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Abstract: Lithium-graphite intercalation compounds (Li-GICs) are the most popular anode material
for modern lithium-ion batteries and have been subject to numerous studies—both experimental
and theoretical. However, the system is still far from being consistently understood in detail across
the full range of state of charge (SOC). The performance of approaches based on density functional
theory (DFT) varies greatly depending on the choice of functional, and their computational cost is
far too high for the large supercells necessary to study dilute and non-equilibrium configurations
which are of paramount importance for understanding a complete charging cycle. On the other hand,
cheap machine learning methods have made some progress in predicting, e.g., formation energetics,
but fail to provide the full picture, including electrostatics and migration barriers. Following up on
our previous work, we deliver on the promise of providing a complete and affordable simulation
framework for Li-GICs. It is based on density functional tight binding (DFTB), which is fitted to
dispersion-corrected DFT data using Gaussian process regression (GPR). In this work, we added
the previously neglected lithium-lithium repulsion potential and extend the training set to include
superdense Li-GICs (LiC,4_,; x > 0) and lithium metal, allowing for the investigation of dendrite
formation, next-generation modified GIC anodes, and non-equilibrium states during fast charging
processes in the future. For an extended range of structural and energetic properties—layer spacing,
bond lengths, formation energies and migration barriers—our method compares favorably with
experimental results and with state-of-the-art dispersion-corrected DFT at a fraction of the computa-
tional cost. We make use of this by investigating some larger-scale system properties—long range
Li-Li interactions, dielectric constants and domain-formation—proving our method’s capability to
bring to light new insights into the Li-GIC system and bridge the gap between DFT and meso-scale
methods such as cluster expansions and kinetic Monte Carlo simulations.

Keywords: lithium-ion batteries; DFTB; Li-GIC; graphite; intercalation; multiscale modeling; diffu-
sion barriers; formation energies; energy materials; machine learning

1. Introduction

Lithium-graphite intercalation compounds (Li-GICs) are the primary anode material
for commercial Li-ion batteries with a market share of 98% [1] due to their good volumetric
and gravimetric capacities, long cycle life, abundant availability, and low cost. Despite in-
vestigations into alternatives such as lithium-metal anodes, graphite and modified-graphite
compounds will not be replaced in the foreseeable future, as important EV manufacturers,
material suppliers and cell producers have recently announced that graphite-containing
composites will mark the state of the art for next-generation lithium-ion batteries [2].
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Lithium can intercalate into graphite (in an energetically favorable way) up to a
stoichiometry of LiC, which is commonly taken as the compound defining the state of
charge (SOC) of 100%. Recent studies [1,3] (and references therein) have shown that so-
called superdense configurations (LiC,; x = 2 — 6) must also be expected, at least locally, as
well under ambient conditions. It has been suggested that doping may have the potential
to stabilize these compounds and make them accessible for use in batteries [4].

Between SOC 0% (i.e., graphite) and 100% (LiCy), the system goes through multiple
phase transitions [5,6] between so-called stages (n = 1,2, ...) that can be experimentally
discriminated. Traditionally, these stages have been interpreted in an idealized structural
model to directly correlate with the number of (n — 1) empty layers between each pair of
filled layers. According to the Daumas—-Heréld domain model [7], these configurations
will rather form local islands or domains of unknown size.

During the process of filling the system, the lattice parameter in the z direction changes
from 3.355 A per layer at SOC 0% to 3.687-3.706 A at SOC 100% [8,9]. Additionally, at some
point between 5% and 15% SOC, the graphite structure shifts from AB-stacking to AA-
stacking, possibly with intermediate configurations such as AAB or ABC [10,11].

Several characteristics make this system challenging to simulate: firstly, layers filled
with Li-ions are governed by electrostatics, whereas empty layers are governed by van
der Waals (vdW) interactions. Any reliable model must be able to treat both accurately.
Secondly, properties such as domain sizes and low-SOC phenomena require large supercells
to be investigated. Furthermore, thirdly, Li-GICs—in the context of Li-ion batteries—are an
active material. Therefore, not only are energetics important, but so are transport properties
such as diffusion barriers.

To date, neither a full DFT approach nor a pure machine learning (ML) approach have
proven to be capable of efficiently meeting all of these requirements: DFT methods [12-14]
are too computationally expensive to treat the size of supercells necessary and allow
for extensive sampling, whereas pure machine learning approaches [10,15] usually only
predict some of the required properties, but not all of them, since they do not grant access
to electronic properties such as band structures and charge transfer. Density functional
tight binding (DFIB), however, can be 2-3 orders of magnitude faster than DFT (which is
comparable to, e.g., charge-adaptive force fields) while still retaining a physical description
of the system’s electronic properties [16].

In this work, we thus employed a DFTB approach to calculate the structural and
energetic properties necessary for a full description of the Li-GIC at all states of charge
including superdense ones beyond LiC,. This comprises bond lengths, layer spacing,
formation energetics, long-range Li-Li interactions, and diffusion barriers, all over a wide
range of SOC. Our predictions compare favorably with experimental results [5,6,9,17-23]
and state-of-the-art dispersion-corrected DFT [11-14,24,25], wherever available.

2. Materials and Methods
2.1. Computational

For this study, we used the implementation in DFTB+ [16] with the parametrization
developed in our group. The corresponding Slater-Koster files are publicly available (see
Data Availability Statement). The electronic parameters (in [26], only the confinement
potential) were optimized by means of particle swarm optimization (PSO) [27]. In our
GPrep approach, the repulsion potential was then fitted using Gaussian process regression
(GPR) [28] as described in [26]. The initial parametrization in [26] did not include the
Li-Li repulsion. Extending that earlier work, the training set now includes not only a
wide variety of Li-GIC configurations between SOC 0% and 100%, but also molecular
dynamics (MD) snapshots of lithium metal clusters (cf. Supplementary Information),
as well as rattled structures extracted from geometry relaxation pathways of LiC, and
LiC, ,5, so that our model can also be used to investigate superdense compounds as well
as regions governed by metallic interactions, such as dendritic, mossy, or plated lithium.
The GPrep hyperparameters were manually adjusted to reproduce selected properties.
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Additional details on how the potential shapes changed between [26] and the present work
are provided in the Supplementary Information.

DEFT calculations, serving as a reference for the DFTB fit, were performed with the
all-electron framework FHI-aims [29] with light settings and default tier-2 basis sets, using
the PBE exchange-correlation functional [30]. For dispersion correction, the MBD approach
was chosen [31,32]. MD simulations for generating the training set and validation structures
were performed in the NVE ensemble at 300 K and 1000 K using the LAMMPS code [33]
with the embedded atom method (EAM) potential for alkali metals developed by Nichol
and Ackland [34].

Geometries were constructed and analyzed by means of the atomic simulation envi-
ronment (ASE [35]) which we also used as a base framework for all force and energy calcu-
lations, structure relaxations (specifically using the BEGS algorithm as an optimizer [36]),
and barrier calculations. For the latter, we employed the nudged elastic band (NEB) [37,38]
algorithm with the FIRE-optimizer [39] and climbing image switched on.

For all DFTB calculations, we used a well-converged k-point density of at least 0.1/A.
The SCC-tolerance is 10~7. We employed Fermi filling with a Fermi temperature of 300 K,
as well as a Broyden mixer [40] for convergence acceleration with a mixing parameter of 0.5.
All of these settings were tested with regard to convergence for the whole range of SOC.
As described in [26], our parametrization is meant to be used with the Leonnard-Jones
dispersion correction [41] switched on.

2.2. Experimental

Open circuit voltage (OCV) curves were recorded to compare the simulation with
real measured values. For this purpose, cells were built with graphite against lithium as
well as highly oriented pyrolytic graphite (HOPG) against lithium. The cells from EL-Cell
(ECC-5td), comparable to button cells, were used as the housing. A Whatman GF\D
was used as the separator and EC:DMC 1:1 with 1 mol/L LiPF6 from Sigma-Aldrich was
used as the electrolyte. The graphite electrodes were coated on copper current collectors,
whereas the HOPG was used without a current collector. The electron conductivity was
sufficient due to its low current rate. The graphite was used in 18 mm blanks, whereas
the HOPG was cut into narrow strips with a width of approximately 2 mm to ensure the
highest possible surface-to-volume ratio. The ions can only intercalate into the HOPG from
the cut edges and not through the surface. The graphite cells were initialized with a current
rate of C/10 and the HOPG cells were cyclized with a current rate of C/30.

3. Results and Discussion
3.1. Structural Properties

Graphite consists of graphene sheets, within which the C-atoms are arranged in a
hexagonal honeycomb structure. The sheets are stacked in an A B-stacking order. The lattice
is hexagonal with a 2-layer, 4-atom unit cell and lattice parameters a and c [42]. In our first
benchmark, we compared the performance of our DFTB parametrization with Gaussian
process regression-based repulsion potential (GPrep-DFTB) with experimental and recent
theoretical findings (Table 1).

Table 1. Lattice parameters a and c of the AB-graphite unit cell, predicted using GPrep-DFTB,
compared with experimental results, state-of-the-art dispersion-corrected DFT calculations, and a
recently published machine learning model.

GPrep-DFTB Experiment DFT ML

Method: (@) ) (0 (D (e) ) ®)
alA] 2.476 2.464 2.461 2468 2465 2477 2472 2.461
c[A] 6.746 6.711 6.709 6.712  6.645 7.087 6975 7.538

Experimental references: (a) [17]; (b) [18]; DFT: (c) revPBE-D3-BJ [14]; (d) optB88-vdW [12]; (e) revPBE-vdW [12];
(f) vdW-optPBE [43]. Machine learning (ML) reference: (g) Atomistic Neural Network [10].
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All considered benchmark methods performed well in reproducing the in-plane lattice
parameter a, which is governed by covalent C—C bonds. However, even state-of-the-art
dispersion-corrected DFT functionals (except for [14]) struggle with predicting the out-of-
plane lattice parameter c. This is due to the fact that the latter is governed by van der Waals
interactions, which are still notoriously difficult to account for despite considerable effort
in creating various correction schemes [31,44—46] for DFT. The recent machine learning
approach [10] overestimates ¢ by an even larger margin.

GPrep-DFTB results are very close to the experimental references—closer than even
the majority of DFT approaches—proving that the method is very capable of treating both
covalent C—C bonds and van der Waals interactions in graphite.

When lithium intercalates into graphite, the graphene sheets shift from AB-stacking
to A A-stacking somewhere between 5% and 15% SOC, and the interlayer distance expands
from ~3.36 A to ~3.62-3.7 A (depending on the SOC of adjacent galleries) for the full gallery.
Empty galleries adjacent to filled galleries also slightly expand, due to the extra charge
transferred to the graphene sheet from the intercalated Li-ions, making the overall increase
in the average z direction lattice parameter non-linear.

It is generally accepted that Li-ions do not evenly distribute throughout the entire
GIC, but tend to arrange themselves in fully filled domains and empty domains [7,47]
(see Figure 1), leading to a local staging behavior with the staging number (n = 1,2,...)
indicating that n — 1 galleries are empty between each pair of filled galleries only within that
limited region. For our second benchmark, we calculated the average interlayer distances
depending on the stage n = 1, ..., 9 of stoichiometry LiC, (corresponding to LiCg, LiC,,
LiCyg, LiC,, and higher) with the GPrep-DFTB and compared with experimental and DFT
references, where available (Figure 2 and Table 2).

In order to be able to directly compare with DFT, this set of unit cells was constructed
with global staging (Figure 1, left) and not according to the domain model, which would
render them far too big for DFT. Because of that, it is not obvious whether AA- or AB-
stacking should be assumed for the empty layers. In real samples, which are large of
scale and governed by the domain model (Figure 1, right), it is probable that empty parts
of galleries also exhibit A A-stacking, because they are forced into that configuration by
adjacent filled domains within that same gallery and because they are not truly empty,
either. However, in an idealized system, without factoring this in (Figure 1, left), AB-
stacking of the empty galleries (as in pure graphite) is also conceivable. Therefore (and
because it is unclear which stacking order has been assumed in the DFT reference [13]), we
provide predictions for both as well as a prediction area (light blue). Filled galleries are
always in A A-stacking.

T

T

e

e ——

Figure 1. Stage 2 Li-GIC compound (purple: Li-ions, gray: graphene sheets) in a global staging
model (left) and the Daumas-Her6ld domain model (right).

For the empty galleries, we predict that interlayer distances remain mostly constant
throughout all stages with a slight increase in stage 2, due to the additional electrostatic
repulsion caused by the charge transfer from Li-ions in the adjacent filled galleries to the
carbon sheets. For the filled galleries, a constant interlayer distance can be observed for
stages 4 and higher, whereas stages 3, 2, and 1 progressively show increased interlayer
distances, which we attribute again to the electrostatic repulsion of the increasing charge
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density. Based on these findings, a simple building block model that assumes invariant
interlayer distances proves sufficient to describe the system’s behavior in the high-stage
(n > 3) limit, where filled galleries are too far apart to interact in any way (Figure 2, left: “fit
AA’ and ‘fit AB’). Only for stages 1 and 2 can the increased filled interlayer distance cause
a significant deviation from this model.

Experimental results [5,9] agree very well with our GPrep-DFTB predictions for
stages 1, 2, and 3. The DFT-based Ising model by [13] is also accurate for stages 1 and 2,
but maintains an overly steep slope for higher stages 3 and 4, which—if continued—would
clearly converge towards wrong asymptotic behavior.

3.8 3.75
¥ exp. Kambe * filled
exp. Dahn - 370
— 3.71 = DFTPande * *
= fit AA
g o 3.65 *
g fit AB ‘ . *
2 367 % GPrep-DFTB AB y * *
2 *  GPrep-DFTB AA A 3.60- -
- - 4 - -
= —— graphite ,! 3.50- T
T 35 o * empty AB
N +~—""/f/ f 3.454 *  empty AA
3 R *
Co3g4f{-x *
* 3.40 *
"
¥ N
3.3 T T T T T T T 3.35 T T T v T T
9 6 4 3 2 1 C6 9 6 4 3 2 1
Li-GIC stage Li-GIC stage

Figure 2. (Left): Average C—C interlayer distance in the z direction as a function of the stage of the
compound in A. AA and AB signifies A A-stacking and AB-stacking assumed for the empty graphite
layers. Where available, experimental and theoretical references are also shown. The curves ‘fit AA’
and ‘fit AB’ correspond to a simple building block model with just two fixed interlayer distances for
empty and filled galleries, respectively. For stages 3 and higher, our predictions adhere closely to
that model. For stages 1 and 2, the interlayer spacing of the filled galleries was expanded due to the
additional charge transfer. (Right): Interlayer spacing of the full galleries, as well as empty galleries
in AA and AB stacking, as a function of the stage (calculated with GPrep-DFTB).

Table 2. C—-C interlayer distances in A. For details, see the caption of Figure 2.

DFTB Experiment DFT
Filled Empty Avg. Avg. Avg. Avg.
AA/AB AA/AB Dahn [5] Kambe [9] Pande [13]

stage 1 3.682 - 3.682/3.682 3.700 3.706 3.713

stage 2 3.652 3.416/3.387  3.535/3.518 3.520 3.530 3.546

stage 3 3.639 3.406/3.376  3.478/3.465 3.450 3.460 3.439

stage 4 3.625 3.403/3.373  3.457/3.440 - - 3.406
stage 6 3.622 3.405/3.372  3.440/3.414 - - -
stage 9 3.622 3.403/3.372  3.427/3.407 - - -

graphite - 3.402/3.373  3.402/3.373 3.355 3.355 3.35

3.2. Diffusion Barriers

Diffusion barriers for ion transport are among the most interesting properties of
mixed ion-electron conductor (MIEC) materials such as Li-GICs. They are the crucial
input parameter of any kinetic Monte Carlo simulation [48] that aims to predict large-scale
phenomena such as phase transitions between stages or non-equilibrium configurations
during fast charging. They are also quite difficult to reliably calculate, since they are closely
linked to the interlayer distance, which, as previously pointed out, is still hard to predict,
even with state-of-the-art DFT, especially for dilute, low SOC configurations.

In order to rigorously investigate the transport properties of Li-GICs, we constructed
a variety of structures based on 2- and 3-layered supercells with 36 and 48 carbon atom:s,
respectively. This allows us to consider different staging and Li-stacking orders for equiv-
alent stoichiometries. We fully relaxed all structures, extracted the interlayer distances,
and calculated the energy barriers (Table 3) for exemplary bridge-path diffusion processes
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(connecting the next-neighbor Li positions) using the NEB method (see Supplementary
Information). for the exact initial and final states of the bridge path NEBs, as well as the
predicted barrier diagrams.

Table 3. Interlayer distances and migration barriers (to the neighboring Li-position), calculated with
GPrep-DFTB for a variety of differently stacked, staged, and filled Li-GICs. Regarding the stacking
description, A refers to the carbon sheets, whereas « and p refer to the ordering of Li-ions.

Stage Stacking In-Plane % Avg LS [A] Flllec[lgilmpty Barrier [eV]
LiCyq I AAAun 1/3 3.446 3.525/3.406 0.493
LiyCyg III AAAx 2/3 3.478 3.616/3.409 0.441
LizCyq 1T AAAx 3/3 3.478 3.631/3.402 0.424
LiCy il AAax 1/3 3.469 3.530/3.408 0.504
Li,Csq4 11 AAx 2/3 3.512 3.614/3.410 0.451
LizCy II AAx 3/3 3.535 3.652/3.418 0.426
Li,Cy I AxAx 1/3 3.539 3539/ — 0.492
Li,Cy 1 AxAn 2/3 3.625 3.625/ — 0.443
Li,Cy¢* I AnApB 2/3 3.658 3.658/ — 0.412
LigCy, I AxAnx 3/3 3.682 3.682/ — 0.404
LigCas* I AxAp 3/3 3.758 3758/ — 0.396

Analyzing the interlayer distances first, there are multiple trends to observe. First of
all, structures with an Ax Ax order (Greek letters indicating the Li layer order) consistently
relax to a smaller interlayer distance than structures with an Aa Af stacking, implying that
the former may be more favorable. In terms of the total energy per unit of 6 carbon atoms,
however, we see virtually no difference (Aa AB: —297.279 eV/6C, Ax Ax: —297.253 eV /6C)
for both structures fully relaxed in terms of cell parameters and all atom positions. This de-
viation of E(AaAx) — E(AaAB) = 26 meV/6C is on the order of kg T at room temperature,
implying that at ambient conditions, no clear distinction between the Li orderings can be
made and experiments would probably see a mixture of both. For reference, DFT (PBE +
D3), which we consider trustworthy at least for high SOC compounds, predicts a deviation
of E(AxAx) — E(AxAB) = —14 meV/6C. It is necessary to recognize the difference in sign
here, but since both values are within kgT at room temperature and at the limit of DFT
errors, we do not believe that this constitutes a relevant difference.

Furthermore, for stoichiometries which can either be arranged as dilute stage 1 or
dilute stage 2 (Li,Cy,) geometries, stage 2 has the lower interlayer distance and is therefore
favored, which is in line with the agreed upon theory of staging and domain formation [47].
This is due to the fact that the z direction expansion of a gallery does not vary linearly
with the filling factor. The total expansion from the 0% filling to 100% filling is 0.315 A for
AwnAn-stacked stage 1 compounds. Filling empty layers by 33% (stage 1—Li,Cj;) already
expands the interlayer distance by 0.165 A, which is 52% of the total expansion. At 66%
filling (stage 1—Li,Cy), the interlayer distance is expanded by 0.252 A, which is 80% of
the total expansion.

In terms of the diffusion barriers, experimental sources vary quite a lot. This is due to
the fact that the measuring technique, as well as additional factors such as temperature,
play a role. Furthermore, if total diffusivities are measured, it is difficult to separate those
into energetic and kinetic contributions. Langer et al. [21] measured a barrier of 0.55 eV
(LiC4) by means of Lithium nuclear magnetic resonance (Li-NMR), Freilander et al. [22]
report 0.6 eV (LiCy) and 1.0 eV (LiC,,) using beta-NMR and Magerl et al. [23] find 1.0 eV
(LiCg) by means of the quasielectric neutron scattering (QENS) at T > 630 K.

On the theoretical (DFT) side of things, the revPBE-D3-BJ approach by Thinius et al. [14]
(which has proven very accurate for structural parameters and formation energies) predicts
the barriers of 0.42 eV (LiC,) and 0.47 eV (LiC;,). Toyoura et al. [24] reported 0.3 eV
(LiCg) and 0.49 eV (empty gallery) by means of DFT (LDA) and Persson et al. [25] predict
0.283 eV (LiCy) and 0.297 eV (LiC,,), using DFT (GGA) with the interlayer distances fixed
at experimental values. Even though there is some variation in the absolute numbers, both
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theoretical and experimental studies are in general agreement on the ordering of the barrier
heights: LiCy < LiC;, < empty gallery. This corresponds to an inverse dependency on the
interlayer distance of the respective gallery.

Using GPrep-DFTB, we predict barriers of 0.404 eV (LiC), 0.426 eV (LiC;,) and
0.504 eV (empty gallery). These results capture the same previously explained qualitative
trend as the references. This also holds true for other configurations that had not been
investigated before, such as AxApB-stacked and stage 3 structures. Quantitatively, our
results are in particularly good agreement with the revPBE-D3-BJ approach [14].

3.3. Formation Energetics

The intercalation energies of Li-ions entering the GIC at different states of charge are
a crucial measure for predicting the most stable configurations throughout the charging
process and the phase transitions between those. Therefore, as a third benchmark, we
calculated the formation energies of LiCy, LiC;, and LiC;g, and compared them with
various experimental and theoretical studies (Table 4).
We calculate the intercalation energies per lithium atom (or, equivalently, per formula
unit), as
AEint(LiCq,,) = E(LiCq,) — nE(Cy) — E(Li) (1)

where 7 is the stage number and E(-) is the DFTB total energy. These are directly com-
parable to the corresponding literature values obtained by DFT calculations. The latter
thus do not include any finite temperature effects. On the other hand, experimental values
are formation-free energies or enthalpies. Additionally, the calorimetric reference [20] is
taken at elevated temperature (455 K) and with liquid lithium as precursor, rather than
at room temperature with a solid lithium electrode. As a final note, the calculated values
correspond to infinite phases of perfect stage 1 stoichiometry, whereas the true compounds
at the corresponding stoichiometries are a mixture of domains of yet unknown structural
details. Consequently, the values given within the scope of this parametrization study
are not yet intended to be quantitatively comparable to the experiment, but one may still
identify qualitative trends, just like with regular DFT. The DFTB model opens up the way
to forthcoming more realistic, quantitative simulations.

Table 4. Formation energies in eV per formula unit, calculated with GPrep-DFTB and compared
to an overview of the experimental and theoretical results from other studies. Both DFTB and DFT
values are variations in the total energy AE;,;, while experimental values are variations in enthalpy
AHin; where available—otherwise they are variations in free energy AGip;).

%I;r;g- Experiment DFT
Ref: (a) (b (c) (d (e) 0] (€]
LiCqg —0.14 —0.156 * —0.114 —0.144 -0.17 —0.22 —0.07 —0.23
LiCy, —0.40 —0.228 * —0.352 —0.257 -0.27 —0.28 —0.12 —0.33
LiCyg —0.42 -0.273* —0.492 - - - - —0.29

Experimental references: (a), [19] (b) [6] OCV, vs. solid Li; (c) calorimetry, vs. liquid Li [20]; DFT references: (d)
revPBE-D3-B]J [14]; (¢) optB88-vdW [12]; (f) revPBE-vdW [12]; (§) GGA-PP [11]; * These values are intercalation
free energies AGin;. The value for LiCg is not directly given in the paper but can be consistently extracted using
the same formula the authors used for LiC,.

For the formation energies, the experimental studies [6,19,20] do not agree as closely,
as for the structural parameters, but they do at least provide the same ordering for LiC,
and LiC;, and LiC,g. Interestingly, the values extracted from open circuit voltage (OCV)
measurements only agree in the ordering if the energies are taken per formula unit. Nor-
malizing the energies per graphite unit, LiC;, would have a less negative formation energy
than LiC,. As the OCV curves in [6,19] agree with each other, we attribute the mismatch to
different methods for extracting the formation energies from the OCV curve. We also note
here that our structural models closely correspond to highly oriented pyrolytic graphite
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(HOPG), while all the referenced OCV curves were taken with different forms of graphitic
carbon. In order to make sure that the deviation was negligible, we measured the OCV
curve for HOPG. Due to the small insertion surface for Li-ions, the characteristic voltage
plateaus are not as visible. However, in the regions corresponding to the phase transitions
between LiC,g to LiC;, and LiC;, to LiC,, the measured HOPG curve matches within
0.01 V with the references. Our measured OCV curve is shown in the Supplementary
Information for both HOPG and the coin cell.

Similarly, as for the C—C interlayer distance, the different DFT functionals vary signifi-
cantly in their performance predicting the formation energetics of Lithium-GICs. Compared
with the experimental studies, revPBE-D3-BJ [14] proves to be best, just as it did previ-
ously for the C—C interlayer distance. According to [12], revPBE-vdW correctly predicts
the phase transitions between stage 1 and stage 2 qualitatively (even though it strongly
underestimates the formation energies), whereas optB88-vdW does not. For revPBE-D3-B]J,
we do not have this information.

Overall, the formation energy for LiC, tends to be consistent across experimental
measurements and most computed references. Our results with GPrep-DFTB are equally
accurate for LiC,, while for both LiC;, and LiC;g, we obtain more negative formation
energies than the majority of references (with the exclusion of [6]). However, this is not
necessarily a pitfall, considering that the finite temperature contributions are not included.
The effect of the latter is generally nontrivial; in particular, the entropy variation in Li-GICs
is negative for the largest part of the state of charge range. Given the overall uncertainty
in both experimental and computed references, we leave this question open for further
investigation and adjustments to the parametrization, if needed. We note in passing that
potential refinements to the GPrep-DFTB parametrization are possible with little effort,
by simply retraining the repulsion potential with additional training data and/or finely
tuned hyperparameters. As a perspective, we intend to use this parametrization to train
a cluster expansion similarly to [10,49], in order to perform free energy sampling and
calculate the OCV curve. If that agrees with the measurements, then the non-perfect
energetics of single ideal geometries is only a minor setback.

3.4. Long-Range Interactions

Having successfully benchmarked our GPrep-DFTB approach against a variety of
comparatively small-scale properties, we proceeded towards calculating some larger-scale
properties which are out of reach of DFT (at least at a reasonable computational cost).
First, we want to investigate the long-range in-plane interaction between two Li-ions
within Li-GIC. In order to do that, we constructed a supercell with 218 carbon atoms and
two layers to eliminate any periodic next-layer interactions and allow for the bulging of
the graphene sheets. We then exhaustively performed 47 full structure relaxations of all
symmetry-inequivalent local minima and maxima for two Li atoms within a single layer
in that supercell, as well as 41 five-image NEBs for the diffusion processes between each
adjacent pair of local minima. With our method, all of this is possible within days and on a
regular workstation. This leaves us with 170 data-points, which we use to fit a 2D potential
energy landscape for the whole supercell (Figure 3a) and also to plot the Li-Li interactions
as a function of the Li-Li distances (Figure 3b,c).

As our results clearly show, the in-plane Li-Li interactions are governed by Coulombic
repulsion. Even quantitatively, our predictions agree very well with the approach of
Pande et al. [13] (BEEF-vdW-DFT + Ising model). However, they were only able to provide
four data points which are local minima and therefore quite cheap to calculate, whereas
we can also predict transition states (which require NEB calculations and are much more
computationally expensive because of that). This proves that GPrep-DFTB is capable of
very accurately capturing the Li-GIC system’s electrostatic properties, and of doing so for
vastly more and larger supercells than DFT.
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Figure 3. (a) Calculated potential energy surface for a freely moving Li-ion with respect to a second
fixed ion in the corner of the unit cell (see main text for details of the structural model). Color gradient
in eV relative to the global minimum at (0/0). Circles are local minima, diamonds are local maxima,
stars are transition states (calculated with the cNEB method), and squares are additional images
from the NEBs—all of which have been used for the 2D fit; (b) Potential energy depending on the
distance between the two Li-ions (blue dots are the transition positions, red dots are the ground
states); (c) Potential energy depending on the reciprocal distance—clearly showing the Coulombic
nature of the interaction, which agrees with [13].

Based on this, it is then possible to extract the slope from Figure 3c, which, via the

relation: .
ecZ- 1
== = @
4me, R

gives us access to the relative dielectric constant ¢, of the system. We note, however, that
this is the effective dielectric response experienced by Li-ions within the Li-GIC and not
the macroscopic dielectric constant of the GIC including the contribution due to the Li
ion motion. By means of linear regression, we obtain a slope of 0.996 + 0.015 eVA. This
leads to &,/ Z?% = 14.46 £ 0.22. For an assumed partial charge Z of 0.8 to 0.9 for the Li-ions,
which is in line with the charge analysis performed by Rana et al. [50], we then predict a
relative dielectric constant of 9.1-11.9. Expanding on this in future work, we will be able
to, for the first time, determine the dielectric constant of Li-GIC as a function of the state
of charge, which is an important input parameter for kinetic Monte Carlo simulations of
charge carriers.

3.5. Domains vs. Dilute

While the general truth of the Daumas—Her6ld domain model [7] has been widely
accepted and supported by both theoretical [51,52] and experimental [53,54] studies, quali-
tative details such as domain sizes and shapes, dependencies on the charging speed and
other dynamic factors have not been understood to a sufficient degree. As pointed out
in [55], the formation of domains is at least partially responsible for the wide range of

Li-ion diffusivities reported from the experiment (107 — 10_14% [25]), and therefore of
crucial importance for understanding the overall behavior of Li-GICs, especially when
exposed to the rapidly growing charging speeds that are necessary today.

In order to provide a further demonstration of our method’s potential to bring forward
anew understanding of these phenomena in the future, we constructed four supercells with
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roughly 600 atoms each—two of them in a dilutely spaced configuration (with the Li-ions
spread evenly across the filled layers, right column in Figure 4) and two of them with a
configuration according to the Daumas—Her6ld domain model (Figure 4, left column)—and
performed full structure relaxations on each of them. Note that what we show here is one
possible realization of the dilute LiC,, and LiC,,, but there are necessarily many other
disordered realizations with very similar total energies and any experiment would likely
see a mix of these.

domains no domains

3.508 A o e e | e
(avg)
3372 A 3.488 A ' 3421 A

Figure 4. Top- and sideview of stage 1 and stage 2 domain-like and dilute Li-GIC configurations.
Structures are fully relaxed, providing both overall average interlayer distances and local interlayer
distances for filled and empty areas. For both stages, the domain-like structure has a smaller overall
interlayer distance.

Our results show that both in the stage 1 (upper row) and the stage 2 (bottom row)
compound, the domain—structure expanded to a significantly smaller overall interlayer
distance, meaning it is favored compared to the evenly spaced one. This agrees with the
Daumas-Heréld domain model [7]. Furthermore, we were also capable of extracting local
interlayer distances for different areas of the structure. As shown in Figure 4, the difference
in interlayer distance between the empty and filled domains is larger than 0.2 A, which
is much larger than any residual differences in the computed values above. According to
both DFT [56] and our own results (Table 3), this difference corresponds to a difference in
diffusion barriers of approximately 0.1 eV or 25%. Given this direct dependency, GPrep-
DFTB could, for example, be used to reliably predict local diffusivities in large structures
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without the need to perform costly NEB calculations. Additionally, we believe that the
capacity of GPrep-DFTB for fully relaxing large unit-cells with a multitude of Li-ion
distributions has great potential for building more diverse and well-rounded training-sets
for, e.g., lattice gas expansions or machine-learning models, than DFT could, also including
the ‘empty’ or “almost empty’ regions of the Daumas—Her6ld domain model, for which we
provided an extensive model in Figure 3. This makes GPrep-DFTB a crucial new bridge
between the atomistic scale and the macroscopic scale of Li-GIC modeling.

4. Conclusions

The structural, energetic and electronic properties of Li-GICs were theoretically inves-
tigated with our DFTB parametrization (based on GPR repulsion fitting) and benchmarked
against dispersion-corrected DFT calculations and experiments. The calculated lattice
parameters of graphite (¢ = 2.476 A, c = 6.746 A) agree better with experiments than
most DFT approaches. For stages 1 through 4, our method correctly predicts the non-
linear nature of the increase in the interlayer distance in LiC, upon intercalation, not only
qualitatively but quantitively as well. LiC, relaxes to an interlayer distance of 3.682 A.
The calculated formation energies of —0.14 eV (LiC,), —0.40 eV (LiC;,) and —0.42 eV
(LiCyg) per formula unit slightly overestimate the experimental results, but are within the
range of DFT predictions. We expect future calculations which include entropy effects to be
even more accurate. The calculated diffusion barriers (0.396 eV-0.504 eV, depending on
the configuration) show trends supported by accepted theory, such as the Daumas-Herdld
domain model, and agree with state-of-the-art DFT studies and experiments. In terms of
long-range Li-Li interactions, our model captures the Coulombic nature also discovered
by DFT, but is at the same time capable of accessing much larger supercells. Based on
these calculations, we predict a dielectric constant for LiC g in the range of 9.1-11.9 and
recognize the potential of GPrep-DFTB to, for the first time, calculate the dielectric constant
of the Li-GIC as a function of the SOC in the near future. Finally, the GPrep-DFTB relaxation
of large structures in both dilute and domain-like configurations predicts less expansion
of the interlayer distance for the domain structure—again agreeing with previous studies
and illustrating the potential of our method for further investigation into the complex and
large-scale physics taking place in Li-GICs and for being a new kind of bridge between the
atomistic scale and the macroscopic scale of future battery materials.
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