
materials

Article

Titania Nanotube Architectures Synthesized on 3D-Printed
Ti-6Al-4V Implant and Assessing Vancomycin Release Protocols

H-thaichnok Chunate 1, Jirapon Khamwannah 1, Abdul Azeez Abdu Aliyu 1,2, Saran Tantavisut 3,
Chedtha Puncreobutr 1,2 , Atchara Khamkongkaeo 1 , Chiraporn Tongyam 1, Krittima Tumkhanon 1,
Thanawat Phetrattanarangsi 1,4, Theerapat Chanamuangkon 5, Torlarp Sitthiwanit 1 , Dechawut Decha-umphai 1,4,
Pharanroj Pongjirawish 4 and Boonrat Lohwongwatana 1,2,*

����������
�������

Citation: Chunate, H.-t.;

Khamwannah, J.; Aliyu, A.A.A.;

Tantavisut, S.; Puncreobutr, C.;

Khamkongkaeo, A.; Tongyam, C.;

Tumkhanon, K.; Phetrattanarangsi, T.;

Chanamuangkon, T.; et al. Titania

Nanotube Architectures Synthesized

on 3D-Printed Ti-6Al-4V Implant and

Assessing Vancomycin Release

Protocols. Materials 2021, 14, 6576.

https://doi.org/10.3390/ma14216576

Academic Editor: Ludwig Cardon

Received: 10 September 2021

Accepted: 26 October 2021

Published: 1 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 M3D Laboratory, Advanced Materials Analysis Research Unit, Department of Metallurgical Engineering,
Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand;
hthaichnok721@gmail.com (H.-t.C.); Jkhamwan@gmail.com (J.K.); garoabdul@gmail.com (A.A.A.A.);
chedtha@gmail.com (C.P.); atchara.k@gmail.com (A.K.); ma_uksa@hotmail.com (C.T.);
t.krittima@gmail.com (K.T.); thanawat@meticuly.com (T.P.); torlarpsitthiwanit@gmail.com (T.S.);
dechawut@meticuly.com (D.D.-u.)

2 Biomedical Engineering Research Center, Chulalongkorn University, Bangkok 10330, Thailand
3 Hip Fracture Research Unit, Department of Orthopaedic, Faculty of Medicine, Chulalongkorn University,

Bangkok 10330, Thailand; super_petch@yahoo.com
4 Biomechanics Research Center, Meticuly Co. Ltd., Pathumwan, Wang Mai District, Bangkok 10330, Thailand;

pharanroj@meticuly.com
5 Biomaterial Testing Center, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;

teera.pat.n61@gmail.com
* Correspondence: boonrat@gmail.com

Abstract: The aim of this study is to synthesize Titania nanotubes (TNTs) on the 3D-printed Ti-6Al-4V
surface and investigate the loading of antibacterial vancomycin drug dose of 200 ppm for local
drug treatment application for 24 h. The antibacterial drug release from synthesized nanotubes
evaluated via the chemical surface measurement and the linear fitting of Korsmeyer–Peppas model
was also assessed. The TNTs were synthesized on the Ti-6Al-4V surface through the anodization
process at different anodization time. The TNTs morphology was characterized using field emission
scanning electron microscope (FESEM). The wettability and the chemical composition of the Ti-6Al-
4V surface and the TNTs were assessed using the contact angle meter, Fourier transform infrared
spectrophotometer (FTIR) and the X-ray photoelectron spectroscopy (XPS). The vancomycin of
200 ppm release behavior under controlled atmosphere was measured by the high-performance
liquid chromatography (HPLC) and hence, the position for retention time at 2.5 min was ascertained.
The FESEM analysis confirmed the formation of nanostructured TNTs with vertically oriented, closely
packed, smooth and unperforated walls. The maximum cumulative vancomycin release of 34.7%
(69.5 ppm) was recorded at 24 h. The wetting angle of both Ti-6Al-4V implant and the TNTs were
found below 90 degrees. This confirmed their excellent wettability.

Keywords: 3D printing; Ti-6Al-4V; titania nanotubes; vancomycin; electrostatic interaction

1. Introduction

The cases related to bone fracture operations are progressively rising annually. This is
due to an annual increase in aging population and traffic accidents. Thus, there is increasing
demand for bone fixation implants such as plate or intramedullary nail. The most common
materials used to fabricate orthopaedic implants include stainless steel, cobalt-chromium,
titanium and its alloys [1–3].

Peri-implant infection is one of the most serious complication after surgery. Aside
strict sterilization procedures, the rate of bacterial infection is reported at 1 to 4% in previ-
ous literature [4]. The economics of global burden for the treatment of orthopedic infection
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and the additional payment from implant surgeries consumed more than $1.6 billion in
2020 [5]. Implant infection may results to multiple re-operations, revision surgeries, limb
loss or death. The current standard treatment used in most hospitals is time consuming,
unpredictable and not enough for reduction of an implant infection. The totally controlled
infection rate for intravenous (IV) and oral antibiotics after internal fixation surgery was
reported at 83.6% [6]. The systemic drug delivery (SDD) deliver less than 1% of the admin-
istered drug to the infected site [7]. To increase the antibiotics concentration at infection
site, the local antibiotics delivery system such as antibiotic loading bone cement is applied.
The major concerns with the antibacterial drug loaded Polymethyl methacrylate (PMMA)
cement beads are releasing performance lower than minimum inhibitory concentration
(MIC) treatment and cytotoxicity [8,9].

Another route for drug delivery and considered most promising is the localized drug
delivery (LDD) system. This system deliver antibiotic to the specific area. In LDD, drugs
like vancomycin, gentamicin, tobramycin and cephalosporins are incorporated in the im-
plant and administered at a local infection site in a controlled manner, thereby decreasing
the infection rate of the repaired fracture. Antibacterial drug loading into the porous
structure of titania nanotubes (TNTs) allows sufficient drug loading and subsequent release
on the surgical local site. This approach remained a key strategy to minimize or mitigate
the implant infection problem [10,11]. Recently, Kunrath et al. [12] and Kunrath et al. [13]
presented the state-of-the-art reviews and critically analyzed the use of TiO2 nanotube
coated on the various biomedical implant surfaces. It is confirmed that TNTS are biocom-
patible, an excellent site for tissue ingrowth into the porous structure and allows strong
cells adhesion and proliferation. TNTs also serve as a promising route for incorporating
specific drug into the nanotubes and regulate the release of such drug to the infected site.
In an attempt to control the release of vancomycin loaded TNTs into the diseased tissues,
electrophoretic technique was proposed [14]. This technique was proven viable for high
capacity vancomycin loading and releasing control. Despite that, some sporadic reports on
anodization of Ti-6Al-4V for LDD and release control could be found; there still need for
more studies that will focus on various techniques for synthesizing TNTs, especially on the
3D-printed implants and analyzing the drug loading capacity of such TNTs. Hence, the
motivation for this study.

In this study, the anodization technique was used to synthesize titania nanotubes
arrays on the 3D-printed Ti-6Al-4V surface. The aim is to load the antibacterial vancomycin
into the synthesized titania nanotubes and analyze its release performance for a period of
24 h. This is expected to serve as a local drug treatment to the infection at the surgical site.
Various characterization tools such as field emission scanning electron microscopy (FESEM),
contact angle meter, Fourier transform infrared (FTIR), and atomic force microscope (AFM)
were employed to analyze the morphology, wettability behavior functional group and the
topography of the synthesized TNTs surface, respectively.

2. Materials and Methods
2.1. Materials and Anodization

SolidWorks 2020 software was employed to design and model the Ti-6Al-4V plate im-
plant (25 mm × 25 mm × 2 mm). The implant model is converted to STL file and fabricated
using D50 micro size Ti-6Al-4V powder by SLM (Model: Mlab cusing 100R, Concept Laser
GmbH, Lichtenfels, Germany) technique, Meticuly Company, Bangkok, Thailand. The
Ti-6Al-4V plate implant is used as the anode and a commercial platinum plate (Umicore,
Pforzheim, Germany) with size 12 mm x 30 mm was employed as the cathode, during
the anodization process. Under controlled atmosphere in an electric furnace (Nabertherm
N7/H, Lilienthal, Germany), the Ti-6Al-4V plate specimens were heat treated at 950 ◦C
for 2 h. Prior to anodization, the surface asperity was reduced by conventional grinding
with 80 to 2000 grit paper and sonication within the acid solution, deionized water, and
ethanol. To achieve nanostructured surface and orderly arranged TNTs arrays with a very
high aspect ratio, fluoride containing polyhydric alcohols, specifically Ethylene glycol was
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employed as the electrolyte. Another reason for selecting ethylene glycol-based electrolyte,
its characteristics in producing a biocompatible and bioactive surface [15]. The ground
specimens were immersed into the prepared ethylene glycol-based electrolyte containing a
mixture solution of Ethylene glycol 98 wt.% (Qrec, Auckland, New Zealand), Ammonium
fluoride (0.5 wt.%) (Qrec, Auckland, New Zealand) and 1.5 wt.% deionized water for the
duration of 1, 2, 3 and 4 h. The electrolyte solution was continuously stirred with a mag-
netic bar at 100 rpm. Figure 1 shows the schematic illustration of the overall methodology
involved in this study. Figure 2 presents the three-dimensional surface topography of the
3D-printed Ti-6Al-4V specimens before anodization process. The printed Ti-6Al-4V surface
has heterogeneous interface of the native oxide layer due to oxidation reaction between of
alloy samples and the atmosphere.
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Figure 2. Atomic force micrograph showing the 3D surface topography of the 3D-printed Ti-6Al-4V
specimen prior to the TNTs fabrication through the anodization process. Various measured roughness
values were presented.

2.2. Titania Nanotubes Characterization

The morphology and nanostructure of the anodized titania nanotube film was inves-
tigated using field emission scanning electron microscope (FESEM, FEI Quanta FEG 250,
Thermo Fisher Scientific, Hillsboro, OR, USA) under 15 kV. The wettability characteristic



Materials 2021, 14, 6576 4 of 14

and the interactions between the ions of the titania film were evaluated using contact angle
meter and Fourier transform infrared (FTIR, Thermo Fisher Scientific, Hillsboro, OR, USA),
respectively. The Atomic Force Microscope (AFM, Veeco, Dimension 3100, Plainview, NY,
USA) was used to observe the nanostructure and surface roughness of the 3D-printed
Ti-6Al-4V plate. The elements presence on the coated surface was investigated using X-ray
photoelectron spectroscopy (XPS, Bara Scientific Co., Ltd., series Axis Ultra, Bangkok,
Thailand). SPSS 22.0 software (IBM, Armonk, NY, USA) was used to analyzed the pores
diameter and the length of the TNTs.

2.3. Drug Loading

As a drug model, vancomycin was selected, because it is the most powerful in treating
serious bacterial infections. Prior to loading of the vancomycin, the deposited nanotubes
surface was cleaned with 0.1 m HCl, and ethanol (Qrec, Auckland, New Zealand) to reduce
the scale oxide. The vancomycin solution was prepared using 200 ppm concentration as
recommended by Fleischman et al. [16]. The 0.5 g of vancomycin powder (Vancin-S, Siam
Pharmaceutical, Bangkok, Thailand) was dissolved in 10 mL of sterile water (SWI) for
the injection (PIC, Thailand). It was then diluted until the drug concentration of 200 ppm
solution is achieved. Briefly, 2000 mg of vancomycin was dissolved in 10 mL phosphate
buffer solution (PBS) resulting in 200 mg/mL. Then, the drug solution of 10 mL was directly
pipetted onto the nanotubes surface for 20 min. Delicate task wipers (Kimberly-Clark,
Irving, TX, USA) were used to reduce the extra drug on the titania nanotubes surface.
After the vancomycin loading, the specimens were sealed and covered with aluminum foil
(Diamond, IL, USA) for light protection.

2.4. Drug Releasing Analysis

In this stage, the vancomycin loaded specimens were immersed in 10 mL of phosphate
buffer solution (PBS) under controlled rotational speed and incubation temperature of
50 rpm and 37 ◦C, respectively. The drug solution was filtrated with 0.45 µm nylon filter
(Shimadzu, Kyoto, Japan) before injection to chromatography analysis. To determine
the release behavior, three samples of incubated solution containing 25 µL was prepared
and injected at once, in a specific time. The initial vancomycin release was taken at 1 h.
Subsequent vancomycin release was taken at various time intervals. The percentage
vancomycin release was determined by taking the ratio of the amount of the vancomycin
released into PBS to that of the total vancomycin loaded in the TNTs and multiplied by 100.
The real concentration of vancomycin was calculated from the concentration of vancomycin
released in ppm multiplied by dilution factor (1.4). The vancomycin drug release versus
the calibration curve for vancomycin solution of 0.5, 1, 2.5, 5, 10, 25, 50, and 100 ppm
was plotted.

The High-Performance Liquid Chromatography (HPLC) (LC-20 Series, Shimadzu,
Japan) was used for the qualitative analysis of the vancomycin released in the water-based
salt solution. The HPLC machine comprises of a pump (LC-20AD), auto injector (SIL-20AC
HT) and UV detector (SPD-M20A) at 240 nm. The mobile phase was consists of acetonitrile
(HPLC grade, Sigma-Aldrich, USA, ultra-pure water (20:80, v/v), which adjusted the pH
value by 0.1% v/v formic acid (Qrec, Auckland, New Zealand) with a flow rate of 1 mL/min.
The column condition was C18 column (150 × 4.6 mm, 5 µm, Shim pack GIST, Shimadzu,
Kyoto, Japan) and the oven temperature of 25 ◦C.

3. Results
3.1. Morphology of TiO2 Nanotube Layer

Prior to surface morphology examination, the anodized titania implants were etched
with 0.1 M HCl to reduce the scale oxide, which covers the surface of the deposited titania
nanotubes array. Figure 3a–h shows the FESEM micrographs of the TNTs anodized at 1, 2,
3, and 4 h. The TNTs were vertically oriented on the Ti-6Al-4V substrate material, closely
packed with smooth and unperforated walls in all the anodized titania implants. Numerous
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nanostructures could be noticed in all the anodized titania implants. The nanotubes pore
diameter and the length presented in Table 1 was measured using Image J software version
Java 8 (National Institutes of Health, Bethesda, MD, USA). The pores diameter increased
from 53 nm to 108 nm when the anodization time increased to 2 h while the nanotube
length decreased from 1976 nm to 1378 nm. On the other hand, the diameter decreased
from 108 nm to 93 nm, and the nanotubes length increased 1934 nm to 2629 nm when the
time was further increased to 3 h. The lowest pore diameter was observed at anodization
time of 1 h (53 nm) while the highest at 4 h (114 nm). Thus, some fluctuations could be
observed in the nanotubes diameter and the length, which might relate to the uneven
titania surface formed due to the native oxide layer in the Ti-6Al-4V substrate. The result
obtained is in agreement with that of Hamlekhan et al. [17], which fabricated an anti-aging
titania nanotubes on the titanium surface.

Materials 2021, 14, 6576 5 of 14 
 

 

3. Results 
3.1. Morphology of TiO2 Nanotube Layer 

Prior to surface morphology examination, the anodized titania implants were etched 
with 0.1 M HCl to reduce the scale oxide, which covers the surface of the deposited titania 
nanotubes array. Figure 3a–h shows the FESEM micrographs of the TNTs anodized at 1, 
2, 3, and 4 h. The TNTs were vertically oriented on the Ti-6Al-4V substrate material, 
closely packed with smooth and unperforated walls in all the anodized titania implants. 
Numerous nanostructures could be noticed in all the anodized titania implants. The nano-
tubes pore diameter and the length presented in Table 1 was measured using Image J 
software version Java 8 (National Institutes of Health, Bethesda, MD, USA). The pores 
diameter increased from 53 nm to 108 nm when the anodization time increased to 2 h 
while the nanotube length decreased from 1976 nm to 1378 nm. On the other hand, the 
diameter decreased from 108 nm to 93 nm, and the nanotubes length increased 1934 nm 
to 2629 nm when the time was further increased to 3 h. The lowest pore diameter was 
observed at anodization time of 1 h (53 nm) while the highest at 4 h (114 nm). Thus, some 
fluctuations could be observed in the nanotubes diameter and the length, which might 
relate to the uneven titania surface formed due to the native oxide layer in the Ti-6Al-4V 
substrate. The result obtained is in agreement with that of Hamlekhan et al. [17], which 
fabricated an anti-aging titania nanotubes on the titanium surface. 

 
Figure 3. The FESEM micrographs showing the top and side morphological views of the titanium 
oxide nanotubes fabricated at 1 h (a,e), 2 h (b,f), 3 h (c,g) and 4 h (d,h). The morphology images 
depict the TNTs orientation and the size of the pores. The pores diameter of the nanotube increased 
with increase in the anodization time while the length decreased. 

Table 1. Shows the measured inner pore diameters and length of the TNTs at 1, 2, 3 and 4 h ano-
dization time. The measurements were obtained using Image J analysis and the FE-SEM micro-
graphs. (Statical analysis with IBM Spss 22, One-way ANOVA). 

Condition 
Anodization Time (h) Nanotube Size (nm) 

 Pore Diameter Length 
TNTs_1h 1 53 ± 15 * 1976 ± 56 
TNTs_2h 2 108 ± 19 * 1938 ± 75 
TNTs_3h 3 93 ± 20 * 2629 ± 145 * 
TNTs_4h 4 114 ± 16 * 2492 ± 77 * 

The nanotube size after anodization, * as a p value < 0.05 was considered statically significant. 

To assess the effect of each factor (anodization time) on the variation in the pores 
diameter and the length of the TNTs, statistical analysis was conducted using IBM SPSS 
22.0 software. Tables 1–3 shows the One-way ANOVA results for the pores diameter and 
the length of the TNTs, respectively. It is confirmed that the independent effect of all the 
anodization times have an F-value much larger than 1 and a p-value considerably lower 

Figure 3. The FESEM micrographs showing the top and side morphological views of the titanium
oxide nanotubes fabricated at 1 h (a,e), 2 h (b,f), 3 h (c,g) and 4 h (d,h). The morphology images
depict the TNTs orientation and the size of the pores. The pores diameter of the nanotube increased
with increase in the anodization time while the length decreased.

Table 1. Shows the measured inner pore diameters and length of the TNTs at 1, 2, 3 and 4 h anodiza-
tion time. The measurements were obtained using Image J analysis and the FE-SEM micrographs.
(Statical analysis with IBM Spss 22, One-way ANOVA).

Condition
Anodization Time (h) Nanotube Size (nm)

Pore Diameter Length

TNTs_1h 1 53 ± 15 * 1976 ± 56
TNTs_2h 2 108 ± 19 * 1938 ± 75
TNTs_3h 3 93 ± 20 * 2629 ± 145 *
TNTs_4h 4 114 ± 16 * 2492 ± 77 *

The nanotube size after anodization, * as a p value < 0.05 was considered statically significant.

To assess the effect of each factor (anodization time) on the variation in the pores
diameter and the length of the TNTs, statistical analysis was conducted using IBM SPSS
22.0 software. Tables 1–3 shows the One-way ANOVA results for the pores diameter and
the length of the TNTs, respectively. It is confirmed that the independent effect of all the
anodization times have an F-value much larger than 1 and a p-value considerably lower
than 0.05. This indicated that the effect of each anodization time on the pores diameter and
the TNTs length is statistically significant.
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Table 2. One-way ANOVA results of nanoporosities for the TNTs anodized at 1, 2, 3 and 4 h.

Sum of Squares df Mean Square F p

Between Groups 453,951.984 3 151,317.328 488.539 0.000
Within Groups 246,548.565 796 309.734 - -

Total 700,500.549 799 - - -

Table 3. One-way ANOVA results of TNT length anodized at 1, 2, 3 and 4 h.

Sum of Squares df Mean Square F p

Between Groups 3,751,794.162 3 1,250,598.054 140.606 0.000
Within Groups 320,196.327 36 8894.342 - -

Total 4,071,990.489 39 - - -

3.2. Hydrophilicity of TNTs Surface

Contact angle measurement was employed to study the wettability of the TNTs
nanoporous surface. The contact angle of the 3D-printed Ti-6Al-4V and the TNTs synthe-
sized at different anodization time is depicted in Figure 4. The wetting angle of both the
3D-printed Ti-6Al-4V and the TNTs was found below 90 degrees (θ < 90◦). The 3D-printed
Ti-6Al-4V, which is the reference surface have the largest contact water angle (68◦) and
the anodization area as shown in Figure 4a. All the TNTs have the lowest contact angle of
0◦ which confirmed their superhydrophilic characteristics, this might be attributed to the
highly rough and nanoporous surface presence in the TNTs surface. Thus, the synthesized
TNTs are expected to have excellent tissues adhesion and cells proliferation [18].
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high hydrophilicity of the fabricated TNTs surface.

3.3. Functional Group of Nanotubes Film

The ATR-FTIR spectra of the 3D-printed Ti-6Al-4V and TNTs at a different anodization
time in a scanning range of 4000–600 cm−1 is depicted in Figure 5. Various functional
groups indicating the chemical properties of each specimen could be observed. The
broadband position at 3242 cm−1 is the stretching vibration of the hydroxyl group, which
is incorporated with the titania nanotubes interface. This is due to polyhydric alcohols
(ethylene glycol) used during the anodization, which contain OH functional group [19]. The
slight doublet bands at 2935 and 2870 cm−1 are CH2 stretching vibration. The weaken band
located at 1645 cm−1 presented the bending vibration mode of hydroxyl Ti–OH [15,20]. The
band at 1428 cm−1 corresponding to CH2 stretching vibration and strongly peak of TNTs_4h.
The closely double bands position at 1083 and 1038 cm−1 are C–O stretching vibration.
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The widely broad band area at 860 cm−1 is Ti–O and Ti–O–Ti stretching vibration [21–23].
The peak of the hydrophilic group with hydrogen bonding increases the percentage of the
transmittance when high duration time is applied.
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TNTs_3h and TNTs_4h at a different anodization time and scanning range of 4000–600 cm−1, contain-
ing various functional groups, which signifies the chemical properties of each specimen.

3.4. Oxide Species Analysis

To analyze the surface chemistry of the 3D-printed Ti-6Al-4V and the TNTs, XPS
spectra was employed as presented in Figure 6. The C1s peak, which has three components
including carbon bonded to carbon and oxygen located at 284.6 eV (C–C), 286.0 eV (C–O)
and 287.8 eV (C=O) were noticed. The presence of carbon on the TNTs surface may
attributed to the carbide cutting tool used for cutting the specimens. The Ti2p peak of the
anodized TNTs_1h film shown in Figure 6b consists duplet of Ti2p3/2 and Ti2p1/2 peaks
at 458.8, 460.0, 464.7, 465.9 eV respectively. The binding energies of 458.8 and 464.7 eV
reported as a Ti4+ species of oxidation state [24,25], while the position of 460.0 and 465.9 eV
represents Ti3+ species of two oxides (TiO2 and Ti2O3) [26]. The 3D-printed Ti-6Al-4V
surface shows the binding energies of 459.9 and 465.5 eV, which illustrated chemical species
as Ti3+ of different oxide component TiO2 and Ti2O3. In Figure 6c, the O1s regions of the
central peak at 531.3 and 531.4 eV of the nanoporous TNTs_1h and 3D-printed Ti-6A-4V
surface respectively, indicated the formation of the metal oxide (TiO2, Al2O3) and organic
compound (C=O). This resulted in the growth of titania nanotubes to Ti–O bonds and
absorption of a hydroxyl group (–OH) from polarity solvent, aqueous molecules and the
atmosphere [25]. Moreover, the Al2O3 arises from the oxidation reaction of Al and O
during the electrochemical process [27]. On the modified and unmodified surfaces, the
organic carbon compound (C=O) covered the oxide surface layer which is located at 533.4
and 532.9 eV. For a vanadium oxidation state in the high resolution O1s spectrum, there is
no chemical species observed. This may be due to very low signal in the combined peak
of Ti and Al elements. Hence, the vanadium oxide in the narrow scan of V2p should be
analyzed in the later stage. The deconvolution of the high Al2p spectrum in Figure 6d
displayed the split two bands of Al2p at 75.5 and 75.3 eV for TNTs and the 3D-printed
Ti-6Al-4V surface, represented by Al2p3/2 of Al2O3. Additionally, the bands of Al2p at 76.6
and 76.1 eV contained AlF3 and Al2p of AlOx/Al (Ceramic/Metal) based on NIST X-ray
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photoelectron database with the binding energies tolerance of ± 0.2 [28]. Figure 6e shows
the elemental analysis of V2p which involved V2p1/2 and V2p3/2. The high resolution of
V2p of TNTs_1h represented a double phase of the vanadium oxide with first oxide species
located at 515.7 and 522.2 eV, consisting of V2O4. The second chemical component of oxide
film at 516.8 and 523.7 eV contained V2O5.

Materials 2021, 14, 6576 8 of 14 
 

 

displayed the split two bands of Al2p at 75.5 and 75.3 eV for TNTs and the 3D-printed Ti-
6Al-4V surface, represented by Al2p3/2 of Al2O3. Additionally, the bands of Al2p at 76.6 
and 76.1 eV contained AlF3 and Al2p of AlOx/Al (Ceramic/Metal) based on NIST X-ray 
photoelectron database with the binding energies tolerance of ± 0.2 [28]. Figure 6e shows 
the elemental analysis of V2p which involved V2p1/2 and V2p3/2. The high resolution of 
V2p of TNTs_1h represented a double phase of the vanadium oxide with first oxide spe-
cies located at 515.7 and 522.2 eV, consisting of V2O4. The second chemical component of 
oxide film at 516.8 and 523.7 eV contained V2O5. 

 
Figure 6. The XPS spectrums presenting the chemical composition of the oxide species of pre-post anodization process on 
the printed Ti-6Al-4V surface and the nanotubes of (a) C1s, (b) Ti2p, (c) O1s, (d) Al2p and (e) V2p, and the survey scan 
spectra for V2p. 

  

Figure 6. The XPS spectrums presenting the chemical composition of the oxide species of pre-post anodization process on
the printed Ti-6Al-4V surface and the nanotubes of (a) C1s, (b) Ti2p, (c) O1s, (d) Al2p and (e) V2p, and the survey scan
spectra for V2p.

3.5. Antibacterial Drug Release Behavior

Under environmental control, the antibacterial vancomycin drug was released into the
titania nanotubes surface. The amount of the vancomycin solution, which is light-sensitive
was measured using chromatography technique by the HPLC machine system. The mobile
phase shows the retention time of the vancomycin as 2.5 min. The quantitative analysis of
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the antibacterial drug released from the titania nanotubes surface to the stimulated media
containing the PBS solution was calculated as the percentage cumulative of the vancomycin
release for 24 h. The calculated drug release profile is elaborated in Figure 7a. The drug
releasing behavior involved two phases; burst and constant releasing. In the first stage, the
drug is released from the nanopores of the TNTs gradually until the highest vancomycin
concentration is achieved at 24 h. The initial concentration of the vancomycin released are
2.6, 3.4, 4.1 and 6.1 ppm for the TNTs_1h, TNTs_2h, TNTs_3h and TNTs_4h respectively.
In all the TNTs, the vancomycin increases with increase in the release time. Out of the
total drug loaded, the cumulative vancomycin release at 24 h is 19.8% (39.6 ppm), 22.9%
(45.8 ppm), 23.9% (47.8 ppm), and 34.7% (69.5 ppm) of the TNTs_1h, TNTs_2h, TNTs_3h
and TNTs_4h respectively. This confirmed the highest drug release by TNTs_4h and the
capability of the synthesized nanotubes on the Ti-6Al-4V surface to enhanced the release
of vancomycin drug in the injured area. Figure 7b shows the real concentration while the
antibacterial drug releasing is observed. The decreasingly behavior of the vancomycin
concentration was observed until 4 h, then it continues constantly up to 24 h.
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4. Discussion

Several anodization process parameters such as chemical composition of the elec-
trolyte, voltage, atmospheric temperature, crystal structure, and chemical component of
Ti-6Al-4V affect the physical properties and morphology of the titania nanotube surface
layer. In this study, nanotubular titania oxide films were fabricated with varying anodiza-
tion duration. The numerical data (Table 1) obtained from the nanostructural observation
using FESEM micrographs depicts that, increasing anodization time to 2 h, resulted in
bigger inner pore diameter while the length of the synthesized titania nanotubes decreases.
However, the diameter of the nanotubes decreased when the time increased to 3 h, while
the nanotubes length increased. At anodization time of 4 h, the nanotubes diameter further
increased with slight decrease in the length. Thus, compared to TNTs anodized at 1, 2 and
3 h, those anodized at 4 h have more potential of higher loading capacity of the antibacterial
drug for the treatment of the infection site [29].

The 3D-printed Ti-6Al-4V contained a native oxide layer which is formed by α and β

phases [30]. These phases in the 3D-printed Ti-6Al-4V substrate affect the surface topogra-
phy of this material (Figure 2). During anodization process, the β phase is easily etched by
the electrolyte charges than the local oxide of α phase. Therefore, the titania nanotubes are
distinctly separated by these two-phase sites. The highly ordered nanoporous architecture
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is originated from the α phase while the disordered nanostructure was related to the β

phase. Similar finding was also reported by Wang et al. [31,32].
The titania nanotubes synthesized on the Ti-6Al-4V surface differs in inner pore diam-

eter and the length due to oxidation and dissolution mechanism of metal oxide on the alloy
interface during the anodization process [33]. When the voltage is applied for the oxide
layer synthesis, its surface interact with the oxygen ions (O2−) in the electrolyte [33]. The β

phase show higher activities than the α phase at the voltage of 70–103 V for the alloy surface
dissolution with an oxygen atom [34]. Numerous nanotube structures were observed on
the substrate surface after anodization was carried out at different duration (Figure 3 and
Table 1). Varying the anodization time between 2–4 h resulted in the formation of hexagonal
nanopores structure and vertically oriented titania nanotubes. The anodization time affect
the pores shape and size of the synthesized TNTs. The pores diameter are smaller, highly
packed and more densely packed TNTs were observed when anodized at 1 h (Figure 3a).
The hexagonal packing of the TNTs appeared more clearly with larger pores diameter
when the time increased to 2 h (Figure 3b). The pores shape and size appeared much more
clear when anodized at 3 and 4 h (Figure 3c,d, repectively).

Additionally, by maintaining the electrochemical parameters at 60 V while varying the
anodization time, the growth of metallic nanotubes encourages the F- ions formation from
the aqueous-based electrolyte and dissolved TiO2 compact layer between anode and the
solution interface [35]. In the chemical dissolution stage, the formation of titania nanotubes
resulted in the fluoride ion in the form of soluble hexafluoro titanium complex [TiF6]2−.
This [TiF6]2− is an important etchant, which normally dissolved- in the electrolyte and
hence, not detected during the XPS analysis [36].

The results in Figure 4 showed a good wettability of the TNTs synthesized on the
Ti-6Al-4V implant surface. This is due to the nanoporous nature of the titania film whereby
the water infuses into the porous structure simply [37]. This decreased the contact angle of
the 3D-printed Ti-6Al-4V from 68◦ ± 1◦ to 0◦. The hydroxyl and the hydrophilic groups
formed on the anodized specimen surface is attributed to the amorphous nature of titania
nanotubes as shown in Figure 5. Surface treatment (annealing) after anodization might
reduce the amorphous structures, including high density of the hydrophilic groups and
the polarity bonding of O–Ti–O [31,33]. The pore structure of TiO2 nanotubes and the
functional group on the nano surface making the anodized film layer more wettable
corresponding to the Wenzel’s model. Moreover, the higher pore size diameter causes a
more capillary force, surface energy, surface area and site for aqueous infiltration [38–41].

Numerous oxide species such as Al2p and V2p based were observed on the anodized
3D-printed Ti-6Al-4V surface (Figure 6). This is attributed to chemical dissolution between
electrolyte and the 3D-printed Ti-6Al-4V interface. Thus, Ti4+ and F- are transferred
to the specimen surface thereby etching the oxide surface during the titania nanotubes
formation [31–33,42]. Other compounds resulted from the anodization of the 3D-printed
Ti-6Al-4V includes AlF3, V2O4 and V2O5. These compounds occurred under controlled
electrolyte and voltage potential.

The chemical properties of the nanostructured interface contained negatively charged
ions which are suitable for positively charged vancomycin absorption via electrostatic inter-
actions [29,43]. Varying the anodization time affects the drug release behavior (Figure 7a)
higher than the vancomycin MICs for 2 ppm (2 µg/ml) [44,45]. This is because the water-
soluble drug that was loaded in the TNTs will interact with the functionalize interface
(Figure 8). The longer nanotube has high surface area for this interaction; therefore, the
drug moving out from nanostructure slower than shorter nanotube.
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Figure 8. The model of vancomycin release is proposed. The hydroxyl group (OH) and other
functional hydrophilic group from the ATR-FTIR characterization donated by negatively charge ions
is attributed to the nanotube surface after anodization.

The drug releasing mechanism was evaluated by using Korsmeyer-Peppas model [46]
and linear fitting for finding Km (Kinetic constant) and n (Release exponent) values.
Figure 9 presented Km and n value fitted in the following equations:

F = (Mt/M) = Km·tn (1)

Log (Mt/M) = Log Km·tn (2)

where F is the fraction of drug released at a time, Mt is the amount of drug release, M is
the total amount of drug in dosage form, Km is kinetic constant, n is diffusion or release
exponent, and t is the time for drug releasing (min). The n value involved the morphology
of the drug reservoir and can interpret the drug release mechanism according to the various
diffusion types. For instance, when n = 0.5 the release is Fickian diffusion, while 0.5 < n < 1
is the anomalous diffusion (non-fickian). In some cases, if n = 1 and n > 1, the diffusion
mechanism is case-II transport and super case-II transport, respectively.
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Investigation of Km and n values was appraised by the linear logarithm from
Korsmeyer-Peppas equation. Figure 9 revealed the vancomycin release profile, which
is divided into two stages for all the anodized specimens and presented Km and n values
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that indicated the mechanism of the antibacterial vancomycin transport as the anomalous
diffusion or Non-Fickian diffusion in the burst stage in which the n values are in the range
of 0.54–0.56. The second stage shows the n values in the range of 0.05–0.12 suggesting
Quasi-Fickian diffusion behavior (n < 0.5). The dipole-dipole interaction of the treatment
molecules (positively charged) and nanoporous interface (negatively charged) (Figure 9)
resulted in the physisorption or electrostatic force that have an influence on the characteris-
tics of the vancomycin diffusion [47]. When the antibacterial drug moves from the deeper
nanoporous structure with a weakened force that made drug transfer under the controlled
gradient of the drug concentration, it is said to follow Fick’s law [48].

5. Conclusions

The titania nanotubes as a reservoir for the local drug delivery was successfully
synthesized on the 3D-printed Ti-6Al-4V surface. The anodization time is found to have
an influence on the TNTs morphology, length, and pore diameter. The FE-SEM analysis
confirmed the formation of nanostructured TNTs with vertically oriented, closely packed,
smooth and non-perforated walls. The synthesized TNTs enhanced the vancomycin release
with highest cumulative release of 34.7% (69.5 ppm), higher than that of MICs at 24 h. The
fabricated Ti-6Al-4V implant and the TNTs were found to have excellent wettability. The
rough, nanostructured and nanoporous nature of the TiO2 formed on the Ti-6Al-4V surface
is expected to facilitate the biocompatibility and osteointegration of the fabricated implant.
Drug-loaded TNTs are expected to serve as an alternative to the current systemic drug
delivery approach and the antibiotics used in treating infections.

Author Contributions: Conceptualization, H.-t.C. and B.L.; methodology, H.-t.C., J.K., S.T., T.P., T.C.,
T.S., D.D.-u. and P.P.; Investigation, H.-t.C., A.A.A.A., C.P., A.K., C.T. and B.L.; resources, B.L., J.K.,
S.T. and T.P.; writing—original draft preparation, H.-t.C.; writing—review & editing, J.K.; A.A.A.A.,
S.T., C.P., A.K. and B.L.; supervision, A.A.A.A., A.K., C.T. and B.L.; project administration, K.T.
and B.L.; funding acquisition, B.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Thailand Research Fund, grant number MRG5180201 and
Second Century Fund Project (C2F) by Chulalongkorn University, Thailand.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank the researchers of M3D laboratory, Faculty of
Engineering, Chulalongkorn University and Biomaterial Testing Center and Oral Tissues, Cells and
Molecular Biology Analysis and Research Center from the Faculty of Dentistry, Mahidol University.
This work was financially supported by Chulalongkorn Academic Advancement into its 2nd Century
Project, Phase 2, Chulalongkorn University, Thailand. 3D-printed parts and chemicals were in-kind
materials supported by Meticuly Co., Ltd., Thailand.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goharian, A.; Abdullah, M.R. Bioinert Metals (Stainless Steel, Titanium, Cobalt Chromium). In Trauma Plating Systems; Elsevier

BV: Amsterdam, The Netherlands, 2017; pp. 115–142.
2. Tantavisut, S.; Lohwongwatana, B.; Khamkongkaeo, A.; Tanavalee, A.; Tangpornprasert, P.; Ittiravivong, P. In vitro biocom-

patibility of novel titanium-based amorphous alloy thin film in human osteoblast like cells. Chulalongkorn Med. J. 2019, 63,
89–93.

3. Tantavisut, S.; Lohwongwatana, B.; Khamkongkaeo, A.; Tanavalee, A.; Tangpornprasert, P.; Ittiravivong, P. The novel toxic free
titanium-based amorphous alloy for biomedical application. J. Mater. Res. Technol. 2018, 7, 248–253. [CrossRef]

4. Darouiche, R.O. Treatment of Infections Associated with Surgical Implants. N. Engl. J. Med. 2004, 350, 1422–1429. [CrossRef]
[PubMed]

http://doi.org/10.1016/j.jmrt.2017.08.007
http://doi.org/10.1056/NEJMra035415
http://www.ncbi.nlm.nih.gov/pubmed/15070792


Materials 2021, 14, 6576 13 of 14

5. Adeyemi, A.; Trueman, P. Economic burden of surgical site infections within the episode of care following joint replacement. J.
Orthop. Surg. Res. 2019, 14, 1–9. [CrossRef] [PubMed]

6. Wang, X.; Fang, L.; Wang, S.; Chen, Y.; Ma, H.; Zhao, H.; Xie, Z. Antibiotic treatment regimens for bone infection after debridement:
A study of 902 cases. BMC Musculoskelet. Disord. 2020, 21, 215. [CrossRef]

7. Losic, D.; Aw, M.S.; Santos, A.; Gulati, K.; Bariana, M. Titania nanotube arrays for local drug delivery: Recent advances and
perspectives. Expert Opin. Drug Deliv. 2014, 12, 103–127. [CrossRef]

8. Van Vugt, T.A.G.; Arts, J.; Geurts, J.A.P. Antibiotic-Loaded Polymethylmethacrylate Beads and Spacers in Treatment of Orthopedic
Infections and the Role of Biofilm Formation. Front. Microbiol. 2019, 10, 1626. [CrossRef]
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