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Abstract: Spectroscopic properties of neodymium-doped yttrium lithium fluoride were measured
at different temperatures from 35 K to 350 K in specimens with 1 at% Nd3+ concentration. The
absorption spectrum was measured at room temperature from 400 to 900 nm. The decay dynamics
of the 4F3/2 multiplet was investigated by measuring the fluorescence lifetime as a function of
the sample temperature, and the radiative decay time was derived by extrapolation to 0 K. The
stimulated-emission cross-sections of the transitions from the 4F3/2 to the 4I9/2, 4I11/2, and 4I13/2

levels were obtained from the fluorescence spectrum measured at different temperatures, using the
Aull–Jenssen technique. The results show consistency with most results previously published at
room temperature, extending them over a broader range of temperatures. A semi-empirical formula
for the magnitude of the stimulated-emission cross-section as a function of temperature in the 250 K
to 350 K temperature range, is presented for the most intense transitions to the 4I11/2 and 4I13/2

levels.

Keywords: Nd:YLF; stimulated-emission cross-section; thermal effects; solid-state laser; rare-earth
doped crystal; absorption; decay dynamics

1. Introduction

Nd-doped Yttrium Lithium Fluoride (Nd3+:LiYF4) is one of the most commonly used
solid-state laser elements for its long fluorescence decay time at room temperature, weak
thermal lensing, and natural birefringence [1–4].

It is usually optically pumped to the 4F5/2 level, or directly to the 4F3/2 upper laser
level, by 808 nm or 880 nm wavelength light, respectively, though recently laser operations
have also been achieved with 908 nm wavelength pump [5].

The three main decay channels lead to the 4I13/2, 4I11/2, and 4I9/2 levels, with the
emission of light at ~1.3 µm; ~1.0 µm, and ~0.9 µm wavelengths, respectively. The most
common Nd:YLF lasers, by far, operate at 1047 nm (π-polarization) and 1053 nm (σ-
polarization) because of the stronger intensity, but laser operation has also been achieved
for the other two final laser levels [4,6–8]. Figure 1 depicts the energy levels of interest
for laser applications, as well as the transitions that will be investigated in this work. We
are reporting the Stark multiplet energies as published by Zhang [9], other authors have
reported slightly different values [10,11].

Most of the previous investigations of the spectroscopic properties of Nd:YLF have
focused on the excitation and the decay of the Nd3+ 4F3/2 level at room temperature.
Although the decay dynamics of that level are in general considered well understood, there
is some inconsistency among the published values of the stimulated emission cross-section,
especially when estimated with different techniques [12,13]. There are also disagreements
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about the values of the absorption coefficient, the absorption cross-section, and the general
shape of the absorption spectrum in the 800–900 nm range, likely caused by low resolution,
inaccurate estimates of the dopant concentration, or the presence of contaminants [13–15].
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Figure 1. Partial energy level diagram of Nd:YLF crystal.

At higher or lower than room temperature, the thermal expansion [16], the thermal
lensing [17,18], and the wavelengths shift and width [10,11] have been modeled theoret-
ically or measured experimentally. Still, very few investigations reported the emission
spectrum variation with the temperature and only over a limited temperature range [15,19].
Knowledge of the temperature dependence of the absorption, decay dynamics, and emis-
sion of a rare-earth-doped crystal or glass, carries significant information for practical
applications. By controlling its operation temperature, one can tune the emission wave-
length and intensity, or optimize the pump efficiency, of a solid-state laser [20,21]. Some
studies have also shown the possibility of obtaining temperature-independent lasers [22,23].
For laser using birefringent or triaxial crystals as a gain medium, one can look for tem-
peratures where the emission at different polarizations occurs with the same intensity.
Following a 1969 pioneering work by Harmer [14], recently Cho et al. [15] obtained simul-
taneous laser emission with the same intensity, orthogonally-polarized, at 1047 nm and
1053 nm by properly cooling the Nd:YLF crystal at cryogenic temperature. Optimization of
the simultaneous laser performance was accomplished by finely tuning the operating tem-
perature of the crystal. Still, no detailed investigation of the main spectroscopic parameters
(cross-section and lifetime of the observed transition) has been investigated.

In this work, we present the emission spectrum and the stimulated emission cross-
section of the three main decay channels of the 4F3/2 state of Nd3+ in LiYF4, at different
temperatures from ~35 K to ~350 K. Moreover, we present semi-empirical formulas that
allow one to estimate the stimulated emission cross-section as a function of the sample
temperature for a few selected wavelengths of possible use for laser purposes. Finally, the
absorption and the emission spectra collected in this work at room temperature will be
used to discuss some of the partial inconsistencies reported in the literature.

The stimulated emission cross-sections were obtained from the measured emission
spectra using the Aull–Jenssen technique [24]; a detailed description of this method can be
found in the investigations published by these authors for Nd:YAG [20] and Nd:YVO4 [25].
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2. Materials and Methods

Two Nd:YLF samples were provided by VLOC (New Port Richey, FL, USA) and by
ACMaterials (Tarpon Springs, FL, USA). Both were about 1 × 2.5 × 5 mm, with a nominal
Nd3+ concentration of 1 at%, and were oriented with the optical c axis along the longest
dimension.

The absorption spectrum was measured at room temperature using a Cary 500 spec-
trometer (Agilent, Santa Clara, CA, USA). The resolution of the spectrometer was set to
0.5 nm full width at half maximum (FWHM), and the wavelength was changed at 0.125 nm
intervals.

The fluorescence emission spectra and lifetime measurements were performed in a
pressurized helium cryostat combined with a heater and a temperature controller. In the
fluorescence spectroscopy measurements, the sample was pumped to the Nd3+ 4F3/2 level
by a continuous, 1 W diode laser emitting around 800 nm. The power of the pump laser
was monitored during data acquisition, and the collected spectra were corrected for the
pump variations, which were less than 1%. The emitted fluorescence, after polarization
selection, was measured through a monochromator whose resolution was set to 0.5 nm
FWHM. The transmission of the monochromator was calibrated through a tungsten-quartz
halogen lamp of known intensity at all wavelengths.

The decay dynamic of the Nd3+ 4F3/2 state was investigated by pumping the sample to
the Nd3+ 4F3/2 level with a pulsed optical parametric amplifier, set to generate a 4 ns FWHM
pulse with energy around 100 mJ/pulse at ~808 nm and 10 Hz repetition rate. The emitted
luminescence, after polarization selection, was collected by a fast germanium-detector
(response time ~100 ns) and then processed by a digital oscilloscope.

3. Results
3.1. Absorption and Decay Dynamics

The absorption spectra of the two samples are very similar, though the VLOC specimen
shows systematically slightly higher absorption at all wavelengths probably due to a
slightly different actual doping level in the sample. As the differences are 10% or less,
they will be ignored, and in the rest of this work, we will present the average of the
measurements of the two samples.

A 1% Nd concentration in Nd:YLF corresponds to 1.40 × 1020 ions/cm3 as can be
determined by the YLF unit-cell dimensions a = 0.5(2) nm; c = 1.09 nm [12,14,16]. Assuming
this value, the absorption cross-sections as depicted in Figure 2 were obtained for σ-
polarized and π-polarized light at room temperature.

The peak absorption occurs around 792 nm for π-polarized light with a cross-section
of 1.2 × 10−19 cm2. For σ-polarized light, the strongest absorption in the 790 nm region
occurs at 797 nm, with a cross-section of 0.25 × 10−19 cm2, though the absorption peak
around 733 nm seems to have an even slightly larger cross-section of 0.28 × 10−19 cm2.

When compared with literature, our results are in agreement with Cho et al. [15],
Fornasiero et al. [2], and Ryan and Beech [13] but the latter for σ-polarized light only. The
π-polarized absorption spectrum by Ryan seems to have a worse resolution than ours,
which would explain the difference. It is not clear what might cause the gross disagreement
with the absorption spectra as published by Harmer [14], whose absorption coefficients,
once rescaled to 1% dopant, are a factor 4 lower for σ-polarized light and a factor 10 lower
for π-polarized light than our results.

An example of a typical exponential decay from the 4F3/2 state is shown in Figure 3(Left).
Figure 3(Right) depicts the fluorescence decay time as recorded at different temperatures, all
of which can be accurately reproduced by a single exponential. At the pump intensities used
in this investigation, we do not see a significant contribution of the higher-order effects such
as excited state absorption or energy transfer upconversion, described by Chuang et al. [26]
and Zuegel et al. [27]. The trend of the fluorescence lifetime versus temperature shows a
constant, approximately linear, increase from the room temperature value of 476 µs toward
lower temperatures; by extending the linear trend, we estimate a radiative lifetime of 530 µs.
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The accepted value of fluorescence lifetime for 1 at% doping concentration is ~480 µs at
room temperature [1], and the estimates of the radiative lifetime range between 510 µs and
550 µs [13,14]. Therefore, both the room temperature fluorescence lifetime and radiative
lifetime extrapolated at low temperatures by us are in good agreement with the published
values.
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Figure 3. (left) Fluorescence decay of 1% Nd:YLF, 4F3/2 level at the temperature of 30 K (red and 300
K (black). (right) Measured lifetime vs. sample temperature, the continuous line is a linear best fit.

3.2. Stimulated Emission Cross-Section

3.2.1. Decay to the 4I11/2 Level

Figure 4 depicts the stimulated emission cross-section of the main transition from the
4F3/2 to the 4I11/2 level at three different temperatures. The spectra measured in the two
investigated samples agree within 10%, so only their average is presented.
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Figure 4. Emission cross-section of the 4F3/2 → the 4I11/2 transition for π–polarized (Red) and
σ–polarized (Blue) light, at three temperatures: (a) T = 300 K; (b) T = 150 K; (c) T = 35 K.

At room temperature, the cross-section of the two most intense transitions at 1047 nm
(π-polarization) and 1053 nm (σ-polarization) are consistent with the values measured by
Pollak [1] and by Fornasiero [2], who both used the same technique as the present authors,
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and with Ryan and Beech [13] who instead applied the Judd–Ofelt technique. On the
contrary, the estimates from Maldonado [12] based on the measurement of the laser gain
are ~60% higher; this could be due to the different dopant concentration of their sample,
namely 0.6 at% rather than 1 at%, or to a somehow lower accuracy of the chosen method.
At temperatures ~150 K, the peak emission has the same intensity for both polarizations,
consistent with Cho’s finding of the 138 K to 170 K interval (depending on the pump
intensity) as the ideal temperature to achieve laser operations with the same laser output
power for the two polarizations [15]. When the temperature is further lowered, the cross-
section for π–polarized light drops dramatically, and at ~35 K the σ–polarized emission at
1052.6 nm dominates the spectrum. When the temperature increases, the peak emission
constantly shifts toward a longer wavelength at a rate of approximately 4 nm/1000 K and
2 nm/1000 K for π-polarization and σ-polarization, respectively. Lasers are mostly operated
at a temperature between 250 K to 350 K; as depicted in the inset of Figure 5, the peak
intensity of the stimulated emission cross-section within that interval varies approximately
linearly. By a simple best-fit regression, one obtains the semi-empirical formulas:

σEM = 2.6 × 10−19 (cm2) − 3 × 10−22 (cm2/K) × T(K) π-polarization

σEM = 1.6 × 10−19 (cm2) − 2 × 10−22 (cm2/K) × T(K) σ-polarization
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Figure 5. Stimulated emission cross-section for the peak emission at ~1047 nm (π-polarization, red)
and at ~1053 nm (σ-polarization, blue) as a function of the temperature. The full lines in the inset are
a linear best-fit in the 250 K–350 K temperature range.

A temperature increase of 10 K results in the reduction of the emission by ~2%, which
is similar to what was observed in Nd:YAG [20] and about half of Nd:YVO4 [25]. Though
difficult to estimate from Figure 6c of [21], Nd:KGW crystals seem to have a somehow
lower dependence on the temperature.
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Figure 6. Emission cross-section of the 4F3/2 → the 4I13/2 transition for π–polarized (Red) and
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3.2.2. Decay to the 4I13/2 Level

Figure 6 depicts the stimulated emission cross-section for the decay of the 4F3/2 level
to the 4I13/2 at three different temperatures. When compared with the measurements by
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Fornasero et al. at room temperature [2], the spectra from the top panel of Figure 6 have
the same overall shape and intensities about 40% higher at all wavelengths. Around room
temperature, the strongest emission occurs at 1314 nm for σ–polarized light and at 1314 nm
and 1322 nm for π–polarized light. For laser purposes, 1314 nm seems an interesting choice
since its emission cross-section is almost the same for both polarizations and remains so
at least until liquid nitrogen temperatures. For that wavelength, in the 250 K to 350 K
temperature range, the peak emission constantly shifts toward longer wavelength at a rate
of approximately 6 nm/1000 K, and the peak emission has a linear trend well reproduced
by formulas:

σEM = 7.5 × 10−20 (cm2) − 1.6 × 10−22 (cm2/K) × T(K) π-polarization

σEM = 7.5 × 10−20 (cm2) − 1.4 × 10−22 (cm2/K) × T(K) σ-polarization

A temperature increase of 10 K results in the reduction of the emission by ~5%, thus
showing a stronger dependence on the temperature than the emission around 1047 nm and
1053 nm associated with the decay to the 4I11/2 level.

When the temperature approaches 35 K, the σ–polarized emission at 1317 nm and
the π–polarized emission at 1325 nm rapidly increase, dominating the emission spectrum
(bottom panel of Figure 6).

3.2.3. Decay to the 4I9/2 Level

The investigation of the decay to the 4I9/2 levels is somehow more challenging. First,
since the 4I9/2 is also the Nd3+ ground state, reabsorption is expected. To estimate the
amount of reabsorption at room temperature, we applied the reciprocity method [28] to
extract the stimulated-emission cross-section from the absorption cross-section. In Figure 7
the emission cross-section as obtained by reciprocity and by the Aull–Jenssen technique
are compared, together with the measured absorption spectrum. For π-polarization, re-
absorption only affects the peak at 863 nm, whereas for σ-polarization, the Aull–Jenssen
technique seems to overestimate some of the emission peaks.

A second issue, specific to our investigation, was the low transmission of the monochro-
mator for wavelengths shorter than 900 nm, resulting in noisy spectra, especially for tem-
peratures below 70 K. For this reason, we will limit our investigation of the 4F3/2 → 4I9/2
transition to temperatures of 100 K or higher. It should be noticed that the contribution of
the peaks in the 850–900 nm region to the total area of the emission spectrum is minor. Thus,
any possible inaccuracy caused by reabsorption of excessive noise when the Aull–Jenssen
technique is applied has negligible effects on the estimate of the emission cross-section of
the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions.

Figure 8 depicts the stimulated emission cross-section for the 4F3/2 to 4I9/2 transition at
room temperature and 100 K. The spectrum at room temperature is in reasonable agreement
with what Ryan et al. [13] obtained through the Judd–Ofelt technique, except for the peak
around 863 nm for π–polarization, and the intensity of the peaks at 903 nm and 908 nm are
about 70% of the values reported by Zhang [29].
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Figure 8. Emission cross-section of the 4F3/2 → the 4I9/2 transition for π–polarized (Red) and
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4. Conclusions

In this work, we investigated the absorption cross-section at room temperature and
the emission lifetime and cross-section at different temperatures in the 35 K to 350 K range
of 1 at% Nd:YLF crystals. The results are consistent with most previously published works
and extend them over a broader temperature and/or wavelength range. In particular,
we derived two sets of semi-empirical formulas that allow one to predict the stimulated
emission cross-section of the peak emission at 1047 nm and 1053 nm (4F3/2 → 4I11/2
transition) and at 1314 nm (4F3/2 → 4I13/2 transition) in the 250–350 K temperature range.
We also confirmed Cho’s results that at around 150 K, the peak emission of the 4F3/2 →
4I11/2 transition has the same cross-section for the π– and the σ–polarization, and showed
that a similar situation occurs for the peak emission of the 4F3/2 → 4I13/2 transition, but
in that case over a broad range of temperatures and with the two emissions at the same
wavelength, though with a less strength.
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