous Neural Networks. Molecules 2021, 26, 6041.
[CrossRef]

34. Khan, N.A.; Sulaiman, M.; Aljohani, A.J.; Bakar, M.A. Mathematical models of CBSC over wireless channels and their analysis by
using the LeNN-WOA-NM algorithm. Eng. Appl. Artif. Intell. 2021, 107, 104537. [CrossRef]

35. Khan, N.A.; Sulaiman, M.; Tavera Romero, C.A.; Alarfaj, F.K. Numerical Analysis of Electrohydrodynamic Flow in a Circular
Cylindrical Conduit by Using Neuro Evolutionary Technique. Energies 2021, 14, 7774. [CrossRef]

36. Zhang, Y.; Jin, Z.; Mirjalili, S. Generalized normal distribution optimization and its applications in parameter extraction of
photovoltaic models. Energy Convers. Manag. 2020, 224, 113301. [CrossRef]

37. Nocedal, J.; Wright, S. Numerical Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006.
38. Garcea, G.; Bilotta, A.; Leonetti, L. An efficient algorithm for shakedown analysis based on equality constrained sequential

quadratic programming. In Direct Methods for Limit and Shakedown Analysis of Structures; Springer: Berlin/Heidelberg, Germany,
2015; pp. 177–197.

39. Morshed, M.J.; Asgharpour, A. Hybrid imperialist competitive-sequential quadratic programming (HIC-SQP) algorithm for
solving economic load dispatch with incorporating stochastic wind power: A comparative study on heuristic optimization
techniques. Energy Convers. Manag. 2014, 84, 30–40. [CrossRef]

40. Badreddine, H.; Vandewalle, S.; Meyers, J. Sequential quadratic programming (SQP) for optimal control in direct numerical
simulation of turbulent flow. J. Comput. Phys. 2014, 256, 1–16. [CrossRef]

http://dx.doi.org/10.1121/1.4864793
http://dx.doi.org/10.1016/j.camwa.2010.08.056
http://dx.doi.org/10.5560/zna.2012-0047
http://dx.doi.org/10.1016/j.cmpb.2019.104999
http://dx.doi.org/10.1016/j.jtice.2015.10.020
http://dx.doi.org/10.1109/ACCESS.2020.3034053
http://dx.doi.org/10.1063/5.0042676
http://dx.doi.org/10.3390/coatings10080777
http://dx.doi.org/10.1109/ACCESS.2021.3117839
http://dx.doi.org/10.3390/e23081053
http://www.ncbi.nlm.nih.gov/pubmed/34441192
http://dx.doi.org/10.3390/molecules26196041
http://dx.doi.org/10.1016/j.engappai.2021.104537
http://dx.doi.org/10.3390/en14227774
http://dx.doi.org/10.1016/j.enconman.2020.113301
http://dx.doi.org/10.1016/j.enconman.2014.04.006
http://dx.doi.org/10.1016/j.jcp.2013.08.044

	Introduction
	Mathematical Formulation of Drainage Problem
	Basic Equations
	Formulation

	The LNN-GNDO-SQP Algorithm
	Series Solution Based on LNN Structure
	Construction of Fitness Function
	Optimization Framework Used to Compute Best Weights
	Brief Introduction of Generalized Normal Distribution Optimization (GNDO) Algorithm 
	Sequential Quadratic Programming

	Hybridization of GNDO-SQP Algorithm

	Experimental Setup and Statistical Evaluation
	Conclusions
	
	References

