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Abstract: In this study, the effects of heating rate and compressive strength on the spalling behavior
of single-sided heated ring-restrained concrete with compressive strengths of 60 and 100 MPa were
investigated. The vapor pressure and restrained stress inside the concrete were evaluated under
fast- and slow-heating conditions. Regardless of the heating rate, the concrete vapor pressure and
restrained stress increased as the temperature increased, and it was confirmed that spalling occurred
in the 100-MPa concrete. Specifically, it was found that moisture migration and restrained stress
inside the concrete varied depending on the heating rate. Under fast heating, moisture clogging
and restrained stress occurred across the concrete surface, causing continuous surface spalling
for the 100-MPa concrete. Under slow heating, moisture clogging occurred, and restrained stress
continuously increased in the deep area of the concrete cross-section owing to the small internal
temperature difference, resulting in explosive spalling for the 100-MPa concrete with a dense internal
structure. Additionally, while the tensile strength of concrete is reduced by heating, stress in the
heated surface direction is generated by restrained stress. The combination of stress in the heated
concrete surface and the internal vapor pressure generates spalling. The experimental results confirm
that heating rate has a significant influence on moisture migration and restrained stress occurrence
inside concrete, which are important factors that determine the type of spalling.

Keywords: heating rate; compressive strength; single-sided heat; vapor pressure; restrained stress;
explosive spalling; ring-restrained concrete

1. Introduction

The internal structure of high-strength concrete is denser than that of normal-strength
concrete. This increases the likelihood of spalling in high-strength concrete when it is
exposed to high temperatures, such as temperatures caused by fire. Concrete spalling is
difficult to predict owing to its irregular nature and may lead to strength degradation by
causing cross-sectional loss of concrete members. It has been reported that vapor pressure,
thermal stress, and a combination of the two are the main causes of concrete spalling [1–5].

In addition, the mechanical properties of concrete exposed to high temperatures are
negatively affected. Concrete spalling and mechanical property degradation can have
a significant effect on the structural stability of buildings. Various studies have been
conducted to compensate for this phenomenon [6–8].

During heating, moisture migration occurs inside concrete, and the moisture is re-
leased outwards or condensed as it moves inwards. For high-strength concrete, the likeli-
hood of spalling is high owing to low internal moisture migration and high vapor pressure
on the surface [9–11]. Therefore, a method for vapor pressure reduction through moisture
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migration inside concrete has been proposed to inhibit spalling. In various studies, effec-
tive concrete vapor pressure reduction during heating has been experimentally confirmed
for concrete fabricated by mixing polypropylene, nylon, polyethylene, jute fibers, and
amorphous metallic fibers [11–18]. In addition, it has been reported that concrete mixed
with steel fibers can suppress the explosion by increasing the tensile strength [19,20]. It is
worth noting that these studies dealt with concrete spalling under fast-heating conditions.

Hertz [21] stated that the likelihood of spalling is generally increased by high tem-
peratures and fast heating, but reported that spalling may occur in high-density concrete
containing silica fume at a heating rate of 1 ◦C/min.

Algourdin et al. [22] heated concrete mixed with steel and polypropylene fibers at
a rapid heating rate and at a rate of 10 ◦C/min. It was reported that the spalling was
more severe in a cylindrical specimen than in a slab. Furthermore, in the absence of fibers,
spalling may occur at a rate of 10 ◦C/min.

Phan et al. [23,24] applied a heating rate of 5 ◦C/min to concrete with w/cm values
of 0.22, 0.33, and 0.57, and reported that the likelihood of spalling increased as the w/cm
value decreased and that some high-strength concrete specimens exhibited spalling that de-
stroyed them through an explosion. They defined such spalling as “explosive spalling” and
spalling that involves continuous flaking from the concrete surface as “surface spalling.”

In addition, Choe et al. [25] examined the effect of heating rate on high-strength con-
crete spalling. They reported that the heating rate significantly affects moisture migration
and vapor pressure accumulation in concrete. In particular, they found that moisture
migration does not occur under slow-heating conditions owing to the similar temperature
distribution in concrete. Thus, they reported that explosive spalling caused by boiling
liquid expanding vapor explosion (BLEVE) may occur in high-strength concrete with a
high-density matrix.

Recently, Ozawa et al. [26,27] devised an experimental method to estimate the vapor
pressure and thermal stress in relation to the spalling mechanism. They restrained concrete
with a ring-shaped steel pipe and estimated the thermal stress of concrete through the
deformation of the ring-shaped steel pipe under single-side fast-heating. They reported
that it was possible to evaluate the vapor pressure and restrained stress in concrete under
fast-heating conditions using this experimental method.

Concrete spalling is significantly affected by the heating condition and compressive
strength. In particular, to improve the fire safety performance of concrete structures, it is
necessary to examine the concrete spalling behavior considering the heating condition and
compressive strength. Previous studies focused on the spalling of concrete specimens by
vapor pressure under heating; however, stress due to thermal expansion of concrete should
be considered simultaneously. In addition, when concrete is subjected to single-sided
heating, as shown in Figure 1, the internal temperature distribution changes and may
affect the thermal properties of concrete. Therefore, it is necessary to investigate spalling
by examining the vapor pressure and thermal stress in concrete subjected to single-sided
heating and considering the heating rate and compressive strength.

In this study, ring-restrained concrete subjected to single-sided heating was used to
investigate the concrete spalling behavior according to heating rate. When concrete with
compressive strengths of 60 and 100 MPa were subjected to single-sided heating, the vapor
pressure due to the temperature difference inside the concrete was measured, and the
restrained stress by the ring-restrained condition was calculated to examine the influence
of thermal stress.
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Figure 1. Temperature distribution of single-sided heated ring-restrained concrete according to
heating rate.

2. Experiment
2.1. Experimental Plan

Table 1 shows the experimental plan followed in this study and Table 2 shows the mix
proportions of concrete used in this study. To evaluate the vapor pressure and restrained
stress in concrete according to heating rate, fast heating (ISO-834 standard heating method)
and slow heating (RILEM TC 129-MHT “Part 3—Compressive strength for service and
accident conditions” at a rate of 1 ◦C/min) were used [28,29]. In addition, for concrete with
water-to-binder (W/B) ratios of 0.2 and 0.35, the spalling behavior, internal temperature,
vapor pressure, and restrained stress were evaluated. The physical properties of the
materials used for concrete are shown in Table 3.

Table 1. Experimental plan for this study.

fck
(MPa) Heating Method Test Item

60
100

Fast Heating (ISO-834)
Slow Heating (1 ◦C/min.)

• Spalling behavior
• Temperature (◦C)
• Vapor pressure (MPa)
• Restrained stress (MPa)

Table 2. Mix proportion of concrete used in this study.

W/B
fck

(MPa)
Slump Flow

(mm)
Air
(%)

S/a
(%)

Unit Weight (1) (kg/m3)

W C FA SF S G

0.35 60 650 ± 100 4 40 165 471 0 0 681 1026

0.20 100 750 ± 100 2 43 150 525 150 75 642 870
(1) W: Water, C: Cement, FA: Fly ash, SF: Silica fume, S: Fine aggregate, G: Coarse aggregate.

Table 3. Physical properties of the materials used in this study.

Material Physical Property

Cement OPC (density: 3.15 g/cm3, specific surface area: 3200 cm2/g)

Fly ash Density: 2.20 g/cm3, specific surface area: 3000 cm2/g

Silica fume Density: 2.50 g/cm3, specific surface area: 200,000 cm2/g

Fine aggregate Sea sand (density: 2.65 g/cm3, absorption: 1.00%)

Coarse aggregate Crushed granitic aggregate (size: 20 mm, density: 2.62 g/cm3, absorption: 0.8%)

Super plasticizer Polycarboxylic-based super plasticizer
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Figure 2 shows an overview of the ring-restrained concrete specimen. A steel ring
with a diameter, height, and thickness of 300, 50, and 7 mm, respectively, was used as a
restraining ring. It was installed in two stages through bonding with silicone, and concrete
was poured inside. In addition, thermocouples and pipes for pressure measurement were
installed at depths of 5, 10, 25, and 40 mm from the heated surface of the concrete specimen.
The deformation of the steel ring was measured by installing strain gauges for room
temperature (80 °C) at depths of 5, 10, 25, 40, and 75 mm from the heated surface of the
concrete specimen. The fresh concrete specimens with compressive strengths of 60 and
100 MPa had slump flow values of 560 and 680 mm and an air content of 3.8 and 2.0%,
respectively. Before heating, the concrete was cured for about 150 days to stabilize the
moisture content, and the moisture content of the 60- and 100-MPa concrete specimens
was stabilized at 3.95 and 4.20%. In addition, the ring-restrained concrete specimens were
cured in a constant temperature and humidity chamber at a temperature of 22 ± 2 ◦C and
humidity of 50% ± 10%.
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2.2. Heating Method

Figure 3 shows a schematic of the electric heating furnace used in this study. A
specimen was installed on top of the furnace, and single-sided heating was applied to
the bottom of the specimen to perform fast and slow heating. The bottom of the ring was
insulated to prevent the ring from being directly heated.

2.3. Calculation of Restrained Stress and Z-Axis Stress in Concrete

Restrained stress in concrete was calculated based on the research of Ozawa et al. [26,27],
who estimated restrained stress based on thin-walled cylinder model theory [30]. This
method involves measuring the deformation of the steel ring because concrete under heat-
induced expansion causes the superficial deformation on the steel ring. Therefore, the
restrained stress of the steel ring can be calculated as follows:

σre = εθ × Es ×
t
R

(1)

where σre: restrained stress (MPa)



Materials 2021, 14, 6023 5 of 15

εθ : circumferential strain of the steel ring
Es: elastic modulus of the steel ring (MPa)
t, R: thickness and inside radius of the steel ring (mm)
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Figure 3. Electric heating furnace schematic and specifications.

Figure 4 shows the restrained stress generated in ring-restrained concrete during
heating. The x- and y-axis stress that corresponds to restrained stress occurs in concrete
during heating, and the biaxial stress may generate stress in a new axis, as shown in
Figure 4a. The z-axis stress, which occurs in the direction of the heated surface of the
ring-restrained concrete specimens, may cause cracks inside the concrete, as shown in
Figure 4b [26,27].
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Figure 4. Restrained stress generated in concrete during heating. (a) New axis (z-axis) stress generation. (b) z-axis stress
of concrete.

In concrete exposed to high temperatures, stress is generated by thermal expansion
regardless of the axis. The z-axis stress in this study is a value estimated using the restrained
stress and may be different from the actual stress in concrete; however, z-axis stress may
occur and may affect the spalling. Therefore, z-axis stress can be calculated as follows:

σre = σx = σy (2)

τxy = 0 (3)
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σz = vc
(
σx + σy

)
(4)

where σx, σy: stress normal in the orthogonal x-y coordinate (MPa)
τxy: shear stresses in the orthogonal x-y coordinate
vc: apparent Poisson’s ratio of concrete
σz: stress at a certain depth from the heated surface (MPa)

3. Experimental Results and Discussion
3.1. Spalling Type and Internal Temperature

Figure 5 shows the spalling behavior of the 100-MPa concrete specimen according
to heating rate. Spalling occurred in the 100-MPa concrete specimen in the fast- and
slow-heating experiments. As shown in Figure 5a, 100-MPa concrete exhibited surface
spalling in which small debris separated from the center of the heated surface under fast
heating. Continuous surface spalling occurred, resulting in a maximum spalling depth of
approximately 65 mm.

Materials 2021, 14, x FOR PEER REVIEW 7 of 16 
 

 

  

 

  

 
(a) (b) 

Figure 5. Spalling behavior of 100-MPa concrete according to heating rate. (a) Fast heating (ISO-824). (b) Slow heating (1 
°C/min). 

Figure 6 shows the internal temperature of concrete according to heating rate. Under 
fast heating, the temperature difference inside the concrete was large regardless of the 
compressive strength of the concrete. For the 60-MPa concrete specimen that did not ex-
hibit spalling, a temperature difference of approximately 300 °C was observed between 
the depths of 5 and 40 mm at the end of heating. In addition, the 100-MPa concrete speci-
men exhibited surface spalling at approximately 8 min and 30 s after the start of heating, 
and the thermocouple at a depth of 5 mm showed a sharp temperature change at approx-
imately 17 min. It appears that this thermocouple was exposed by surface spalling. The 
thermocouples were exposed at temperatures approaching 300 °C by continuous surface 
spalling in the order of 10, 25, and 40 mm depths. 

Figure 5. Spalling behavior of 100-MPa concrete according to heating rate. (a) Fast heating (ISO-824). (b) Slow heating
(1 ◦C/min).

However, under slow heating, the 100-MPa concrete specimen exhibited explosive
spalling that caused a large internal fracture, resulting in a maximum spalling depth of
approximately 42 mm. In addition, the maximum debris size differed depending on the
spalling type. The debris size was approximately 50 × 40 × 4 mm for surface spalling and
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160 × 140 × 20 mm for explosive spalling, showing that explosive spalling had a larger
debris size.

For the spalling depth distribution of the 100-MPa concrete specimen for different
spalling types, the spalling depth was measured in the form of a grid on the heated surface
of the concrete specimen. Under fast heating, concrete was peeled off from the center of the
heated surface owing to surface spalling, but the concrete close to the steel ring exhibited a
narrow and deep shape without spalling. This appears to be because spalling occurred in
the center of the concrete specimen where the temperature rapidly increased, and thus the
expansion force of the concrete close to the steel ring was relieved. Under slow heating,
explosive spalling temporarily occurred, but a wide and shallow shape was observed
compared to surface spalling. In addition, the weight loss of the concrete was found to be
approximately 25.40% and 21.25% for surface and explosive spalling, respectively. It was
confirmed that explosive spalling can exhibit a similar amount of weight loss to that of
surface spalling, which occurs continuously despite being a one-time phenomenon.

Figure 6 shows the internal temperature of concrete according to heating rate. Under
fast heating, the temperature difference inside the concrete was large regardless of the
compressive strength of the concrete. For the 60-MPa concrete specimen that did not
exhibit spalling, a temperature difference of approximately 300 ◦C was observed between
the depths of 5 and 40 mm at the end of heating. In addition, the 100-MPa concrete
specimen exhibited surface spalling at approximately 8 min and 30 s after the start of
heating, and the thermocouple at a depth of 5 mm showed a sharp temperature change at
approximately 17 min. It appears that this thermocouple was exposed by surface spalling.
The thermocouples were exposed at temperatures approaching 300 ◦C by continuous
surface spalling in the order of 10, 25, and 40 mm depths.
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Under slow heating, the temperature difference inside the concrete was smaller than
that under fast heating. For the 60-MPa concrete specimen that did not exhibit spalling,
a temperature difference of approximately 130 ◦C was observed between the depths of 5
and 40 mm at the end of heating. In addition, the 100-MPa concrete specimen exhibited
explosive spalling at approximately 8 h and 41 min after the start of heating. Because of this
spalling, the thermocouples at the depths of 5, 10, and 25 mm were exposed simultaneously,
thereby exhibiting sharp temperature changes.

3.2. Vapor Pressure

Figure 7 shows the vapor pressure of concrete according to heating rate. Under fast
heating, the vapor pressure inside the concrete rapidly increased and then decreased in the
order of 5, 10, 25, and 40 mm depths regardless of the compressive strength of the concrete.
This appears to be due to the large temperature difference inside the concrete caused by
fast heating. In addition, it appears that the vapor pressure was released without causing
spalling owing to internal cracks for the 60-MPa concrete specimen, whereas the vapor
pressure was discharged owing to surface spalling for the 100-MPa concrete specimen.
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Figure 7. Vapor pressure of concrete according to heating rate. (a) Fast heating (ISO-824). (b) Slow heating (1 ◦C/min).

Under slow heating, the vapor pressure inside the concrete slowly increased. In
particular, for the 100-MPa concrete specimen, the vapor pressure at the depths of 5 and
10 mm was released, but the vapor pressure at 40 mm increased to 7.6 MPa. The vapor
pressure decreased after explosive spalling.

Meanwhile, as shown in Figure 8, the vapor pressure and the saturated water vapor
pressure (SVP) curve were compared to examine moisture migration inside the 60- and
100-MPa concrete specimens according to heating rate. SVP represents the maximum vapor
pressure at a specific temperature, and the vapor condition can be divided into three states
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through comparison. The first is the supersaturated state, in which the vapor pressure
is higher than the saturated vapor pressure. Owing to the inflow of moisture from the
outside, more vapor exists than the amount that can be contained at the measurement
location. The second is the state in which the vapor pressure is equal to the saturated vapor
pressure. No vapor is introduced from the outside, and moisture does not move from the
measurement location to a different location. The third is the unsaturated state, in which
the vapor pressure is lower than the saturated vapor pressure. In this case, the amount of
vapor is insufficient. Therefore, it is possible to examine the moisture state change, amount
of vapor, and moisture migration in concrete during heating by comparing the saturated
vapor pressure of concrete with its vapor pressure [31].
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Figure 8. Comparison of the vapor pressure of concrete and the SVP curve according to heating rate. (a) Fast heating
(ISO-824). (b) Slow heating (1 ◦C/min).

Under fast heating, the vapor pressure was similar to the SVP curve or exhibited a
supersaturated state regardless of the compressive strength of the concrete. Owing to the
fast heating, the vapor generated from the heated surface is discharged outwards or moves
inwards, and the moisture that moves inwards forms moisture clogging by causing the
supersaturated state [32,33]. Because the 100-MPa concrete specimen has a denser internal
structure than the 60-MPa one, moisture clogging is formed from the heated surface of the
concrete. Furthermore, for the 100-MPa concrete specimen, moisture clogging is formed
by supersaturated vapor at depths between 5 and 40 mm, thereby causing continuous
surface spalling.

Under slow heating, the 60-MPa concrete specimen exhibited a saturation state similar
to the SVP curve, whereas the 100-MPa concrete specimen showed the unsaturated state
except for the vapor pressure at 40 mm. The vapor pressure slowly increased under slow
heating regardless of the compressive strength of concrete. This delayed the time of the
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vapor pressure release, and moisture moved to a deep location away from the heated
surface of the concrete specimen. The migrated moisture formed moisture clogging by
causing a supersaturated state at a depth of 40 mm in the 100-MPa concrete specimen,
and the vapor pressure was more than twice as high as that under fast heating. Explosive
spalling occurred owing to the vapor condensing inside the concrete.

3.3. Restrained Stress in Ring-Restrained Concrete

Figure 9 shows the restrained stress in the concrete according to heating rate. Under
fast heating, the restrained stress in the concrete increased with the heating temperature
regardless of the compressive strength of the concrete, but the maximum restrained stress
of the 100-MPa concrete specimen was significantly higher than that of the 60-MPa concrete
specimen. Owing to the temperature difference inside the concrete, the restrained stress
was higher toward the heated surface. In addition, shrinkage deformation occurred at the
40-mm depth. It appears that the shrinkage deformation was caused by thermal expansion
that occurred at depths of 5 to 25 mm.
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Figure 9. Restrained stress in concrete according to heating rate. (a) Fast heating (ISO-824). (b) Slow heating (1 ◦C/min).

Under slow heating, restrained stress tended to slowly increase regardless of the
compressive strength of the concrete because the temperature difference inside the concrete
was small compared to that under fast heating. As the strain gauges of the steel ring could
only be used for temperatures of up to approximately 80 ◦C, the expansion deformation
could only be measured for approximately 6 h. However, it can be estimated that the
restrained stress continued to increase afterwards.

For the 100-MPa concrete specimen that exhibited spalling, stress in the direction of
the heated surface (z-axis stress) may occur as the restrained stress of the heated surface
increases, as explained in Section 2.3. The z-axis stress may cause cracks inside the concrete,
and it acts as a force that pushes the concrete surface in the direction of the heated surface.



Materials 2021, 14, 6023 11 of 15

Spalling occurs owing to a combination of the z-axis stress and vapor pressure, and it
appears that the influence of the z-axis stress is different depending on the spalling type.

3.4. Spalling Behavior According to Vapor Pressure and Restrained Stress

Figure 10 shows the vapor pressure in the 100-MPa concrete specimen that exhibited
spalling. Under fast heating, supersaturated vapor was generated at depths of 5 to 40 mm.
Moisture clogging was formed by supersaturated vapor from approximately 130 ◦C at
all locations, and a maximum of 2.0 MPa was observed. Under slow heating, moisture
clogging of approximately 7.6 MPa was formed by supersaturated vapor at a depth of
40 mm. Moisture clogging that increased from approximately 230 ◦C showed a significant
increase compared to that under fast heating. Compared to fast heating, the temperature
of the concrete increased very slowly under slow heating. Thus, the moisture inside the
concrete moved slowly and finally formed moisture clogging at a depth of 40 mm. The
moisture clogging formed inside the concrete pushes the concrete in the direction of the
heated surface and acts as the main cause of spalling.
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Figure 10. Vapor pressure in the 100-MPa concrete specimen that exhibited spalling.

Figures 11 and 12 show the tensile strength and the z-axis stress of concrete according
to heating rate. The values at a depth of 5 mm were compared for fast heating that caused
surface spalling, while those at a depth of 40 mm were compared for slow heating that
led to explosive spalling. Eurocode was used for the residual tensile strength of concrete
exposed to high temperature [34], and Poisson’s ratio was set to 0.3 for the concrete during
heating [35]. As the heating temperature increased, the tensile strength of the concrete
decreased while the z-axis stress in the concrete increased [36].

Under fast heating, z-axis stress in the concrete rapidly increased and was higher
for the 100-MPa concrete specimen than for the 60-MPa one. As the heating temperature
increased, the z-axis stress and vapor pressure in the concrete increased, and they exceeded
the residual tensile strength of concrete. This phenomenon occurred earlier in the 100-
MPa concrete specimen that exhibited spalling than in the 60-MPa concrete specimen that
did not exhibit spalling. For the 100-MPa concrete specimen, surface spalling began at
approximately 8 min 30 s. Then, the sum of the z-axis stress and vapor pressure at a depth
of 5 mm significantly exceeded the residual tensile strength of concrete, thereby causing
surface spalling. It appears that the 100-MPa concrete specimen exhibited continuous
surface spalling by repeating the above phenomenon. For the 60-MPa concrete specimen,
spalling did not occur because the vapor was discharged without being expanded to the
supersaturated state, even though the sum of the z-axis stress and vapor pressure exceeded
the residual tensile strength of the concrete.
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Figure 11. Tensile strength and z-axis stress of concrete under fast heating; (a) 60-MPa and (b) 100-MPa specimens.
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Figure 12. Tensile strength and z-axis stress of concrete under slow heating; (a) 60-MPa and (b) 100-MPa specimens.

Under slow heating, the z-axis stresses in the concrete were found to be similar regard-
less of the compressive strength. As the heating temperature increased, the z-axis stress
and vapor pressure in the concrete increased and exceeded the residual tensile strength
of the concrete. This phenomenon occurred earlier in the 60-MPa concrete specimen than
in the 100-MPa one. However, the 60-MPa concrete specimen did not exhibit spalling
because the vapor was released before being expanded to the supersaturated state as in fast
heating. For the 100-MPa concrete specimen, the residual tensile strength of the concrete
was significantly exceeded owing to a rapid increase in the supersaturated vapor at a depth
of 40 mm, resulting in explosive spalling at approximately 8 h 41 min.

As shown in Figure 13, the heating rate affects the moisture migration and restrained
stress in concrete. For the 100-MPa concrete specimen with a dense internal structure,
moisture migration is not active and the supersaturated vapor inside forms moisture
clogging. In addition, the continuous increase in heat-induced restrained stress generates
z-axis stress. It was confirmed that the supersaturated vapor and restrained stress in
concrete are the main factors of spalling, and that surface or explosive spalling may occur
in concrete depending on the heating rate and compressive strength.
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Figure 13. Schematic of vapor pressure and restrained stress of 100-MPa concrete according to heating rate. (a) Fast heating
(ISO-824). (b) Slow heating (1 ◦C/min).

4. Conclusions

In this study, single-sided heating was applied to ring-restrained concrete to evaluate
its vapor pressure and restrained stress, which are the main causes of spalling. Spalling
was significantly affected by the compressive strength and heating rate of the concrete.
Based on our experimental results, the following conclusions were drawn.

1. Because concrete has a low thermal conductivity, an internal temperature difference
occurs depending on the heating rate. In particular, the temperature gradient of
concrete may increase under a single-sided heating condition. The temperature
difference inside concrete affects the formation of vapor pressure and restrained
stress, which are important factors that determine the spalling type. The temperature
difference inside concrete is large and continuous surface spalling occurs under fast
heating, whereas the temperature difference inside concrete is small and explosive
spalling occurs under slow heating.

2. Under fast heating, the heated surface of concrete is continuously peeled off and
small concrete debris is generated in large quantities owing to the surface spalling of
concrete. However, under slow heating, explosive spalling of concrete involves an
impact and generates a very large concrete fracture. In particular, explosive spalling
may cause rapid strength degradation because it may lead to a rapid cross-sectional
loss. It was confirmed that the spalling type of concrete has a significant influence on
the cross-sectional loss pattern.

3. For high-strength concrete with a dense internal structure, moisture migration occurs
when the internal temperature increases, and the inward-migrated moisture forms
moisture clogging in the supersaturated state. Under fast heating, the temperature
difference in concrete between the surface and the inside was large, therefore, repeated
surface spalling occurred owing to the moisture clogging formed on the heated surface
of the concrete and the rapidly increasing restrained stress. Under slow heating,
moisture migration was not active because the temperature was evenly distributed
from the surface to the inside of the concrete, but explosive spalling occurred owing
to the moisture clogging forming in a deep area of the concrete and the restrained
stress slowly increased. The moisture clogging and restrained stress formed by the
temperature distribution in high-strength concrete significantly affect the spalling
type.

4. Concrete exhibited surface or explosive spalling depending on the heating condition
and compressive strength. The cross-sectional loss pattern varies depending on the
spalling type and can affect the strength degradation of concrete. For surface spalling,
the strength of concrete can be conserved if part of the cross-sectional loss is inhibited.
However, the occurrence of explosive spalling may cause a rapid strength degradation
of concrete. As the strength degradation of concrete affects the structural stability of
concrete structures, it is necessary to control concrete spalling considering the heating
condition and compressive strength.

In future work, spalling control methods according to heating rate should be investi-
gated. In addition to previous methods, new methods and materials for explosion control
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should be considered. Furthermore, there is also a need to study the effectiveness of
concrete members.
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