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Abstract: In order to examine the effect of excessive sulfate in the leachate of spent Li-ion batteries
(LIBs), LiNi1/3Co1/3Mn1/3O2 (pristine NCM) and sulfate-containing LiNi1/3Co1/3Mn1/3O2 (NCMS)
are prepared by a co-precipitation method. The crystal structures, morphology, surface species, and
electrochemical performances of both cathode active materials are studied by scanning electron
microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and charge-
discharge tests. The XRD patterns and XPS results identify the presence of sulfate groups on the
surface of NCMS. While pristine NCM exhibits a very dense surface in SEM images, NCMS has
a relatively porous surface, which could be attributed to the sulfate impurities that hinder the
growth of primary particles. The charge-discharge tests show that discharge capacities of NCMS at
C-rates, which range from 0.1 to 5 C, are slightly decreased compared to pristine NCM. In dQ/dV
plots, pristine NCM and NCMS have the same redox overvoltage regardless of discharge C-rates.
The omnipresent sulfate due to the sulfuric acid leaching of spent LIBs has a minimal effect on
resynthesized NCM cathode active materials as long as their precursors are adequately washed.

Keywords: Li-ion battery; cathode material; sulfate; impurity; leachate

1. Introduction

Li-ion batteries (LIBs) have been extensively used in various portable electronics
and electric vehicles in combination with high energy and power density [1,2]. However,
tremendous amounts of end-of-life batteries have been piled up in landfill, and flammable
and toxic elements in spent LIBs would cause not only fire but also soil contamination [3–5].
At the same time, the spent LIBs could also offer huge economic benefits by recovering
valuable elements in them [6,7]. In respect of LIB composition, there are many portions
of valuable metals including cobalt, nickel, and lithium. When the spent LIBs are treated
properly, worthy elements such as cobalt and lithium can be regained. From the viewpoint
of economic and environmental issue, the recycling of spent LIBs is essential for the present
and future generation [8].

In the recycling process of batteries, the pretreatment of spent batteries, including dis-
charge, dismantling, classification, and separation, usually precedes the hydrometallurgy-
based recycling process [9]. The hydrometallurgy-based process involves a leaching step to
extract desired metals from cathode materials by using leaching agents such as sulfuric
acid [10]. A large number of research articles have investigated the leaching behaviors
of metals in the spent LIBs, with the optimization of the leaching step leading to the
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maximization of leaching efficiencies for valuable metals. [11–14]. Because sulfuric acid
leaching is the most popular in LIB recycling and usual metal sources for the synthesis
of LIB cathode active materials are sulfate salts such as NiSO4, CoSO4, and MnSO4, the
investigation on the effect of sulfate in pristine and resynthesized cathode active materials
would be essential.

Previously, Ban et al. found that sulfur in LiNixCoyMnzO2 (NCM) enhanced the elec-
trochemical performance of the cathode active materials, in which sulfur was incorporated
into NCM by calcination [15]. Interestingly, discharge capacity and rate capability were
improved with the small amount of sulfur doping (0.4 and 0.5 wt%), which is contrary to
the common sense of LIB industry that sulfur is a harmful impurity. The authors explained
the reason being that sulfur forms a Li2SO4 phase, which would provide fast diffusion
channels for lithium ions on the surface. Recently, Li et al. examined the concentration
gradient S-doped NCM and argued that a proper amount of sulfate stabilizes the crystal
structure with good cycle performance [16]. However, these studies first prepared precur-
sors for NCM by co-precipitation and conducted the sulfur doping by calcination, which is
unlikely in the NCM resynthesis for LIB recycling, because the leachate for the subsequent
co-precipitation of NCM already contains excessive sulfate. Therefore, the effect of sulfur
in NCM, especially in the case of NCM resynthesis, should be investigated with S-doped
NCM that is prepared by co-precipitation.

In this work, we synthesize LiNi1/3Co1/3Mn1/3O2 (pristine NCM) and sulfate-containing
LiNi1/3Co1/3Mn1/3O2 (NCMS) using co-precipitation in order to investigate the effect of
excessive sulfate in the leachate for the NCM resynthesis. Since an actual LIB leachate
could contain various types of unidentified impurities, we prepare a simulated LIB leachate
with 4 M of extra lithium sulfate as a sulfur source. Our previous report, on the effect of
residual lithium in resynthesized NCM, revealed that lithium originating from lithium
sulfate in a simulated leachate hardly affects the LIB performance as long as the NCM
precursors are washed appropriately [17]. Thus, we could attribute the properties of
NCMS, which was prepared from the simulated LIB leachate with extra lithium sulfate, to
sulfate in the leachate. The structural characterization is performed by scanning electron
microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).
For electrochemical performance, we fabricate CR2032-type coin cells using a Li metal foil
as anode to measure charge and discharge capacities at different C-rates, which range from
0.1 to 5 C.

2. Experimental Section

Figure 1 shows the flowchart of methodology simulating a resynthesis process of
excessive sulfate-containing NCM from leachate of spent LIBs, which include cylindrical
18650 laptop batteries, electric vehicle batteries, and polymer cells. Incidentally, the spent
LIBs are mainly composed of graphite as anode material, and LiCoO2 and NCM as cathode
materials.

2.1. Synthesis and Characterization of Materials

Ni1/3Co1/3Mn1/3(OH)2 and sulfate-containing Ni1/3Co1/3Mn1/3(OH)2 were synthe-
sized using the co-precipitation method. The composition of actual leachate of spent LIBs
from a LIB recycling company (SungEel HiTech, Gunsan-si, Korea) was considered to sim-
ulate the amount of sulfur in the actual leachate. A total of 2 M of ammonia solution as a
chelating agent and 1.5 M of metal solution (NiSO4·6H2O, CoSO4·7H2O, and MnSO4·H2O
in 1:1:1 mole ratio with 4 M of extra Li2SO4 (99%, Alfa Aesar, Ward Hill, MA, USA)) were
pumped into a continuous stirred reactor. 2 M of NaOH solution was automatically injected
into the reactor by a pH-controlled pump to maintain a pH of 11.52. The reactor was kept
at a temperature of 40 ◦C and a stirring speed of 1000 rpm for about 75 h. The resultant
precursors were filtered and washed with distilled water several times and dried in an
oven at 80 ◦C. The final cathode active materials (pristine NCM and NCMS) were prepared
by calcinating a mixture of the hydroxide precursors and Li2CO3 as a lithium source at
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1000 ◦C for 8 h under air atmosphere. In order to identify the crystal structure of the NCM
and NCMS materials, an XRD technique (X’Pert, PAN analytical, Cu Kα radiation, Almelo,
The Netherlands) was carried out with a step size of 0.026◦ in a 2θ range from 10◦ to 80◦.
The morphological characterization of the materials was performed using a field emission
SEM (FE-SEM, SU-8010, Hitachi Ltd., Tokyo, Japan). XPS (K-Alpha 1063, Thermo Fisher
Scientific, Waltham, MA, USA) was used to examine the presence of sulfur in the structure
of NCMS.
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Figure 1. Flowchart of methodology for the resynthesis of excessive sulfate-containing NCM from spent LIBs. (a) Typical
pretreatment process of spent LIBs with subsequent acidic leaching process using H2SO4, indicating the excessive sulfur
content in leachate. (b) Synthesis process of sulfate-containing NCMS(OH)2 precursors using the co-precipitation method
and NCMS cathode active materials via a solid-state reaction, followed by a fabrication of coin cells for electrochemical
assessment.

2.2. Electrochemical Analysis

Electrochemical properties were investigated using CR2032-type coin cells, which
were fabricated in a moisture-controlled glove box under argon atmosphere. Cathodes were
prepared by mixing the cathode active materials, polyvinylidene fluoride (KF 1100) binder,
and carbon black (Super-P) in a mass ratio of 95:3:2 respectively. Cells were integrated with
the prepared cathodes, lithium metal as an anode, polyethene film as a separator, and 1 M
LiPF6 in a mixture of ethyl methyl carbonate and ethylene carbonate (2:1 volume ratio)
as an electrolyte. Charge-discharge tests were performed from 3.0 to 4.3 V (vs. Li/Li+) at
room temperature.

3. Results and Discussion

Figure 2 shows the content of various elements in the actual LIB leachate from a LIB
recycling company (SungEel HiTech, Gunsan-si, Korea). Li, Ni, Mn, and Co are detected
as major constituents of cathode materials and other metal elements, including Al, Cu,
and Na, originate from current collectors and the pretreatments for LIB recycling [18–20].
Notably, nonmetal elements, including F, Cl, and S, are detected in the LIB leachate. Each
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element was analyzed by the following methods: Inductively coupled plasma for metal
elements, absorptiometric analysis using La alizarin complexone for F, AgNO3 titration for
Cl, and barium sulfate precipitation for S. F can originate from residual electrolytes such
as LiPF6 [21], and Cl might derive from the discharging process using NaCl [22]. Since
sulfuric acid is commonly used for leaching LIBs, a great amount of S is present in the
leachate and S has the highest concentration among all the elements [23]. This suggests
that the influence of S on the LIB performance of resynthesized cathode active materials
needs to be investigated.
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The SEM images in Figure 3 show the morphology of the precursors of pristine
NCM and NCMS according to the co-precipitation time. Both precursors have spherical
secondary particles consisting of needle-like primary particles, with an average secondary
particle diameter of ~10 µm. The particles grow bigger and more spherical as the co-
precipitation time increases. Compared with pristine NCM, which has the continuous
particle growth with decreasing particulates, NCMS shows sluggish particle growth after
64 h. Besides, NCMS has a relatively porous surface even when the co-precipitation appears
to stop, while pristine NCM exhibits a very dense surface. This may attribute to the sulfate
impurities that hinder the growth of primary particles.
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Figure 3. SEM images of the precursors of (a) pristine NCM and (b) NCMS according to the co-
precipitation time ((a) 16, 24, 40, 64, and 72 h, (b) 5, 26, 40, 64, and 75 h).

Figure 4 shows the SEM images of the cathode active materials of pristine NCM and
NCMS. The difference between pristine NCM and NCMS is more distinct in the cathode
active materials than their precursors. NCMS, whose precursors have porous surface, is
likely to have more voids and its primary particles agglomerate more than pristine NCM
during the calcination step. This may cause the structure instability and deteriorate the
electrochemical performance [24]. Besides, larger primary particles decrease the lithium-ion
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conductivity due to their longer diffusion paths [25]. These results suggest that excessive
sulfate affects the surface morphology of NCM, which could exert a noticeable influence
on the LIB performance.
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Figure 4. SEM images of the cathode active materials of (a) pristine NCM and (b) NCMS.

Figure 5a shows that all diffraction peaks are well consistent with β-Ni(OH)2 with
no impurity phase [26]. There is no distinct difference between pristine NCM and NCMS
in the precursors. Figure 5b reveals that both pristine NCM and NCMS have the well-
layered structure of α-NaFeO2 type with the space group R-3m [27,28]. However, an Li2SO4
impurity phase around 22◦ peak is observed in NCMS. This result indicates that some
sulfate impurities are still present in the precursors after filtering and washing, and these
sulfate impurities appear in the cathode active materials after calcination and could lead to
poor performance in a charge-discharge test. These weak peaks related to Li2SO4 phase are
also proven by the presence of sulfur in the following XPS analysis (Figure 6). Figure 6b
exhibits a binding energy of 169.2 eV, which is assigned to hexavalent S 2p3/2 of the SO4

2−

groups [29]. This result identifies the presence of sulfate groups on the surface of NCMS.
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The electrochemical performance of the charge-discharge profiles for pristine NCM
and NCMS is presented in Figure 7a. For both samples, the C-rate during the charge was
fixed at 0.1 C, while the C-rates during the discharge were varied from 0.1 to 5 C. Compared
to pristine NCM, the discharge capacities of NCMS at each C-rate is slightly decreased. The
discharge capacities at 0.1 C are 161.1 and 159.6 mAh g−1 for pristine NCM and NCMS,
respectively. During the initial charge to 4.3 V vs. Li/Li+, a gentle slope below 3.9 V occurs
with the removal of lithium from NCM, which accompanies the oxidation of Ni2+/Ni4+

and Co3+/Co4+ [15]. Although the presence of sulfate was confirmed in the structural
characterizations of NCMS, the decrease in its discharge capacity is not significant. The
coulombic efficiencies are 99.4% and 99.7% at 0.1 C, 89.7% and 89.0% at 2 C, and 82.7%
and 79.6% at 5 C for pristine and NCMS, respectively. These results indicate that excessive
sulfate in NCM has a minimal effect on the reversibility in the Ni and Co redox system.
The dQ/dV plots of pristine NCM and NCMS at 0.1, 2, and 5 C were obtained to examine
the reversibility and redox overvoltage of the cathode active materials (Figure 7b). Both
samples at 0.1 C display the reduction and oxidation peaks of Ni4+/Ni2+ at 3.74 and 3.76 V,
respectively. The reduction peaks gradually shift to lower potentials as the C-rate during
the discharge increases. However, the difference in the position of reduction peaks is
very small between pristine NCM and NCMS. The capacity retention of pristine NCM
and NCMS cycled at 1 C showed superior cyclability over 98% after 50 cycles in both
samples (see Figure S1). Therefore, considering that pristine NCM and NCMS have the
same redox overvoltage and the cycle stability, the sulfate groups belonging to NCM would
not seriously affect the reversibility of the cathode active materials.
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4. Conclusions

In this work, pristine NCM and NCMS are synthesized by co-precipitation and the
effect of excessive sulfate is investigated on their structure, morphology, and electrochem-
ical properties. The presence of sulfate in NCMS is examined by XRD and XPS results.
SEM results show that NCMS has a porous surface and more voids than pristine NCM,
which may cause the structural instability and deteriorate the electrochemical performance.
In charge-discharge tests at different C-rates, the discharge capacities of NCMS at each
C-rate is slightly decreased compared to pristine NCM. In summary, the unavoidable
presence of sulfate, which originates from the sulfuric acid leaching of spent LIBs, has a
minimal effect on resynthesized NCM cathode active materials as long as their precursors
are adequately washed.

Supplementary Materials: The following are available online https://www.mdpi.com/article/
10.3390/ma14216672/s1, Figure S1: Capacity retention of pristine NCM and NCMS at 1 C.
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