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Abstract: Controlling the formation of high aspect ratio void channels inside glass is important for
applications like the high-speed dicing of glass. Here, we investigate void formation using ultrafast
Bessel beams in the single shot illumination regime. We characterize the morphology of the damages
as a function of pulse energy, pulse duration, and position of the beam inside fused silica, Corning
Eagle XG, and Corning Gorilla glass. While a large set of parameters allow for void formation
inside fused silica, the operating window is much more restricted for Eagle XG and Gorilla glass.
The transient formation of a molten layer around voids enables us interpreting the evolution of the
morphology with pulse energy and duration.

Keywords: glass; ultrafast laser processing; Bessel beam

1. Introduction

Cutting and drilling glass is an important technological problem, particularly when
the width over which the material has to be modified is much smaller than the length of the
modification. This is high aspect ratio structuring. In this context, ultrafast laser processing
is very attractive because the infrared wavelength and the very high intensity of the pulses
enable energy deposition in three dimensions, including inside the bulk of glass [1]. The
laser-induced micro/nano-structures can be index modifications, nanogratings or even
voids [2]. These modifications can be combined with chemical etching, which led to a
number of advances in the field of photonics, microfluidics chips, mechanics [3,4].

Because point-by-point scanning is relatively slow, a number of techniques were
developed to improve the overall speed for the micro-structuring. In addition, elongated
voids cannot be formed by scanning, since a nano-void produced by a first pulse would be
erased by the microexplosion produced by the second pulse next to it [5]. Bessel beams
were revealed to be excellent candidates to control the formation of high aspect ratio
elongated structures inside transparent materials [6,7]. Bessel beams are formed by a
conical superposition of plane waves, where the central hotspot maintains its diameter
over the whole length of the interference region [8,9]. Importantly, when the focusing angle
of the Bessel beam is sufficiently high, the conical flow of energy crosses the high-intensity
region only in the central hotspot. This drastically reduces the influence of the Kerr effect,
so that longitudinally-invariant structures can be processed within dielectrics [10–12].

Laser structuring with high aspect ratio is particularly useful in the context of stealth
dicing, a concept in which a series of pulses under high-speed translation of the sample
is used to create an entire modification plane [13]. A mechanical, chemical, or thermal
stress is then used to cleave the glass along the modified plane. The main benefit of this
approach is that cutting is possible at very high speed (typically 10 cm to 1 m per second).
Filamentation, i.e., ultrafast pulse self-channeling in glass, was first used for stealth dicing
purposes [14,15]. Bessel beams offer in addition the possibility to control very easily the
onset of the material damage by simple geometrical considerations since nonlinear effects
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are reduced. They were used to cut glass and sapphire [16–20]. Since beam length and
focusing angle can be independently adjusted, it is also possible to produce very long
Bessel beams with the same angle that allows for cutting thick glass. This however requires
high pulse energies since the energy is spread over the entire focal line of the beam [21].
With millijoule energy, Bessel beams were used to cleave glass up to 1 cm thick [22,23].
Recently, breaking the symmetry of the Bessel beam was used to improve the precision and
ability of guiding fractures [24–27]. Controlling the formation of voids with ultrafast laser
pulses is key to improve the stealth dicing of glass.

Here, we show that, depending on the material, voids do not form for the same pa-
rameters. We compare three glass types: fused silica, Corningr Eagle XGr, and Corningr

Gorillar glass. We investigate the regimes in which various structures are produced using
single shot Bessel beams depending on pulse energy, pulse duration, and position in the
sample. We observed that these three parameters control the formation of various types of
structures inside glass. Future development of applications such as laser cutting should
therefore operate in the right parameter window.

2. Materials and Methods

Our experimental setup (see Figure 1) is composed of a chirped pulse amplified (CPA)
Ti-Sapphire laser source, at 800 nm central wavelength and of a reflective axicon (Cailabs)
associated to a telescope arrangement to magnify the cone angle [28]. The laser pulses
can be stretched from 100 fs to 3 ps using the grating compressor of the amplifier. The
experimental characterization of the beam is shown in Figure 2. The Bessel beam has a cone
angle of 19.5◦ in air, which corresponds to a central spot diameter of 0.9 µm Full Width at
Half Maximum (FWHM). The Bessel beam length is ∼220 µm FWHM. One can notice the
high degree of circular symmetry of the Bessel beam. All samples were 700 µm thick.

Figure 1. Experimental setup. Ultrafast laser beam is shaped by a reflective axicon (Cailabs). It is
then demagnified by a telescopic arrangement in a 2f-2f configuration. Laser-written structures are
observed using an incoherent white light source.

Figure 2. Characterization of experimental Bessel beam. (left) Longitudinal cross-cut of fluence
distribution as a function of relative propagation distance in air. Please note aspect ratio of axes.
(right) Cross-section of fluence distribution at center of beam.
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After processing, the laser-modified regions were characterized by scanning the
sample with white light, brightfield illumination, in an optical microscope arrangement
with a numerical aperture of 0.8 and aberration-correction. Stitching the microscope images
provided high resolution images of the whole high aspect ratio structure. Figure 3 shows
the result of single shot illumination in fused silica at a pulse energy of 52 µJ, for increasing
pulse durations. A periodic background pattern can be observed and simply arises from
the illumination inhomogeneity associated to the stitching operation.

Figure 3. Microscope images of damages produced in fused silica glass for several pulse durations,
for same beam position inside sample and for a constant single shot energy of 52 µJ. Please note
image aspect ratios (left insets show 1:1 zooms of panels to their right). Beam propagates from left
to right.

3. Results
3.1. Microstructure Types

In Figure 3, at a pulse duration of 125 fs, only a line of faint index change is observable.
In the cases of 250 and 500 fs, high- aspect ratio voids are observed, they are characterized
by black marks. We readily see that the void structure is shorter than the Bessel beam
length. The void is present only in the moderate intensity region while in the highest
intensity region, the void structure has almost vanished. From 1 ps, the black mark is split
around its center into small dots: these are void bubbles (see scanning electron microscopy
image in Fig. 4 of reference [29]). This process is called bubbling hereafter. Faint bubbling
appears here in the central region of the Bessel beam and is slightly stronger for the case of
2 ps.

Importantly, the morphology of the material transformation can vary along the beam.
An example is shown in Figure 4 where we report the results for the interaction of a 3 ps
Bessel beam in Gorilla glass for different focusing positions inside the sample. In this
example, the material modification undergoes minor variations with the position. We can
observe three sections with different morphologies from left to right: (i) a void with faint
bubbling in the relatively low intensity region of the Bessel beam (onset), (ii) a wide index
modification in the highest intensity segment of the Bessel beam, and (iii) a void. The
central panel allows us to understand the ordering of the material modification type with
increasing intensity: index modification on a small diameter (central lobe), void formation,
structure with more or less randomly distributed bubbles, wide index index modification
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on a diameter much larger than the beam central lobe. The wide modification is developed
longitudinally step-wise, suggesting a threshold-based mechanism. It erased all structures
like void or bubbles. Note that the bubbles appear elliptical because we compressed the
horizontal axis scale by a factor 5.

Figure 4. Brightfield microscopy images of damages produced in Gorilla glass with 3 ps pulse
duration at a constant energy of 52 µJ as in Figure 4. Position of beam in sample was varied from top
to bottom. Please note image aspect ratios (left insets show 1:1 zooms of panels to their right).

We further explored, in a parametric study, the evolution of the laser-induced struc-
tures as a function of pulse energy, pulse duration, and beam position. We summarized our
results in Figure 5 for three positions of the Bessel beam inside the fused silica sample. In
Figure 5a, the beam is positioned at the center of the sample such that none of the entrance
and exit surfaces are damaged. We classified the modifications in 5 groups, ranging from
no damage to strong bubbling. We note that we did not make a separate class for the wide
index modification, such as the one shown in Figure 4, because those modifications are
conventionally useless for applications. Also, they often occur alongside voids, which we
are more interested in. For the drilling and cutting of glass applications, the narrow index
modifications and nice voids, shown respectively as gray and green markers, are the most
interesting features. When bubbling occurred on a substantial section of the beam, the
structure was classified as bubbling.

In Figure 5a, we see that the relatively large range of parameters allow for inducing
nice voids in fused silica, similarly as in reference [30]. Higher energies and longer pulse
durations tend to create bubbling. When the pulse duration is increased, the energy
required to open a void is reduced, but bubbling also arises earlier. The energy range over
which nice voids can be opened is reduced at longer pulse durations. In Figure 5b, the
beam crosses the entrance side. In this case, the shortest pulse durations provide conditions
where voids can be opened on a larger range of parameters. The presence of the interface
increases the ability of void opening after energy deposition, as was already noticed in
a former reference [6]. In Figure 5c, the beam crosses the exit interface. In this case, the
short pulse durations induce voids with very small diameters. A much larger range of
energies and pulse durations enable void formation. In almost all the cases tested here,
nice voids could be produced. We hypothesize that our results can be understood by the
following: the presence of the interface allows the phenomenon of ablation cooling [31]
where a fraction of the energy deposited inside the material can be evacuated via the open
channel at the surface. This allows for a fast quenching of the material relaxation which
increases the capability of “freezing” a void before the compressed melt part surrounding
the void can close it. In the case where the beam crosses the entrance surface (Figure 5b), the
dynamics of plasma formation is slightly different from the two other cases because a dense
plasma can form on the surface which can then shield light preventing void formation in
the very first micrometres from the surface. This could prevent the effect of the ablation
cooling described above.
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Figure 5. Morphology of single shot-induced damage in fused silica as a function of pulse energy and
pulse duration. This is performed for a Bessel beam position: (a) at center of sample, (b) crossing the
entrance surface, (c) crossing exit surface.

3.2. Other Glasses

In Figure 6, we show the results for Eagle XG glass (Figure 6a) and Gorilla glass
(Figure 6b) when the beam is enclosed within the sample, as in Figure 5a. For these two
materials, the situation highly differs from the case of fused silica. Overall, it is much more
difficult to create voids, particularly for short pulses, where no modification is apparent
below a threshold pulse duration of 1 ps.

The operating window for void formation is restricted to a small energy range before
bubbling sets in. This window is even smaller in the case of Gorilla glass. For most of
the pulse durations in Gorilla glass, above the energy for the bubbling regime, only faint
structures are found, whereas this phenomenon occurs in Eagle XG only for 1.5 ps and
never in fused silica. It could be attributed to a slower relaxation in Gorilla glass than in
that of the other media.

We attribute the differences between the different glasses in terms of void opening
to the difference in softening point. Indeed, it exceeds 1500 ◦C for fused silica, while it is
only of 971 ◦C for Eagle XG, and 853 ◦C for Gorilla glass. Therefore, assuming a similar
profile of laser-deposited energy, the molten region is wider in the case of Eagle XG and
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Gorilla glass than in the case of fused silica. This would lead to a faster quenching of the
relaxation in fused silica, with stronger gradients, in contrast with the other two glasses.

In Eagle XG and Gorilla glass, beam positioning close to the entrance and exit surfaces
yield to similar tendencies as in the case of fused silica. While no major differences could be
observed with Figure 6 when the beam crosses the entrance surface, we observed a much
larger operating window for void opening when the beam crosses the exit surface for both
glass types.

Figure 6. Morphology of single shot-induced damage in (a) Eagle XG and (b) Gorilla glass as a
function of pulse energy and pulse duration. Beam is centered inside sample.

3.3. Large Heat-Affected Zone for Picosecond Pulses

Figure 7 shows the result of a 3 ps laser shot in Eagle XG. One can notice that the heat
affected zone is very wide, typically above 8 µm in diameter. Importantly, in this regime,
the bubbles are not aligned: it seems that they have randomly moved from the optical axis
during the relaxation stage. This well supports the interpretation of a large molten layer
around the void at large pulse energies and duration.

Figure 7. Strong bubbling in Eagle XG glass. Pulse duration is 3 ps, pulse energy 141 µJ. Please note
image aspect ratio. Bottom inset shows a 1:1 zoom of marked area in panel above.
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4. Conclusions

We observed that void formation in transparent glasses strongly depends on energy
and pulse duration. In fused silica, voids can be formed for a relatively large set of
parameters. By increasing pulse energy and pulse duration, the high aspect ratio void
channel splits into bubbles with a diameter of approximately 1 µm. This structure can even
vanish for higher energies. In Eagle XG and Gorilla glass, only very long pulse durations
could yield void formation, but for a very limited energy range. For a pulse duration of
2 ps and 16 µJ pulse energy, a void can be formed in all three materials, with a length
of 150 ± 10 µm in Eagle XG, of 170 ± 10 µm in fused silica and the highest length is for
Gorilla glass with 230 ± 10 µm. For all materials, we remark that void formation is possible
over a larger range of energies when the beam crosses the exit surface.

We interpret the evolution of the morphology of the damages induced by ultrashort
Bessel beams in these glasses in the following way. For sufficiently high energies, a
void can form inside glass, either after a micro-explosion [32,33] or by cavitation inside
a molten zone [34]. We infer that this void can be transiently surrounded by a molten
layer, whose thickness depends on the glass type and pulse duration. The longest pulse
durations and the highest energies tend to increase the thickness of the molten layer. A
low softening point, such as in the case of Eagle XG and Gorilla also increase the molten
layer. Thicker molten layers increase the occurrence of bubbling or are even closing the
void. We understand the formation of bubbles as a redistribution of the material during the
cooling stage by splitting or even fully closing the void transiently formed. We interpret the
role of the exit surface as a cooling agent. The evacuation of a fraction of the hot material
via the void channel produced at the center of the Bessel beam, allows for quenching the
relaxation and maintains the void structure even for parameters where the void would
be partially or totally reclosed by the molten material around it. Recent results on double
pulse illumination let us anticipate that double pulse could partially reduce the amount of
the molten layer, and increase the temperature contrast between the optical axis and the
surrounding lobes [35].

These results shed light on the formation of high aspect ratio void channels inside
different glasses. We believe they will impact on future technologies for ultrafast laser
material processing of glass.
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