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Abstract: Additive manufacturing (AM) has the advantages of reducing material usage and geomet-
rical complexity compared to subtractive manufacturing. Wire arc additive manufacturing (WAAM)
is an additive manufacturing process that can be used to rapidly manufacture medium-and large-
sized products. This study deals with the path-planning strategy in WAAM, which can affect the
quality of deposited components. It aims at suggesting effective path planning to reduce the height
error of intersection parts. A comparative analysis of the bead width and height at the intersection
parts was performed to verify the effectiveness of the proposed path. The initial parameters were
determined through single-layer deposition experiments, and multi-layer deposition experiments
were performed. The resultant height error in the intersection part was 0.8%, while that in the
non-intersection part was absent at the maximum height. Path planning is considered to be an
effective method.

Keywords: additive manufacturing; wire arc additive manufacturing; path planning; intersection
part; height error

1. Introduction

Additive manufacturing (AM) has emerged as a technology for reducing part cost
by reducing the manufacturing time [1]. Wire arc additive manufacturing (WAAM) is an
electrical arc-based direct energy deposition (DED) process that has been established as
one of the technologies of AM [2]. Thin-walled and complex geometries have mainly been
manufactured using WAAM. The WAAM process was applied to principal technologies,
such as the aerospace and automobile industries, owing to its excellent material efficiency.
According to Karunakaran et al., WAAM is one of the cheapest techniques among other
heat source-based AM [3]. For instance, the WAAM process is less expensive than electron
beam-based and laser heat-based processes [4]. The electron beam-based process requires a
vacuum device or special vacuum room for producing the deposited components [5]. Laser
heat-based processes have low laser efficiency in copper, aluminum, and some nonferrous
metals, and WAAM is more suitable for the production of such material [6].

However, WAAM has limitations such as deformation, residual stress, height error,
and bead geometrical accuracy. Among these, height errors decrease the quality of produc-
tion [7]. Therefore, more deposition path studies are required to improve the bead quality
and appropriate geometry of components with complex shapes [8]. However, since bead
shape defects owing to the arc pre-set occurred in conventional path planning, effective
path planning considering these defects is required.

Recently, researchers are paying attention to how deposition bead quality affects the
final product. In addition, studies on path planning for bead quality improvement are
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usually performed in multi-layers. Ding et al. studied the error in bead height according
to the bead spacing in single-layer deposition [9]. Li et al. proposed a bead model using
overlapped deposition spacing and height [10]. Graf et al. suggested a deposition method
to correct the height error in which the experiment was conducted by setting the deposition
start point in reverse at each layer [11]. Michel et al. studied the path planning of a feature-
based design by developing slicing software [12]. Ma et al. investigated an adaptive path
planning method for robotic WAAM of thin-walled structures with varying thicknesses [13].
The deposition with weaving technology was studied. Based on the model of deposition
with weaving, an adaptive path planning method for WAAM was proposed. The resulting
paths were able to fill thin-walled structures with varying thickness less than twice of the
single-bead width. Ding et al. studied a methodology of generating medial axis transform
(MAT)-based paths for an arbitrary geometry, either thin-walled or solid structures, with or
without internal holes [14]. Moreover, the optimal step-over distance corresponding to the
maximum material efficiency was discussed for various geometries. Chen et al. proposed a
WAAM system based on the principle of the cold metal process (CMT) and milling machine
path conversion of CNC machine tools [15]. The 3D model path was constructed using
off-line 3D route simulation software. Zhang et al. studied the path selection of a crack
at the interface either perpendicular or parallel to the interface from the viewpoints of
microstructure, residual stress, and bi-material system [16]. In the study of Zhang et al., the
cause of residual stress and microstructural change was the material properties. Therefore,
a study of the path planning is expected as a solution to increase stability by reducing heat
accumulation. Szost et al. investigated residual stresses generated and microstructure in the
case of Ti samples produced by CLAD and WAAM techniques [17]. Wang et al. proposed
intelligent optimization algorithms for solving multi-objective optimization algorithms [18].
Zhang et al. investigated a path-planning strategy to fill a randomly generated polygon
with triangular holes and contour paths to reduce residual stress [19]. In addition, because
paths are designed for a variety of components, the deposited paths affect the quality
of the welding beads and welding products. Ding et al. studied several path planning
methods for massive structures [8], while Michel et al. focused on increasing in quality of
components deposited using the WAAM process from 2.5D [12]. Kazanas et al. suggested
a feature-based design to investigate the production of less material waste [20]. In the
path planning design, bead overlap at the intersection was considered that occurring as a
factor reducing bead quality. Venturini et al. proposed the optimization of the deposition
patterns of T-crossing features [21]. Mehnen et al. proposed a path strategy for shapes such
as half-pipes and X cross intersections [22].

The purpose of this study is to suggest effective path planning for intersection parts
in WAAM in order to reduce height error at intersections by a continuous and effective
deposition. Moreover, the suggested path planning was investigated to increase the
internal stability of the deposition product by maintaining the maximum strength with
the minimum amount of material by using a grid structure, utilizing the overlapping
of beads. Experiments were performed to measure and verify the height error through
single-layer and multi-layer depositions. Overlapping beads were used to improve the
internal structural stability during the experiments.

2. Path Planning for Intersection Part
2.1. Problem Statement

Figure 1 shows an ideal intersection model and a practical problem in the WAAM
process. Figure 1a, the ideal model of deposition products with intersecting paths lacks
height error, porosity, or manufacturing defects. Figure 1b shows a deposit failure that
occurs when the deposition process neglects the overlap of the bead by the manufactur-
ing characteristics. Path planning that neglects the width and height of the deposited
bead causes height errors owing to overlapping beads at intersections during multi-layer
deposition, which reduces the geometric accuracy.
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Figure 1. Designs of intersection parts: (a) ideal model of deposition products with intersection paths,
(b) deposit failure that occurs when the deposition process neglects the overlap of the bead by the
manufacturing characteristics.

Figure 2 shows the conventional path planning to reduce the intersection height error.
Figure 2a shows the divided path planning of intersections. Although the height error
of the divided path planning at the intersection was less than 1 mm, an undercut defect
occurred on the contact surface of the bead, so it was not suitable for the path planning
of the intersections. However, the limitation of the divided path was that the deposited
beads were low precision. In addition, a divided path is unsuitable for path planning
to improve internal structural stability. Figure 2b shows the circular path planning to
reduce the height error. Circular path planning was studied to reduce the height error by
converting the intersection to a circle. However, a height error at the end of the bead due
to a discontinuous deposition path was expected, and the path was limited depending on
the diameter of the circle or the width of the deposition bead, resulting in a cavity at the
center of the intersection.

Figure 2. Conventional path planning methods for intersection part: (a) the divided path [23], (b) the circular path [24].

Figure 3 shows the multi-path overlapping of the bead model following the center
distance. Figure 3a shows the overlapping bead model, in which the bead has a height error
by an interval of the bead. Figure 3b shows the case of the bead overlap model considering
the height error. The center distance (d) imposes an effective condition on the height error
occurring in the path planning. At the ideal center distance, the height error was almost
nonexistent. If the center distance was wide, the small overlapping area caused a height
error, and a bead valley was formed. When the center distance was narrow, a height error
occurred because of excessive molten metal. Therefore, the ideal d-value was set before the
experiments.
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Figure 3. Schematic diagram of the overlapping bead modeling: (a) the overlapping model, (b) the overlapping model
considering height error.

2.2. Suggested Path Planning

Effective path planning was proposed to reduce the height error using the bead shape
characteristics. The bead overlap model was also utilized in the intersection deposition
path to improve the internal structural stability. For bead deposition, the wire feed speed
and travel speed affect the bead height and width significantly. Therefore, the interval
between the deposition beads was set to reduce the height error of the overlapping part
using the characteristics of the overlapping beads. Figure 4 shows the path planning
utilizing bead overlap suggested for enhancing bead shape accuracy and internal structural
stability. The suggested path planning has the advantage of reducing unnecessary paths,
less post-processing, and depositing intersections with minimal height difference using the
overlap of beads.
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Figure 4. Suggested path planning in this paper. (a) a schematic diagram, (b) top view.

3. Materials and Methods
3.1. Experimental Setup

WAAM experiments were performed using the system shown in Figure 5. The 3D line
laser scanner (Keyence GmbH., Osaka, Japan) was combined with a torch head to perform
the experiments. A computer was used to analyze and collect data on the deposition bead
width and height. The 6-axis robot arm (IRB 6700 of ABB Ltd., Zurich, Switzerland) was
used to control the motion of the robot with a programmed path and welding process. A
welding machine (TPS 500i of Fronius co., Ltd., Pettenbach, Austria) for the metal inert
gas welding (MIG) was used for the controlled arc welding process. A laser scanner was
used to measure the width and height of the deposited beads. The hardness measurement
was conducted by using a rebound durometer (HH-411 of Mitutoyo, Kawasaki, Japan) to
obey the experimental conditions of the equipment. Measurements were made 15 times at
intervals of 3 mm at a distance of 5 mm from the edge of the specimen.

Figure 5. Experimental setup of the WAAM system.

The experiment was performed using a 304-stainless steel wire (diameter: 1.2 mm).
Moreover, the dimensions of substrate were 200 mm × 125 mm × 25 mm. To reduce the



Materials 2021, 14, 6477 6 of 15

heat input of component manufacturing using the cold metal transfer (CMT) mode, a
shielding gas was used (99.95% pure argon at a flow rate of 20 `/min). The wire travel
speed was set at 5.1 m/min and the travel speed was 5 mm/s. The voltage was set to 120 V
depending on the wire feed rate. The deposition parameters used to test the suggested
path planning are listed in Table 1.

Table 1. Process parameters for testing the suggested path planning.

Parameter Value

Wire diameter 1.2 mm
Current 170 A
Voltage 120 V

Wire feed speed 5.1 m/min
Travel speed 5 mm/s

Contact tip with distance 15 mm
Shield gas/Flow rate Ar 99.95%/20 `/min

Center distance 2.25 mm

The 304-stainless steel used in the experiment is one of the representative austenitic
stainless steels, with excellent weldability and a wide range of applications such as heat
exchangers and transport containers. In addition, it is not oxidized at high temperatures
and has excellent corrosion resistance, making it suitable for a wide range of corrosive
environments. Cr carbide is formed during prolonged exposure in the temperature range
of 425–870 ◦C, which reduces both corrosion resistance and mechanical strength. However,
this experiment was conducted in an environment that does not provide exposure for a
long time in the temperature range mentioned above.

3.2. Measurements

After the experiment for each layer, the width and height of the deposited bead were
measured using a laser scanner, as shown in Figure 6. Measurements were conducted to
determine the height error between the intersections and another position on each layer.
Measurements were made immediately after deposition on each layer, thereby minimizing
changes in height caused by cooling or the surrounding environment. When the height of
the deposited bead was checked, the height of the intersection was greater than that of the
other position because of the increase in height caused by overlapping beads. The shape of
the bead was measured with a laser scanner. In addition, various characteristics, such as
internal porosity using SEM, effects of internal stress and microstructure changes via path
planning, were checked.
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Figure 6. 3D triangulation method using a laser scanner. The width and height of the deposited bead
were measured.

4. Results and Discussion
4.1. Single-Layer Experiments

Figure 7 shows the results of the single-layer deposition experiment with the inter-
section path. The path was designed to generate many intersections, while the height of
the intersection from points one to eight was measured using a laser scanner. Figure 8
shows the height value of the single-layer experiment at each point. From the results of the
single-layer experiment, the average height of the intersection was 3.6089 mm, while the
difference between the maximum and minimum heights was 0.455 mm. The error occurred
at a magnitude of 1.2% compared to the maximum bead height. Therefore, the single-layer
experiment was conducted under a stable deposition.

Figure 7. The result of single-layer experiments.
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Figure 8. The height value of the single-layer experiment at each point.

The multi-layer experiment used the conditions of the single-layer experiment and
collected data on the shape of the multi-layer deposition. Then, the height of the intersection
was measured and compared to verify that the experimental conditions produced no
significant difference even in the multi-layer deposition.

4.2. Multi-Layer Experiments

A flow chart was constructed to verify the sequence of the deposition process (Figure 9).
A multi-layer deposition experiment using the suggested path planning was designed.

Due to the characteristics of the deposition device, the arc strike occurred by increasing
the initial current value for form the bead. Therefore, the height of the front of the bead was
manufactured higher than the designed height. To prevent the fusion defects of the molten
bead and wire electrode at the end of the deposition path, the wire was not supplied before
the end of the deposition. So, the end of the deposition bead was manufactured lower than
the designed height as shown in Figure 7. In order to reduce these deposition defects, the
deposition direction was reversed in each layer, and the height error of the beads could be
reduced.

Figure 10 shows the results of the multi-layer experiment. An eight-layer deposition
was stably performed. To verify that the suggested deposition path is free from defects
during deposition, height data is collected at four sections, as shown in Figure 10b. Table 2
represents the heights, maximum height difference, and height error rates between the
intersections and non-intersections of each layer. The height error rate of each layer was in
order to express the height error decrease. The heat was accumulated to each layer during
deposition by the heat input and the short cooling time. In the intersections, the heights
were 3.5162 mm and 3.7089 mm at the first layer, 6.9075 mm and 6.8437 mm at the second
layers, 9.3539 mm and 9.7571 mm at the third layers, 11.8979 mm and 11.7252 mm at the
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fourth layers, 14.1387 mm and 14.3892 mm at the fifth layers, 16.8256 mm and 16.4218 mm
at the sixth layers, 18.8024 mm and 18.8084 mm at the seventh layers, 21.5143 mm and
21.3413 mm at the eighth layers. Moreover, the height errors were 5.2%, 0.9%, 4.2%,
1.4%, 1.7%, 2.4%, 0.03%, and 0.8%, respectively. In the non-intersections, the heights were
3.1573 mm and 3.1573 mm at the first layer, 5.7199 mm and 5.6253 mm at the second
layers, 8.0564 mm and 7.9470 mm at the third layers, 10.2608 mm and 10.2608 mm at the
fourth layers, 12.8170 mm and 12.7691 mm at the fifth layers, 15.5963 mm and 15.3227 mm
at the sixth layers, 17.5123 mm and 17.5016 mm at the seventh layers, 19.7510 mm and
19.7510 mm at the eighth layers. Moreover, the height errors were at 0%, 1.6%, 1.3%, 0%,
0.3%, 1.7%, 0.06%, and 0%, respectively. The height error rate at the intersection was
0.8% at the maximum layer, while the height error in the non-intersection was absent at
the maximum layer. This represents negligible height error if surface post-processing is
performed to remove irregularities on the top of the deposited product after deposition.

Figure 9. Flowchart of multi-layer intersection deposition in WAAM.

Figure 10. The results of multi-layer experiments: (a) the product of multi-layer experiments, (b) the height measured
sections of intersections.
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Table 2. Comparison of intersections and non-intersections including error rates.

Layer
Order

Intersection Part Non-Intersection Part
A (mm) D (mm) Error (%) B (mm) C (mm) Error (%)

1st 3.5162 3.7089 5.2 3.1573 3.1573 0
2nd 6.9075 6.8437 0.9 5.7199 5.6253 1.6
3rd 9.3539 9.7571 4.2 8.0564 7.9470 1.3
4th 11.8979 11.7252 1.4 10.2608 10.2608 0
5th 14.1387 14.3892 1.7 12.8170 12.7691 0.3
6th 16.8256 16.4218 2.4 15.5963 15.3227 1.7
7th 18.8024 18.8084 0.03 17.5123 17.5016 0.06
8th 21.5143 21.3413 0.8 19.7510 19.7510 0

The height errors were measured as shown in Table 2; it was confirmed that the
average height error of 0~0.4 mm (0.03~4.2%) occurred. For reliable results, the average
values of three experimental iterations under the same conditions were used. The resolution
of the laser sensor was four decimal places in mm, and the repeatability was 2 µm. This
coincides with other literature in the field [10,23,24], which suggests that height error
reductions of 0.05 to 0.30 mm or 0.05~0.5% can occur during WAAM. Table 3 shows the
comparison of height error reduction rate with other studies in WAAM.

Table 3. Comparison of height error reduction rate with other studies in WAAM.

Ref. No. Materials Height Error Rate
(%) Remarks

- Steel (SUS-304) 0.03~4.2 Intersection height error
[23] 2319 aluminum alloy 3.4 Suggest path strategy

[25] Steel (ER70S-6) ~5.77 Prediction bead roughness
using machine learning

[26] Aluminum alloy 75 (reduction
compared to before)

Propose adaptive process
control scheme (APCS)

[27] metal-type flux-core
wire, Q235 steel 2% (at 50th layer) Propeller bracket

Figure 11 shows the height and width of the deposited bead in each layer during
the multi-layer experiment. The height of the intersection was higher to the right of the
bead at the second path, as shown in Figure 11a,b. The bead heights were checked at the
non-intersection part, at the section where the welding direction was shifted, confirming
that the height along the central direction was slightly higher than outside, as shown in
Figure 11c,d. An additional amount of heat accumulates in each layer because of the arc-
based deposition. This heat accumulation influences the process, bead stability, geometrical
accuracy, and material properties. Although each layer was assigned the same cooling
time, the bead was thickened by heat accumulation. The height difference between the
intersection and non-intersection parts was confirmed using the results of the multi-layer
experiment.

The multi-layer experiment was performed at the centers of the substrate with eight
layers of deposition using the suggested path planning. The microstructure between each
layer was analyzed using scanning electron microscopy (SEM). Surface polishing was
performed before the SEM measurement, and surface roughness was measured using
Portable roughness tester (SJ-210 of Mitutoyo, Kawasaki, Japan). Through three repeated
measurements for each specimen, accuracy was improved. The measured average surface
roughness of specimens was 0.060~0.083 µm. Figure 12 shows a schematic diagram of
component analysis by SEM. The overlapping of beads occurred in sections A-A and D-D,
but the shape of the grain boundary was different depending on the measured location. A
more detailed analysis of the microstructure of the deposited bead is presented using the
SEM image shown in Figure 13. The SEM image of the specimens showed the presence
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of the ferrite and austenite phases. Figure 13a,b, the SEM images of sections A-A and
D-D, show the grain boundaries that appear owing to the overlapping of beads in paths in
the components. The cross-sectional views B-B and C-C are shown in Figure 13c,d. The
substrate and wire of 304-stainless steel are observed to be perfectly deposited without
altering the microstructure of each layer. The SEM image results demonstrate the absence
of porosity; however, grain boundaries occurred at the overlapped intersection.

Figure 11. Graph of bead height and width at each layer: (a) section view A-A, (b) section view D-D, (c) section view B-B
and (d) section view C-C.
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Figure 12. Schematic of measurement at the intersection parts.

Figure 13. Microstructure of the WAAM-deposited beads studied using SEM: (a) section view A-A, (b) section view D-D,
(c) section view B-B, and (d) section view C-C.
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Using specimens whose dimensions were 10 × 10 × 5 mm, the difference in hardness
between the intersections and non-intersections was measured. Component analysis was
also conducted. The specimens compared height errors, components and were measured.

Figure 14 shows the results of the analysis of the material components of the specimens
at each section. The analysis found that at the intersection, the proportions of Fe, Cr, and
Ni were 64.69 wt.%, 21.51 wt.%, and 7.83 wt.%, respectively. At the non-intersection part,
the proportions of Fe, Cr, and Ni were 64.8 wt.%, 21.39 wt.%, and 7.96 wt.%, respectively.
The intersections had lower mass ratios of Fe and Ni and greater mass ratios of Cr than the
non-intersection parts. According to the component analysis, the differences in properties
owing to bead overlap between the intersection and non-intersection parts were negligible.

Figure 14. Schematic of measurement at the intersection parts.

The average Vickers hardness of each specimen was measured. Section A-A showed
136.9 HV, Section B-B showed 114.6 HV, Section C-C showed 123.4 HV, and Section view
D-D showed 125.9 HV. According to ASTM A240, the minimum hardness value must be
129. The mean hardness of the intersections, sections A-A and D-D, was 131.4 HV, while
the mean value of the non-intersection (sections B-B and C-C) was 119 HV. Although the
hardness increased at the intersection where the overlap occurred, it decreased at the non-
intersection affected by heat accumulation. The measured Vickers hardness was obtained
by using the hardness-tensile strength conversion table (Steel Express Ltd., Wolverhampton,
United Kingdom). The tensile strength of the intersection part was about 453.8 MPa and
the non-intersection part was 405.3 MPa, showing a difference of 48.5 MPa.

Thus, path planning suggested addressing the problem of arc-based deposition and the
decreasing internal structural stability of the WAAM. Its effectiveness was demonstrated
in experiments using the WAAM. The suggested path planning was effective to reduce the
height error of intersection parts in WAAM.

5. Conclusions

The final quality of the deposition beads in the WAAM was considered to be closely
linked to path planning. This study suggested reducing the height error and increasing
the internal stability using intersection path planning in the WAAM process, thereby
necessitating calculations of the bead width and height from the path planning stage. This
study was conducted as described below.
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(1) The most important step in the WAAM process is path design, which significantly
influences the final quality of the product. Conventional intersection or internal path
planning do not significantly contribute to height error or improve internal structural
stability, owing to their inefficient design. This study suggests path planning utilizing
bead overlap to increase the internal structural stability and reduce the height error.

(2) Parameters to reduce height errors in the intersection were selected using the single-
layer experiment, and multi-layer experiments were conducted. In the multi-layer
experiment, a laser scanner was used to measure the bead width and height of
the intersection, non-intersection, and verify the stability. The height error in the
intersection part was 0.8%, and it was absent in the non-intersection at the maximum
height.

(3) Specimens were produced to investigate the properties and microstructure of the
WAAM products, and hardness changes were observed according to the deposi-
tion. According to the results of the component analysis and SEM and the hardness
measurement, changes in properties owing to deposition were insignificant.

In the suggested path planning design, the bead cooling time and deposition time due
to heat accumulation were reduced to increase productivity. The path planning contributes
to the productivity improvement of deposited products that can achieve maximum strength
with minimal materials by not completely filling the inside of the deposited product using
grid structure along with improving the bead stability. Through continuous research,
we expect to be able to design the strength of products in the manufacturing process by
implementing complex shapes, which is one of the strengths of the AM.
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