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Abstract: Oxide Precipitation-Hardened (OPH) alloys are a new generation of Oxide Dispersion-
Strengthened (ODS) alloys recently developed by the authors. The mechanical properties of this
group of alloys are significantly influenced by the chemical composition and appropriate heat
treatment (HT). The main steps in producing OPH alloys consist of mechanical alloying (MA) and
consolidation, followed by hot rolling. Toughness was obtained from standard tensile test results for
different variants of OPH alloy to understand their mechanical properties. Three machine learning
techniques were developed using experimental data to simulate different outcomes. The effectivity of
the impact of each parameter on the toughness of OPH alloys is discussed. By using the experimental
results performed by the authors, the composition of OPH alloys (Al, Mo, Fe, Cr, Ta, Y, and O), HT
conditions, and mechanical alloying (MA) were used to train the models as inputs and toughness
was set as the output. The results demonstrated that all three models are suitable for predicting the
toughness of OPH alloys, and the models fulfilled all the desired requirements. However, several
criteria validated the fact that the adaptive neuro-fuzzy inference systems (ANFIS) model results
in better conditions and has a better ability to simulate. The mean square error (MSE) for artificial
neural networks (ANN), ANFIS, and support vector regression (SVR) models was 459.22, 0.0418, and
651.68 respectively. After performing the sensitivity analysis (SA) an optimized ANFIS model was
achieved with a MSE value of 0.003 and demonstrated that HT temperature is the most significant of
these parameters, and this acts as a critical rule in training the data sets.

Keywords: Oxide Precipitation-Hardened (OPH) alloys; tensile test; toughness; artificial neural
network (ANN); particle swarm optimization; ANFIS; Fe-Al-O

1. Introduction

Developing new structural alloys for industrial applications requires a shared effort in
the commercial sector and a movement towards a green environment. These efforts will
thrive if industries use carbon emission-free, safe, and globally available energy sources.
One of the primary challenges for structural materials is improving their mechanical proper-
ties, mainly focusing on ultimate tensile strength (UTS), elongation, and toughness [1]. The
new generations of Oxide Dispersion-Strengthened (ODS) alloys and Oxide Precipitation-
Hardened (OPH) alloys are promising candidates for industrial applications, due to their
high strength, corrosion resistance, and toughness [2-5]. Based on the importance of the
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oxide nanoparticles, they have been widely studied in terms of their morphology, composi-
tion, crystallographic structure, and interface relationships with the matrix [6-8]. However,
further improvement of ODS alloys’ mechanical properties needs appropriate composition
designs, which have become a hot topic for researchers. Y,0O3 is one of the typical oxides
usually used to develop ODS as well as OPH alloys. However, its strengthening effect is
not ideal due to its coarsening at high temperatures [9-11]. To reduce the size of oxide
dispersoids and produce stable oxide dispersoids, reactive elements, such as Cr, Ti, and Zr,
could be added to the Al-free ODS alloys [12,13]. In order to maximize the temperature
capability of superalloys, chrome or iron aluminium-based OPH alloys were developed
and produced by the mechanical alloying (MA) of powder materials which then followed
by Hot Rolling (HR) and Heat Treatment (HT), see the works in [14,15]. This new concept
highlighted the novel idea in the processing of OPH alloys: dissolve a required amount
of oxygen in the matrix during MA and let a fine dispersion of oxides precipitate during
hot consolidation. This microstructural development is highly dependent upon the initial
chemical composition and the whole thermomechanical processing background through
all processing operations, which still needs optimization [13,16,17].

Over the last few years, machine learning techniques such as artificial neural networks
(ANN) and adaptive neuro-fuzzy inference systems (ANFIS) have been developed to
analyse and simulate engineering properties [18]. ANN is a statistical simulator inspired
by the structure of the human brain; this technique has garnered considerable attention due
to its high capabilities and flexibility of use [19]. Linear and nonlinear relations between
inputs and outputs are learned without fully calculating mathematical equations, and many
engineering problems are solved by this method [20]. In the ANFIS algorithm, the abilities
of ANN with fuzzy logic systems are combined. ANFIS converts the logical statements
into mathematical correlations [21]. The relation between input-output pairs in a data set
would determine a group of rules produced and best membership functions in ANFIS
modeling [22]. Ghobadi et al. [23] used ANN and ANFIS models to predict the corrosion
resistance of lanolin coatings, and an optimized condition was determined. Support vector
regression (SVR) is a simple and powerful technique that is used for regression purposes.
It can find nonlinear relationships between variables with high accuracy [24].

Machine learning techniques were used to simulate and predict the mechanical prop-
erties of various alloys [25-29]. It has been emphasized that machine learning models
could be a promising means for solving engineering problems and studying significant
variables [30,31]. Badmos et al. [32] applied the ANN model to simulate the mechanical
behavior of ODS alloy and explored the complex conditions of physical models. In order
to predict and describe the mechanical properties of alloys based on chemical composi-
tion and thermomechanical influence some researchers have developed statistical models.
Khalaj et al. [33] used machine learning techniques to predict the hardness of OPH alloys
with high accuracy and investigate the effect of each parameter. The results of this research
demonstrated that the hardness of OPH alloys was affected by chemical composition,
mechanical alloying and heat treatment.

Considering the previous recent findings by the authors [11,14,15,17,20], after hot
consolidation using rolling, the microstructure of the OPH alloy shows a relatively ho-
mogenous ultra-fine-grained microstructure with a dispersion of very fine (practically
invisible in SEM) nano-oxides during several hours of annealing, static recrystallization
completed at approximately 1100-1200 °C which then leads to a coarse-grained microstruc-
ture strengthened with a homogeneous dispersion of nano-oxides of about 20 nm [5,11]. In
the same way, optimized heat treatment improved the UTS, hardness, and elongation by
over 100% compared to the initial state [15]. In order to investigate the sensitivity of the
toughness to affected parameters, three machine learning approaches—ANN, ANFIS, and
SVR—were used to study the significant parameters on affecting the toughness of OPH
alloys and simulate the experimental data set.
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2. Materials and Methods

The new OPH alloy is based on metal powders using powder metallurgy [34]. The
main powders (Fe and Al) and other components (Cr, Mo, Ta, Y) are mechanically alloyed
in a vacuum low energy ball mill developed by the authors. After sufficient milling, the MA
powder is transferred to a low-alloy rolling container with no contact to the air, evacuated,
and sealed by welding. Then, it is consolidated using a hot rolling mill in three steps. As
first step, the container is rolled under a temperature of 900 °C and rolled to a thickness of
7.5 mm. In the same way, it rolled to thicknesses of 5 mm and 3.2 mm in the next two steps.
All the steps have a rolling speed of 0.2 m/s. Finally, the OPH sheet with approximate
thickness of 2.5 mm covered on both sides by a 0.3 mm thick scale from the rolling container
is produced in this way.

In the current research, different variants of OPH varying in milling time, rolling
temperature, and HT were developed to check the effect of each element on the toughness
of final semi-products. All variants were produced in a similar way so that the comparison
could be available through they could be compared using machine learning methods.

Standard tensile samples were cut for all the variants of the OPH alloys. A waterjet
cutting system was used to cut the pieces in a longitudinal direction (parallel to the rolling
direction), and then the samples are ground to a final thickness of 2 mm. The authors
manufactured purpose-built clamps to hold the samples on the servo-hydraulic MTS
machine. All the tensile tests were carried out with a strain rate of 1 x 1073 s~1. Three
samples were tested for each state, and the average values of the ultimate tensile strength
(UTS) and elongation to failure (A) were statistically calculated. The stress—strain curve
area was also calculated as toughness using in-house software developed by the authors.
The toughness is measured by calculating the area under the stress—strain curve for the
OPH alloys. The toughness is calculated from the tensile graph (Figure 1) and based on the
following formula:

g
Ur = / fade
0

where ¢ is strain, & is the strain upon failure, and ¢ is stress. The following figure shows a
schematic of the stress—strain curve of an OPH alloy and the desired surface area.
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Figure 1. Typical Stress-Strain curve for OPH alloys.

As explained above, fourteen different OPH alloys were prepared and tested to in-
vestigate the toughness as a part of the mechanical properties. Machine learning methods
(ML) were used to predict the toughness obtained by tensile testing. Systems with differ-
ent chemical compositions of OPH alloys (Al, Mo, Fe, Cr, Ta, Y, and O), heat treatment
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conditions, and mechanical alloying conditions were considered as the model inputs and
toughness was set as the output.

3. Machine Learning Methods Procedure

Three models (ANN, ANFIS, and SVR) were developed to predict and simulate the
toughness of OPH alloys. According to the experimental data set, the models were trained,
and the performance of each model was evaluated. The accuracy and implementation
of the constructed models were calculated by several mathematical errors such as Mean
Square Error (MSE):

MSE = % ié(t —0)? ¢))

The root mean square error (RMSE) was calculated by Equation. (2).
RMSE = vMSE )

Mean Absolute Error (MAE) and the absolute fraction of variance (R?) are measured by

MAE:%iH—o] 3)
i=1
R2 —1_ er'lz_ll(t B 0)2 (4)
Z?:_f(t - m)z

In these relations, 7 is the data numbers in training, ¢ is experiment data, and o is
predicted data. The above statistical errors are objective functions between experimental
and simulated data. The value of R? ranges between 0 and 1. If a model results in an R?
value near 1, it means a slight fluctuation between the experimental and predicted data. If
a model results in an R? value close to zero, the most significant difference between the
experimental data and the constructed model is explained [35].

3.1. Artificial Neural Network (ANN)

An ANN system built several biological neural structures, and its simple parallelism
helps solve complex problems that could find suitable relationship parameters [36]. The
ANN structure comprises three essential layers: input, hidden, and output layer. According
to the experimental tests, twelve parameters influence the toughness of OPH alloys. As
shown in Figure 1, twelve parameters were selected as input parameters, and the toughness
of OPH alloys was set as the output.

In the ANN structure, there are several neurons in each layer to train the model. As
shown in Figure 1, the neuron receives the signals from an input, and the neuron weights
each input by a specific weight index (w). The sum of the weighted inputs represents the
transfer function f (X wixi) and the bias (b). Each neuron in a layer is connected to the
other neurons, and, finally, the input layer is connected to the output layer by nonlinear
mapping. The signal data transfer between each neuron is converted by an activation
function or a transfer function [37]. The training process has occurred in the hidden layer,
and the performance of the ANN model is highly affected by this layer. The number of
neurons in each hidden layer and the number of hidden layers have a significant role in
the efficiency of an ANN model. Besides, other essential factors for constructing a suitable
ANN structure are the transfer function and training algorithm [33]. In this study, one
hidden layer is used as a suitable framework for an ANN structure.

The number of neurons in the hidden layer significantly influences the performance
and complexity of the ANN model and helps to avoid underfitting or overfitting. Several
topologies were built at various neurons in the hidden layer to determine the optimum
number of neurons in the hidden layer. The Levenberg-Marquardt backpropagation
(LMBP) training algorithm has been used extensively by researchers in the past and is
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widely regarded as the best training algorithm [33]. LMBP is used to find a suitable number
of neurons. A five-neuron hidden layer architecture was chosen because it resulted in
lower error values (Figure 2). The hyperbolic tangent sigmoid transfer function and Purlin
transfer function were used for the output in the hidden layer. In this research, we used the
ANN toolbox in MATLAB software. Before building an ANN structure, the data set was
ranged in a normalized range. According to the data set, 103 pieces of data were collected
from experimental tests and were used to construct the models.

Hidden Layer

Input Layer

Different Alloying
‘Components

Mechanical Alloying
Conditions

Figure 2. Typical structure for the ANN model used in this study [32].

In order to train the data set using the ANN model, the input and output values
are scaled within the normalized range (before presenting the data). The normalization
method improves the ability of simulation and accuracy of the training process. Therefore,
all of the data values were set between 0.0 to 1.0. The normalized values (Xnorm) can be
calculated by the following equation [33]:

(X — Xmin)

X = ———"—=
orm (Xmax — Xmin)

Q)

where X is the actual value, Xmin is the minimum value and Xmax is the maximum value
of the data set. Table 1 presents the range of values for the variables in this study.

Table 1. The ranges of parameters in the data set [32].

Variable Unit Range

Fe wt % 0.7106-0.8743
Cr wt % 0-0.1533

Al wt % 0.0032—0.1093
Mo wt % 0-0.0383
Ta wt % 0-0.0083
Y wt % 0-0.0364
O wt % 0-0.0098
Milling time hours 150-480
Rolling Temperature °C 850-960

HT duration hours 0-20

HT temperature °C 25-1200
Strain Rate st 0.001-10

Toughness Jm~—3 3.5-208
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3.2. Adaptive Neuro-Fuzzy Inference Systems (ANIFS)

In ANFIS modeling, artificial neural networks and fuzzy system design are mixed,
resulting in a robust predictive model [33]. As shown in Figure 3, the ANFIS model
comprises five layers that build the fuzzy structure using the “if-then” method and employs
the Takagi-Sugeno fuzzy system [38]. In this study, we used the ANFIS toolbox of MATLAB,
in which 80% of the total data set was used for training, and 20% of the entire data set
was applied for the testing step. Due to the higher efficiency of subtractive clustering
(SC) in creating the ANFIS structure, we used this method to generate a fuzzy model [39].
Typical parameters in the SC method are range from influence (RI) and squash factor (SF),
which are usually manually changed to build a suitable ANFIS model with an optimal
structure [40]. The RI factor ranges from 0.1 to 1 and SF changes from 1 to 7 to find the best
ANFIS structure. The number of membership functions is a function of the sub-clustering
parameter values, and the number of input membership functions (MF) represents the
number of rules. The input and output MF were set as gauss and linear for all structures.

e dBRUE | Output__
™| Fuzzification Rules Defuzzification i
- D @ . ‘ Toughness (Uy)
o O P — e
Al [ @ w3 ‘
Mo D @ W4 ‘
Ta (] @ w5 .
1) [} @ w7 .
HT temperature (°C) E r71 w8 .
HT Duration (hr) [} '@l w9 .
Rolling Temperature C) [} @ W10 .
Milling Time (hr) [} I’@ Wit .
Strain Rate (s-1) D @ w12 .
[Layer1)  “\[Layer2 > [TLayer3) . [Layerd» & [TLayer5 |

Figure 3. The structure of the ANFIS model for simulation of toughness consisting of 12 inputs and
5 layers [32].

3.3. Support Vector Regression (SVR)

The regression method is an efficient method to find the best relationship between the
dependent and independent variables. The polynomial regression model may generate in
different forms such as vector of random errors, response vector, parameter vector, and
design matrix. Nonlinear correlations are found between each variable in polynomial
regression models [41]. The support vector machine (SVM) algorithm is one of the most
robust and suitable methods for simulating linear and nonlinear data sets [42]. In this
research, the linear regression toolbox in MATLAB with the SVM algorithm was developed.
As discussed earlier, we used twelve variables as input and toughness as an output to
simulate the experimental data set.

4. Results and Discussion
4.1. The Analysis of the Constructed Models

As discussed in the modelling section, to find the suitable structure of the ANN model,
five neurons in a hidden layer with the same transfer function were selected for training the
data set. Table 2 shows the comparison between the ANN models with different training
algorithms. The results demonstrated that the ANN-4 model had the lowest MSE, MAE
(459.22, 15.75), and a higher coefficient of determination than the other models (0.86).
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Table 3 shows the modeling results for ANFIS constructed models. The higher the RI
values, the higher the error; thus, the lower Rl value is more suitable for the ANFIS model.
Similarly, as the SF factor’s value rises, the performance of ANFIS decreases the optimal
value of the SF factor which was 1. As a result, ANFIS-SC8 provided a more suitable
arrangement with the lowest RMSE value (RMSE = 0.20).

Table 2. MSE, MAE, and R? of the five ANN models executed with five neurons in the hidden layer architecture to find the
best training algorithm.

ANN Models Training Algorithm Symbol MSE MAE R?
ANN-1 Resilient backpropagation RP 776.65 20.85 0.76
ANN-2 BFGS quasi-Newton backpropagation BFG 785.53 20.37 0.75
ANN-3 Scaled Conjugate Gradient SCG 812.58 22.65 0.67
ANN-4 Levenberg—Marquardt backpropagation LM 459.22 15.75 0.86
ANN-5 Conjugate Gradient with Powell /Beale Restarts CGB 876.25 27.47 0.60

The best model is shown in italics.

Table 3. The performance and features of alternative ANFIS-SC models.

ANFIS Models RI SF The Number of Input MF Number of Rules Epochs RMSE
ANFIS-SC1 1 2 6 6 20 38.49
ANFIS-SC2 0.9 15 11 11 40 262.48
ANFIS-SC3 0.8 3 4 4 60 32.68
ANFIS-SC4 0.7 1.75 14 14 80 29.41
ANFIS-SC5 0.6 2.5 11 11 50 71.36
ANFIS-SC6 0.5 1.25 30 30 30 10.35
ANFIS-SC7 0.4 2.25 26 26 70 14.56
ANFIS-SC8 0.3 1 61 61 100 0.20
ANFIS-SC9 0.2 6 26 26 90 56.55

ANFIS-SC10 0.1 7 48 48 15 6.44

The best model is shown in italics.

The optimum ANN structure with five neurons in a hidden layer was selected (e.g.,
12-5-1). The LM training algorithm provided a more suitable performance of the ANN
model. Consequently, the ANN model for predicting the toughness of OPH alloys has
MSE and MAE values of 459.22 and 15.75. Figure 4a shows the correlation between the
experimental and predicted values of toughness by the ANN model; the R? value for the
ANN model is 0.86, which shows that ANN could find a suitable correlation between
the variables.

For ANFIS modeling, several fuzzy clustering structures were developed, and ANFIS-
SC8 resulted in higher accuracy. The values of MSE and MAE for the ANFIS model were
0.0418 and 0.0517. The comparison between experimental and simulated toughness values
for the ANFIS model is shown in Figure 4b. The ANFIS model predicts the toughness
with high accuracy and superior performance (R? = 0.99). The result of the SVR model
was presented in Figure 4c, in which acceptable performance was achieved (R? = 0.79).
The SVR model could predict the toughness with suitable performance (MSE = 651.68,
MAE = 17.42).
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4.2. Analysis of the Validity and Performance of the Constructed Models
In this section, various criteria were calculated to evaluate the performance and
accuracy of each model. As shown in Table 4, several formulae such as R, k, k/, Ro2,
and R,'% were presented based on previous research [43—46]. In these relations, hi and ti
represent the observed output and predicted output. Furthermore, the permissible value for
the criteria is presented. According to the results, all the models are suitable for predicting
the toughness of OPH alloys, and the models fulfilled all the desired performance criteria.
Several criteria validated the fact that the ANFIS model results in better conditions and
better ability in simulation.
Table 4. The validation and performance of each model.
Item Formula Condition ANN ANFIS SVR
1 R = iy (hizhi) (ti—H) 0.8<R 0.926 0.999 0.892
VL (hi=Ri)* /o (1)
2 k= W 085<k<1.15 0.969 1.0001 0.953
K = % 0.85<k <1.15 0.986 0.999 0.983
i=1
4 R2=1_ Em(h) o gy ~1 0.997 0.999 0.992
Y (ti—H)
W . L0\2
5 Ry2 =1 — Tl o _yr s pi ~1 0.999 0.999 0.999
Lit (hi—hi)

4.3. Prediction of the Toughness of OPH Alloys

Ten datasets were collected for the test to compare the models, and these ten datasets
were not used to train the models. Moreover, the test datasets were randomly selected
to eliminate the problem of the influence of human selection on the results. As shown in
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Table 5, these ten datasets (e.g., T1 to T10) were reported. Figure 5 and Table 5 illustrate
the comparison between the experimental values and the modeling results. It could be
understood that the predicted values are compatible with experimental values. However,
the ANFIS model exhibited a better and more reliable prediction performance than the
ANN and the SVR models. Therefore, we can say that the ANFIS model is more efficient
than the other models.

Table 5. The material parameters of the samples for testing the models with the prediction results.

Milling Rolling Experimental Predicted UT
Material . . Strain Rate Chemical Composition (J-m-3)
e T:]r:;e T(ixga. Annealing S-1) (Wt %) ( .UTfs) ANN ANFIS SVR
J-m (R2=0.60) (R2=0.88)  (R®=0.55)
1250 gZ + 90 gAl + 40
T1 150 925 1200 °C-1h 0.1 gY,05 + 50Mo + 12Ta, Z = 104 115.2745 106.9551 137.825
83Fe + 17Cr
1500 gZ + 108 gAl + 70
2 230 925 1200 °C-5h 0.001 gY,0; + 60Mo + 14Ta, Z = 39 55.9562 15.27325 72.43799
83Fe + 17Cr
1500 gZ + 108 gAl + 70
T3 230 925 1000 °C-5 h 10 gY205 + 60Mo + 14Ta, Z = 20 77.6837 19.93451 16.01895
83Fe + 17Cr
T4 480 960 1100 °C-5 h 0.001 800Fe + 100;*; +30Y205 + 208 137.1719 169.7749 129.4625
T5 480 960 1000 °C-20 h 0.001 800Fe + 100Al + 150, 53 441085 53.7416 24.93518
T6 230 850 1000 °C-20 h 0.001 400 gFe +zgog§{(2:(r): 36 gAl+ 74 93.2575 56.98798 48.08971
7 230 865 800 °C-1h 0.1 1200 gFe + 240 gCr + 108 27 18.5657 27.99824 16.53388
gAl +75 ngOg
T8 230 865 1100 °C-20 h 0.1 1200 gFe + 240 gCr + 108 86 107.5968 102.7684 57.76867
gAl +75 ngO3
o 2400 gFe + 480 gCr + 216
9 230 873 800°C-5h 0.1 SAL 120 6,00 + 120Mo 53 58.5657 54.1952 4341673
. 2400 gFe + 480 gCr + 216
T10 230 860 800°C-1h 0.001 Gl 4120 gY200 + 120Mo 75 48.3064 54.646 45.41388
u Experimental
200 +
u ANN
u ANFIS
SVMR
150 +
o
£
-
-’
slw E
50 +
0 A
T1 T2 T3 T4 T7 T8 T9 T10

Tgampleg6
Figure 5. The models for testing data sets predict the value of the hardness of OPH alloy [32].

4.4. Sensitivity Analysis (SA) of Input Parameters

SA is a suitable technique for investigating the influence of each input on the tough-
ness and for finding the significant input parameters [47]. The inputs were categorized into
significant and non-significant parameters. It has been reported that if the non-effective pa-
rameters were removed, the accuracy and performance of the model could be enhanced [48].
As discussed in the previous section, the ANFIS model has better performance and accu-
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racy. Therefore, SA was performed on the ANFIS model. The R?, MSE, and MAE values
for the SA of the ANFIS model are given in Table 6.

Table 6. The R?, MSE, and MAE values for the SA of the ANFIS model.

No. ANFIS Model R? MSE MAE
1 11 Input Parameters 0.9999868 0.0417606 0.0517638
2 10 Input Parameters (without Fe) 0.9999917 0.0261573 0.0442478
3 10 Input Parameters (without Cr) 0.9999994 0.0017188 0.0186334
4 10 Input Parameters (without Al) 0.9968289 10.1001732 0.4402436
5 10 Input Parameters (without Mo) 0.9927615 23.0551972 1.4600404
6 10 Input Parameters (without Ta) 0.9505068 157.6411613 2.0653843
7 10 Input Parameters (without Y) 0.9999796 0.0648635 0.1063068
8 10 Input Parameters (without O) 0.9948345 16.4525800 0.5791974
9 10 Input Parameters (without Milling time) 0.9950622 15.7271643 1.1247957
10 10 Input Parameters (without Rolling Temperature) 0.9678562 102.3813008 3.1022166
11 10 Input Parameters (without HT temperature) 0.5434395 1454.195369 27.4952115
12 10 Input Parameters (without HT duration) 0.8766828 392.7787824 13.4959577
13 10 Input Parameters (without Strain rate) 0.9810307 60.4190996 3.2876585

The result demonstrates that the ANFIS model is sensitive to the input parameters,
especially HT temperature. By removing the HT temperature, the R? decreases considerably
from 0.99 to 0.54. Nevertheless, some input variables such as Fe, Mo, and Ta have a more
negligible effect on the performance of the ANFIS model (according to Table 6). The
HT duration, Rolling Temperature, and Milling time have a higher impact on the model
accuracy, and the removal of these parameters causes a higher error of the model.

Furthermore, the reduction of input parameters for Fe, Cr, and Y decreased the
MSE from 0.04176 to 0.02615, 0.00171, and 0.06486 respectively. Moreover, the R? value
increases and MAE decreases for these input parameters, which showed that removing
these parameters could improve the accuracy of the ANFIS model. Therefore, it may be
concluded that removing the input parameters results in an increase in MSE and MAE
values for the ANFIS model. In particular, reducing HT temperature, HT duration, rolling
temperature, milling time, and strain rate increases the error values (see Table 7). Thus,
these five parameters are more effective in the performance of the predictive ANFIS model,
and the model is more sensitive to these parameters. However, HT temperature is the most
significant of these parameters, which acts as a critical rule in training the data sets.

Table 7. The comparison between the ANFIS model and the Optimized ANFIS model.

Error

2
Model R MSE MAE
ANFIS 0.9999868 0.0417606 0.0517638
Optimized ANFIS 0.9999988 0.0039412 0.0299045

To enable better training of the ANFIS model, it can be optimized by applying the SA
technique. Non-effective input parameters, including Fe, Cr, and Y, were removed. In that
case, the ANFIS model was developed with nine inputs. Based on that, the predicted data
sets versus the actual data obtained from the developed model are shown in Figure 6. It is
obvious that the new model with the lowest input parameters achieved better performance
with higher accuracy. Above that, by ignoring the non-sensitive input parameters, the
overfitting of the model can be avoided and may reduce the complexity and nonlinearity of
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the data sets. The nature of the input data or configuration directly influences the accuracy
of the constructed model [49,50]. By ignoring Fe, Cr, and Y, as non-sensitive parameters,
the performance of the ANFIS model can be enhanced. Therefore, a new developed ANFIS
model was formed to predict the toughness of OPH alloys with high accuracy.
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Figure 6. Optimized ANFIS model obtained by removing non-sensitive parameters.

5. Conclusions

Fourteen different OPH alloys were prepared by mechanical alloying from a mixture
of powder components, consolidating, and hot rolling. A series of standard tensile tests
were performed on different variants of the OPH alloys to investigate the toughness as
a part of mechanical properties. Machine learning methods (ML) like ANN, ANFIS, and
SVR models were used to predict the toughness obtained by tensile testing. Systems with
different chemical compositions of OPH alloys (Al, Mo, Fe, Cr, Ta, Y, and O), heat treatment
conditions, and mechanical alloying conditions were considered model inputs and tough-
ness was set as output. The results showed that the proposed strategies can determine
the complex behavior of the alloys with an approximate accuracy of 95% and can help
the designer predict relevant uncertainties without using analytical calculations. A better
understanding of chemical composition to achieve the optimum mechanical properties in a
combination of the effectivity of the hybrid model proves the efficiency of the presented
models. The value of MSE for ANN, ANFIS, and SVR models was 459.22, 0.0418, and
651.68. Several criteria validated the fact that the ANFIS model results in better conditions
and better ability in simulation. Ten datasets were collected for testing the models and it
was found that the predicted values are compatible with the experimental values. How-
ever, the ANFIS model exhibited a better and more reliable prediction performance. The
outcome of SA revealed that the reduction of input parameters for Fe, Cr, and Y decreased
the MSE from 0.04176 to 0.02615, 0.00171, and 0.06486, which showed that removing these
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parameters could improve the accuracy of the ANFIS model. Finally, an optimized ANFIS
model was achieved with an MSE value of 0.003.
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