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Abstract: Au/0.8 nm–GaN/n–GaAs Schottky diodes were manufactured and electrically character-
ized over a wide temperature range. As a result, the reverse current Iinv increments from 1 × 10−7 A
at 80 K to about 1 × 10−5 A at 420 K. The ideality factor n shows low values, decreasing from 2 at
80 K to 1.01 at 420 K. The barrier height qφb grows abnormally from 0.46 eV at 80 K to 0.83 eV at
420 K. The tunnel mechanism TFE effect is the responsible for the qφb behavior. The series resistance
Rs is very low, decreasing from 13.80 Ω at 80 K to 4.26 Ω at 420 K. These good results are due to the
good quality of the interface treated by the nitridation process. However, the disadvantage of the
nitridation treatment is the fact that the GaN thin layer causes an inhomogeneous barrier height.

Keywords: nitridation; GaN/n–GaAs; Schottky diode; I-V-T; conduction mechanisms; barrier height

1. Introduction

Metal-semiconductor (MS) contacts are very important in microelectronics [1–4]. They
are used in optoelectronic devices, bipolar integrated circuits, high-temperature, and high-
frequency applications [5,6]. The thermionic emission (TE) theory is the principal theory
used to determine the parameters of the Schottky contact.

However, the experimental current-voltage (I-V) characteristics present some anoma-
lies at low temperatures, and both the Schottky barrier height and ideality factor are
temperature-dependent [5,7–10].

This deviation of the thermionic emission theory is corrected by introducing other
mechanisms, operating at the Schottky barrier such as the thermionic field emission TFE
and the emission field FE currents [5,11].

The origin of these currents is explained by considering several phenomena. First,
the Schottky barrier is typically not homogeneous in space [7,12–15], as measured using
ballistic electron emission microscopy [16,17]. The most widely accepted approach for
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interpreting experimental data considers that the spatial barrier inhomogeneity can be
modeled with a Gaussian distribution function [12,18–24].

Secondly, the existence of interface states [7,25] act as recombination centers and
generate local electric fields, causing random metallic paths, reducing carrier lifetime, and
inducing a large leakage current [26–29]. These interface states come from surface disloca-
tions and surface contaminations incorporated during the elaboration process [27,30,31].
In addition, the Schottky metallization step can cause interfacial modifications [31–34].

Therefore, the interface quality has an essential impact on device behavior and perfor-
mance. In this context, surface passivation is the best method of controlling the defective
states [27,30,31,35–39]., Many studies on the nitridation of the GaAs surface have been
carried out [27,30,37,38,40–43] to improve the behavior and the electrical properties of the
Schottky contacts (e.g., the ideality factor, barrier height, saturation current, series resistance
and reverse current. Moreover, the nitride layers have good stability against the formation
of amorphous surface oxides, high electronegativity, and thermal stability [27,44].

In this work, we measure the electrical characteristics of Au/0.8 nm–GaN/n–GaAs
Schottky contacts fabricated by using a glow-discharge plasma source (GDS) for nitridation.
Moreover, we analyze the current transport mechanisms, and several electrical parameters
are characterized in a wide range of temperatures (80–420 K).

2. The Experiment

The Schottky contacts were elaborated using commercially available Si-doped n-GaAs
(100) substrates, of a thickness of 400 µm and an electron concentration Nd = 4.9 × 1015 cm−3.
The samples were cleaned chemically using H2SO4, deionized water, cold and hot methanol
sequentially and dried with N2. Then, the surfaces were bombarded with Ar+ ions of about
1 keV (a sample current equal to 5 µA cm−2 during 1 h) in UHV conditions [30,40]. After
surface cleaning, the substrates were heated at 500 ◦C and nitrided using a glow discharge
nitrogen plasma source, running at 5 W for 30 min in a UHV chamber (Institut Pascal,
Clermont-Ferrand, France). This nitridation process led to the growth of a 0.8 nm-thick
layer of undoped GaN. Following the nitridation step, the samples were annealed at 620 ◦C
for 1 h to crystallize the GaN layer [39,45,46].

A XPS system characterized by a dual anode Al–Mg X-ray source (Institut Pascal,
Clermont-Ferrand, France) and hemispherical electron energy analyzer (Institut Pascal,
Clermont-Ferrand, France) were used for the in situ measurement of the chemical composi-
tion and crystal structure. The GaN thickness was calculated by comparing the experimen-
tal spectra data to the theoretical XPS peak intensities and positions [38]. The Au dots were
deposited with area of 4.41 × 10−3 cm2 and thickened to 100 nm. A Bruker Dimension
Icon atomic force microscope (AFM, Bruker, Cádiz, Spain) equipped with ScanAsyst and
Nanoscope software 9.7 (ScanAsyst, Cádiz, Spain) was used to investigate the film surface
roughness. Using the PeakForce tapping mode, AFM topography measurements were
taken in the air. To accomplish this, a silicon tip on a nitride cantilever (ScanAsyst Air
model, Cádiz, Spain), with a 0.4 N m−1 spring constant and a nominal tip radius of 2 nm
were used to examine regions of 1 × 1 µm2 with a resolution of 256 × 256 pixels. The
current–voltage measurements were investigated under different temperatures (80–420 K),
by a current source Keithely 220 (Laboratory of Physics of Materials and Nanomaterials
Applied to the Environment, Gabès, Tunisia).

3. The Results

Figure 1 presents the PeakForce tapping AFM topography images for (a) the GaN
surface and (b) an Au electrode within a 1 × 1 µm2 scan area represented at the same
height scale. The Au texture was formed by interconnected grain channels, while that of
GaN was almost flat. The root mean square (RMS) surface roughness values indicated
a difference of almost one order of magnitude between Au and GaN smoothness, i.e.,
0.3 nm for GaN and 4.6 nm for Au. The value of the RMS surface roughness for GaN was
calculated by neglecting the areas occupied by the contamination features that clearly stand
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out in the Figure 1a. This value of roughness (0.3 nm) is less than half the nominal GaN
layer thickness (0.8 nm).
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Figure 1. PeakForce tapping AFM topography for (a) GaN, and (b) Au surfaces. (c) Rendered illuminated 3D AFM image
of GaN/Au frontier. (d) Height distribution functions obtained from the topography images.

The roughness difference is better shown in Figure 1c where the frontier between the
Au electrode and the GaN surface is shown as a rendered illuminated 3D AFM image, and
the different topographies of Au and GaN are clearly shown. To bring out this difference
in roughness more clearly, the height distribution histograms shown in Figure 1d were
obtained from the topography images. GaN exhibits a narrow peak, showing that in
comparison to Au, which has a larger peak, the surface layer is more homogeneous.
To clarify the difference between the peaks, they have been fitted to a single Gaussian
distribution with a peak centered at 2.15, and 21.3 nm, and a full width at half maximum
(FWHM) of 1.3 and 9.5 nm for GaN and Au, respectively.

Surface roughness induces a non-uniformity of thickness, a distribution of interfacial
charges, and a local variation of the Fermi level. These phenomena yield to the inhomo-
geneity of the Schottky barrier height and affect the transport mechanism [47].

Figure 2 depicts the I-V characteristics of the Au/0.8 nm–GaN/n–GaAs structure, at
temperatures ranging from 80 to 420 K.

The values of the reverse current IRev at −1 V and the threshold voltage VTh were
extracted and illustrated in Figure 3. With increasing temperature, IRev increased exponen-
tially from 1 × 10−7 A at 80 K to 1 × 10−5 A at 420 K, and VTh decreased from 0.65 V at
80 K to 0.2 V at 420 K.



Materials 2021, 14, 5909 4 of 12

Materials 2021, 14, x FOR PEER REVIEW 4 of 13 
 
 

 

 

 

Figure 1. PeakForce tapping AFM topography for (a) GaN, and (b) Au surfaces. (c) Rendered il- 115 
luminated 3D AFM image of GaN/Au frontier. (d) Height distribution functions obtained from the 116 
topography images. 117 

Surface roughness induces a non-uniformity of thickness, a distribution of interfa- 118 
cial charges, and a local variation of the Fermi level. These phenomena yield to the in- 119 
homogeneity of the Schottky barrier height and affect the transport mechanism [47]. 120 

Figure 2 depicts the I-V characteristics of the Au/0.8 nm–GaN/n–GaAs structure, at 121 
temperatures ranging from 80 to 420 K.  122 

The values of the reverse current IRev at −1 V and the threshold voltage VTh were ex- 123 
tracted and illustrated in Figure 3. With increasing temperature, IRev increased exponen- 124 
tially from 1 × 10−7 A at 80 K to 1 × 10−5 A at 420 K, and VTh decreased from 0.65 V at 80 K 125 
to 0.2 V at 420 K.  126 

 127 
Figure 2. I−V measurements of Au/0.8 nm–GaN/n–GaAs structure, (a) semi-logarithmic scale and 128 
(b) linear scale. 129 

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

(b)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.00

0.02

0.04

0.06

0.08

0.10

 

 

I (
A

)

V (V)

 

 

I 
(A

)

V (V)

 80
 100
 140
 180
 220
 260
 300
 340
 380
 420

Au/GaN (0.8nm)/n-GaAs

(a)

Figure 2. I−V measurements of Au/0.8 nm–GaN/n–GaAs structure, (a) semi-logarithmic scale and
(b) linear scale.
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Figure 3. Variation of reverse leakage current and threshold voltage versus temperature.

The expression of the current for non-ideal Schottky diodes is [48]:

I = Is

(
exp

(
q(V − IRs)

nkT

)
− 1

)
(1)

and

Is= AA∗T2
(
− qφb

kT

)
(2)

where, Is is the saturation current; Rs is the series resistance; qφb is the barrier height; n is
the ideality factor; k is the Boltzmann constant; A is the effective diode area, and A∗ is the
effective Richardson constant equal to 8.16 Acm−2K2 for GaAs.
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At the low bias voltage V, the current I is low, therefore the term IRs is low compared
to V, and (Equation (1)) becomes

I = Isexp
(

qV
nkT

)
(3)

and
ln(I) =

q
nkT

V + ln(Is) (4)

The n and Is values are calculated from the slope and y-intercept of ln(I)-V, respectively.
The φb value is determined as follows:

φb =
kT
q

ln
(

AA∗T2

Is

)
(5)

The Rs values are extracted using the Cheung and Cheung method [48] which is
based on

G(I) =
∂V

∂(lnI)
= Rs I +

nkT
q

(6)

The extracted values of n and qφb are plotted in Figure 4.
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As can be seen from Figure 4, with the rising temperature, n dropped from 2 for 80 K
to 1.1 for 420 K. The decrease was very slow from 250 K to 450 K, which is in accordance
with the literature [5–7,11,26]. The low values of n may have been due to the effect of the
nitridation process, which improves the quality of the interface. As the temperature rose,
qφb rose abnormally from 0.46 eV for 80 K to 0.83 eV for 420 K. These results were similar to
several studies [7,12,20,49–51]. For Schottky contacts, the qφb value should decrease as the
temperature rises, due to the bandgap’s temperature variation [1,2,7,48,50,52–54]. The qφb
behavior may be explained by tunnel effect mechanisms, such as thermionic field emission
(TFE) [5,11].

The tunneling current can be expressed following [1,12,55,56] as

I = Itun

[
exp

(
q(V − IRs

E0

)
− 1

]
(7)

E0

kT
=

E00

kT
cot h

(
E00

kT

)
(8)
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E00 =
h

4π

(
ND

m∗
e εs

) 1
2

(9)

where E00 is the characteristic tunneling energy; h is the Planck constant; m∗
e is the effective

mass of electron; and εs is the dielectric constant of GaAs. Figure 5 shows the variation of
(E0 = nkT/q) versus kT/q.
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From Figure 5, E0 is about kT/q, which confirms that the TFE mechanism is domi-
nant [26], not the theoretical mechanism TE of the Schottky contacts. This explains the
abnormal behavior of the barrier height and the deviation of the ideality factor from unity.
This may have been due to the interface states, which behaved as recombination–generation
centers that affected the conduction mechanism [57].

To further study the abnormal behavior of the barrier height, the Richardson charac-
teristic ln(Is/T2) versus q/kT is presented in Figure 6 using the equation

ln
(

Is

T2

)
= ln(AA∗ )− q

φbn

kT
(10)
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Figure 6 gives two linear regions which are due to the inhomogeneity of the barrier
height [12]. qφb and A∗ values are 1.02 eV and 4.15 × 103 Acm−2K−2 respectively in region
1 and equal to 0.19 eV and 3.6 × 1021 Acm−2K−2 respectively in region 2. These values of
A∗ are significantly far from the theoretical value 8.16 Acm−2K−2 for n-GaAs [52].

Figure 7 presents the variation of φb versus n.
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Figure 7. φb versus n.

The structure has two linear characteristics due to barrier height inhomogeneity [58,59].
By extrapolation, the estimated values of qφb for n = 1 are 0.87 eV for region 1, and
0.84 eV for region 2. These values are closer than those extracted from the Richardson
characteristics.

The authors of this work [5] previously performed simulations of Au/n–GaAs Schot-
tky at temperatures ranging from 80 to 400 K, with and without a thin GaN (1 nm) interfacial
layer. They found that Au/n–GaAs shows a homogeneous barrier height while Au/1 nm–
GaN/n–GaAs structure shows an inhomogeneous one. Therefore, the experimental results
shown here—-the inhomogeneity of the barrier height shown in the Richardson charac-
teristics and in the plot of qφb versus n—-are most likely because of the 0.8 nm GaN layer.
Figure 8 illustrates G(I) plots of the Cheung and Cheung method at temperatures 80–420 K.
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Rs and n were extracted by the Cheung and Cheung method for each temperature and
presented in Figures 9 and 10, respectively.
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As can be seen, the structure gives the low resistance series Rs, which decreased from
13.80 Ω at 80 K to 4.26 Ω at 420 K, showing the good quality of the interface improved by
nitridation and annealing [28].

The n values were very high at low temperatures compared to those extracted from
the first method. This discrepancy occurred because the n values obtained by the first
method were extracted from the low bias voltage range, where the series resistance is very
low. On the other hand, the n values extracted using the Cheung and Cheung method were
extracted from all bias voltage ranges, where the series resistance in high bias voltages
affects the calculation of the ideality factor.

Finally, the growth of a 0.8 nm of GaN layer on n-GaAs surfaces with an annealing
process led to improved electrical parameters of the Schottky contacts, such as the series
resistance and the ideality factor. However, it can cause the inhomogeneity of the barrier
height at the structure.

4. Conclusions

Au/0.8 nm–GaN/n–GaAs structures were fabricated using a glow discharge plasma
source (GDS), and their current–voltage characteristics were investigated for different
temperatures. The samples showed good electrical parameters where n decreased from 2
for 80 K to 1.01 for 420 K. The barrier height qφb grew abnormally from 0.46 eV at 80 K to
0.83 eV at 420 K, due to the tunnel mechanism TFE effect. In addition, the samples showed
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low Rs which dropped from 13.80 Ω at 80 K to 4.26 Ω at 420 K. Finally, the results strongly
suggested that the GaN thin layer caused an inhomogeneous barrier height, which was
also in agreement with our previous simulations [5].
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6. Zeyrek, S.; Bülbül, M.; Altındal, Ş.; Baykul, M.; Yüzer, H. The double gaussian distribution of inhomogeneous barrier heights in
Al/GaN/p-GaAs (MIS) schottky diodes in wide temperature range. Braz. J. Phys. 2008, 38, 591–597.

7. Hardikar, S.; Hudait, M.; Modak, P.; Krupanidhi, S.; Padha, N. Anomalous current transport in Au/low-doped n-GaAs Schottky
barrier diodes at low temperatures. Appl. Phys. 1999, 68, 49–55. [CrossRef]

8. Kumar, A.; Arafin, S.; Amann, M.C.; Singh, R. Temperature dependence of electrical characteristics of Pt/GaN Schottky diode
fabricated by UHV e-beam evaporation. Nanoscale Res. Lett. 2013, 8, 481. [CrossRef]

9. Osvald, J.; Horvath, Z.J. Theoretical study of the temperature dependence of electrical characteristics of Schottky diodes with an
inverse near-surface layer. Appl. Surf. Sci. 2004, 234, 349–354. [CrossRef]

10. Tunhuma, S.M.; Auret, F.D.; Legodi, M.J.; Diale, M. The effect of high temperatures on the electrical characteristics of Au/n-GaAs
Schottky diodes. Phys. B Condens. Matter 2016, 480, 201–205. [CrossRef]
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