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Abstract: In the present work, for the first time, free vibration response of angle ply laminates
with uncertainties is attempted using Multivariate Adaptive Regression Spline (MARS), Artificial
Neural Network-Particle Swarm Optimization (ANN-PSO), Gaussian Process Regression (GPR),
and Adaptive Network Fuzzy Inference System (ANFIS). The present approach employed 2D C0

stochastic finite element (FE) model based on the Third Order Shear Deformation Theory (TSDT)
in conjunction with MARS, ANN-PSO, GPR, and ANFIS. The TSDT model used eliminates the
requirement of shear correction factor owing to the consideration of the actual parabolic distribution
of transverse shear stress. Zero transverse shear stress at the top and bottom of the plate is enforced to
compute higher-order unknowns. C0 FE model makes it commercially viable. Stochastic FE analysis
done with Monte Carlo Simulation (MCS) FORTRAN inhouse code, selection of design points using
a random variable framework, and soft computing with MARS, ANN-PSO, GPR, and ANFIS is
implemented using MATLAB in-house code. Following the random variable frame, design points
were selected from the input data generated through Monte Carlo Simulation. A total of four-mode
shapes are analyzed in the present study. The comparison study was done to compare present work
with results in the literature and they were found in good agreement. The stochastic parameters are
Young’s elastic modulus, shear modulus, and the Poisson ratio. Lognormal distribution of properties
is assumed in the present work. The current soft computation models shrink the number of trials
and were found computationally efficient as the MCS-based FE modelling. The paper presents a
comparison of MARS, ANN-PSO, GPR, and ANFIS algorithm performance with the stochastic FE
model based on TSDT.

Keywords: mode shape; angle ply laminate; finite element; Monte Carlo Simulation; MARS; GPR;
ANN-PSO; ANFIS

1. Introduction

In the 20th century, a comprehensive application of evolutionary computation control
has led to the evolution of very efficient finite element models to analyze complex structural
problems. Regardless of the developments in the computation that thoroughly aids the
finite element model, the computational cost and time to perform finite element simulations
for the analysis of complex engineering structure make it infeasible and uneconomical. The
dynamic response of angle ply laminates with uncertainties using FE software is a complex
phenomenon and requires significant computational facilities. This makes the application
of finite element models quite inappropriate in Monte Carlo Simulations (MCS). MCS
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requires very intensive computation. A huge number of simulations are required for MCS-
dependent stochastic analysis. In such instances, it will be quite fruitful to work with soft
computational models, i.e., the application of artificial intelligence in complex structural
engineering problems. The application of soft computation models in characterizing
the probabilistic reply produced due to the uncertainty present in composite structure
has significant demand for assessing the overall response of the composite structure. A
substantial application of the laminated composite plates in civil, aerospace, automobile,
and marine works has made it a popular research subject so that optimum performance
could be achieved. The vibration produced in the plate is a function of the stacking
angle, skew angle, and material properties of the laminated composite plate. Hybrid
means that more than one material is used in the production of a composite structure. A
hybrid angle ply laminated composite plate provides excellent mechanical behavior. The
basic characteristics of a hybrid angle ply laminated composite plate are affected by the
sheet-to-sheet assembly of ply and deviations in material properties of ply along with the
thickness. It has a complex production and fabrication process, which led to the variation
in different structural properties from its mean value. Thus, an appropriate explanation
and suitable understanding of the actual response generated due to variation produced
are required. For this, it is primarily necessary to account for all the inherent variations
produced in the production and fabrication process. With conventional methods like
finite element analysis aided with Monte Carlo Simulation (MCS), stochastic vibration
analysis of hybrid composite plate is uneconomical and time-consuming; henceforth, the
application of the soft computing model for assessing the response generated in the plate
due to unavoidable uncertainty could lead the researcher to the new insight. Since a variety
of soft computation models are available, choosing a particular model for uncertainty
evaluation in the composite structure may give rise to an obvious question of why this
technique is better than others and on what basis the present soft computation model is
selected. This question is answered with a proper literature survey and by showing the
merits of the present soft computing model over the previously used model. Further, this
paper presents a broad comparative assessment of a few state-of-the-art soft computation
models with each other and with the most reliable Monte Carlo Simulation-Based Finite
Element Models (MCS-FEM). Various soft computation models presented in the paper
are Gaussian Process Regression (GPR), Multivariate Adaptive Regression Spline (MARS),
Particle Swarm Optimization Aided Artificial Neural Network (PSO-ANN), and Adaptive
Network Fuzzy Inference System (ANFIS). The first two soft computing models are state-
of-the-art regression models and the other two models are an advanced version of Artificial
Neural Networks (ANN) with efficient learning capability. A brief literature survey on the
analysis of the composite structures and different soft computation modelling techniques
are presented below.

Reddy and Khdeir [1] presented buckling and vibration analysis of composite lami-
nates under different boundary conditions. For the purpose, Reddy and Khdeir [1] used
Classical Plate Theory (CPT), first-order plate theory, and third-order plate theory and
concluded that CPT over-predicts the natural frequencies, but at the same time, higher-
order theory gives much more accurate results than CPT. Fares and Zenkour [2] performed
free vibration and buckling analysis of laminated composite plates with various plate
theories and concluded that classical plate theory is inadequate in presenting an accurate
response of the structure. Lin [3] studied the reliability prediction of the laminated com-
posite plate with random system parameters subjected to a transverse load. Using C0 finite
element and MCS, Singh et al. [4] presented a study over nonlinear analysis of a composite
plate with material uncertainty. Kayikci and Sonmez [5] studied the design of composite
laminates for the optimization of the frequency response of the composite plate. With
random field properties and model uncertainty, Batou and Soize [6] presented stochastic
modelling and identification of an uncertain ambiguous computational dynamic model.
Mahi et al. [7] adopted the hyperbolic shear deformation theory for free vibration analysis
of isotropic, FG, sandwich laminated composite plates. Using C0 finite element method
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based on higher-order shear deformation theory (HSDT), Kumar and Chakrabarti [8] per-
formed a failure analysis of the laminated composite skew plate. Using nine-noded 2D
C0 isoparametric element, Ansari et al. [9] studied CNT-reinforced functionally graded
plates (FGP) for flexural and free vibration. Chaubey et al. [10] presented the vibration of
laminated composite shells with cut-outs using C0 finite element formulation based on
TSDT. Using first-order shear deformation theory (FSDT), Chaudhuri et al. [11] studied
five-mode shape analysis of hyper shell with cut-out and concluded that free vibration
mainly depends upon boundary conditions rather than other parameters. With improved
shear deformation theory (ISDT), Anish et al. [12] analyzed bi-axial buckling of a laminated
composite plate with cut-out and additional mass. By modelling uncertain material proper-
ties of FGPs with a multiple-imprecise-random-field model, Minh et al. [13] performed a
hybrid uncertainty analysis of FGPs. Using a four-variable quasiHSDT, Khiloun et al. [14]
presented an analytical model of bending and vibration of thick advanced composite plates.
Using the smoothed particle hydrodynamics and finite element model, Zhou et al. [15]
analyzed laminated composite plates for bird impact resistance. Dhakal and Sain [16]
investigated the effect of unidirectional carbon fiber hybridization on the enhancement of
mechanical properties of flax epoxy composite laminates. With hybrid titanium-carbon
laminates subjected to low-velocity impact, Jakubczak et al. [17] investigated it for various
layer thicknesses. Ostapiuk and Bieniaś [18] performed fracture analysis and shear strength
of aluminium/CFRP and GFRP adhesive joint in fiber metal laminates.

GPR is a state-of-the-art regression model with a Bayesian and statistical theory
framework [19]. It is a kind of probabilistic regression that is extensively used for high-
dimensional problems. When compared with other regression models like ANN, SVM,
Random forest method, etc., GPR is easy to implement. It is very flexible and self-adaptive
and hence regulates hyperparameters very conveniently. Due to these advantages, GPR is
widely used to decipher approximation problems and capture the complex relationship
between the variables. Besides, GPR gives uncertainty estimates for predictions and thereby
makes the regression model more relatable and efficient. Anderson et al. [20], using GPR,
analyzed composite plate dynamics. Kang et al. [21], using GPR, studied the stability
evaluation method for slopes and observed that GPR gives a better result than ANN
and SVM. Dutta et al. [22] used GPR to predict the compressive strength of concrete and
observed that the performance of GPR is better than ANN.

ANN is a powerful artificial intelligence tool used in many dynamic research areas.
Many complex, diverse, and advanced applications of engineering follow the use of ANN.
Though ANN captures most of the significant factors required to predict the input and
output relationship, it has limitations of slow learning rate and getting trapped into local
minima. To counter these limitations, the application of PSO (Particle Swarm Optimiza-
tion), an optimization algorithm, has been done in the present work in conjunction with
ANN. PSO is a robust global search algorithm, and it follows a commanding population-
based stochastic approach to tune the weights and biases of ANN. Mahdiyar et al.’s [23]
hybrid ANN-PSO model has been successfully applied in engineering. The advantage
of using the PSO algorithm over the other conventional training algorithm, for instance,
Back-Propagation (BP), is that the potential solution will be flown through the problem hy-
perspace with accelerated movements towards the best solution. Thus, in ANN-PSO, PSO
during the training phase results in obtaining the weights and biases configuration, which
is associated with the minimum output error. Using ANN and GA, Roseiro et al. [24] exe-
cuted a study to determine the material constants of a composite laminate. Lopes et al. [25]
performed a reliability analysis of a laminated composite plate using finite element anal-
ysis (FEA) and ANN using MCS as a sampling method. Tawfik et al. [26] used MCS,
second-order reliability method (SORM), FEA, and ANN to implement reliability analysis
of laminated composite plates in free vibration. Nguyen et al. [27] used PSO to optimize the
parameters of ANN for the problem of ground response approximation in short structures
and concluded that it offers higher reliability than simple ANN.
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MARS is a regression model. It relates response with multiple input variables (high-
dimensional data). To establish the relationship between input and response variables,
MARS employs the basis functions series. To obtain good results with MARS, input
variables should not be highly correlated and no data should be missing. Francis [28] in
his work presented a comparison between Neural Network and MARS. For uncertainty
quantification in a composite plate, Dey et al. [29] employed several algorithms along
with MARS. With MARS, ELM, and ANFIS, Dutta et al. [30] predicted the strength of
self-compacting concrete in compression and found that strength predicted by ANFIS is
better when compared with ELM and MARS. To analyze the dynamics and stability of
sandwich plates, Dey et al. [31] employed MARS using arbitrary system parameters. To
design the GFRP composite, Kalnins et al. [32] employed MARS and partial polynomials.

Neuro-fuzzy schemes are widely used for those problems that have ambiguous and
vague information. Artificial neural networks (ANNs) and fuzzy inference systems (FIS)
are complementary machine learning technologies, and together these form adaptive
intelligent systems. ANFIS is based on the Takagi–Sugeno fuzzy inference system [33]. It
translates the information learned during network training into a set of fuzzy rules and
represents the input/output relationship more clearly. Ceylan et al. [34] applied ANFIS and
ANN to predict earthquake load reduction factors of a prefabricated industrial building
and found that ANFIS is more efficient than ANN. Khademi et al. [35] applied ANN and
ANFIS for predicting the strength of recycled aggregate concrete. With uniaxial in-plane
compressive load subjected to steel plates with pitting corrosion, Wang et al. [36] applied
ANFIS to predict the ultimate strength. Hassanzadeh et al. [37], using ANFIS and TLBO,
performed an experimental and numerical investigation to estimate bridge pier scour.

These metamodels give the approximate result of the analysis very quickly, efficiently,
and also provide an understanding of the relationship between the various parameters.
For characterizing the probabilistic behaviour of various mode shape of the present hybrid
angle ply laminated composite plate, the employed soft computation metamodel does not
require reliability function in advance as in the case of the first-order reliability method
(FORM) and second-order reliability method (SORM). Along with it, these metamodels
provide inclusive and well-organized sample space which provides an efficient result with
negligible loss in accuracy. From the last few decades, the research community has given
immense attention to the stochastic analysis of complex structures, which led to more
convincing analysis and design of such a complex structural system. In the present paper,
the authors have adopted a layer-wise random variable approach as material properties are
varied layer-wise for Monte Carlo Simulation. Monte Carlo Simulation-based stochastic
approach needs a large number of simulations for characterizing the behaviour of laminated
composite plate due to the random nature of stochasticity present in input parameters,
and in this context, soft computation models have gained popularity as they reduce the
computational load to a great extent and characterize the structure very conveniently and
efficiently since metamodels require a very limited number of simulations for doing so.
Most of the investigation done for the laminated composite plate is deterministic and lacks
a comprehensive explanation for structural responses generated due to stochasticity in
material properties. To date, a study of stochastic analysis of the mode shape of a hybrid
angle ply laminated composite plate is not found in the literature with the present state-
of-the-art soft computing model. The novelty of the article is a probabilistic description
of four-mode shapes of hybrid angle ply laminated composite plates with MCS-FEM and
efficient metamodels GPR, MARS, PSO-ANN, and ANFIS and showing the advantage of
metamodels over FE model, as in earlier published articles, no or very limited work is
found on mode-shape analysis using soft computation metamodels. The present work is
the first attempt on mode shape analysis of a hybrid angle ply laminated composite plate
using 2D C0 FE formulation based on TSDT in conjunction with MCS-FEM, GPR, MARS,
PSO-ANN, and ANFIS. A comparative assessment is made for the models employed in the
present work and it is shown that the ANFIS model dominates the other models in terms
of precision though the result predicted by each model is in agreement with the MCS-FEM.
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Concerning soft computation models, mode shape analysis of laminated composite plate
is not sufficient, and henceforth, comparative analysis of these techniques concerning the
accuracy and computational efficiency is very rare to find in published articles.

2. Formulation
2.1. Mathematical Formulation

A hybrid angle-ply laminated composite plate with sides ‘a’ and ‘b’ along the X and Y
axes is shown in Figure 1.
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The reference plane of the hybrid laminated plate with random alignment and a fixed
number of laminae is defined at −z = 0. Displacement fields as per Reddy [38] are shown
in Equation (1):

u
v
w

 =


uo
vo
wo

+ z


θx
θy
0

+ z2


ϕx
ϕy
0

+ z3


χx
χy
0

 (1)

where u, uo, and θy are the displacement, midplane displacement, and rotation of normal
along the X-axis respectively. v, vo, and θx are the displacement, midplane displacement,
and rotation of normal along the y-axis, respectively. w and wo are the displacements and
midplane displacement along z-axis, respectively. ϕx, χx, ϕy, χy are higher-order terms.
These terms are evaluated by taking the transverse shear stress zero at the top and bottom
of the plate. Refined displacement fields produced by considering zero transverse shear
strain at the top and bottom of laminated composite plate i.e., at ±h/2 [38], and from this
the following equation is obtained:

u = uo + zθx

(
1− 4z2

3h2

)
− 4z3

3h2

(
∂w
∂x

)
= uo + zθx

(
1− 4z2

3h2

)
− 4z3

3h2 ψ∗x

v = vo + zθy

(
1− 4z2

3h2

)
− 4z3

3h2

(
∂w
∂y

)
= vo + zθy

(
1− 4z2

3h2

)
− 4z3

3h2 ψ∗y
w = wo

(2)

where {ψ∗x} = ∂w
∂x and ψ∗y = ∂w

∂y , h is the thickness of the laminated composite plate.
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In the present study, C0 finite element model has been developed based on the
TSDT [38] for laminated composite plates. The actual displacement fields require C1

continuity of the transverse displacement for the finite element implementation. To avoid
the difficulties associated with the C1 continuity requirement, the derivatives of w with
respect to x and y are expressed as follows:

{ψ∗x} = ∂w
∂x and ψ∗y = ∂w

∂y , which help to define all the nodal variables as C0 continuous.
Linear strain-displacement equations are written as:

εxx =
∂u
∂x

, εyy =
∂v
∂y

, γxy =
∂v
∂x

+
∂u
∂y

, γxz =
∂u
∂z

+
∂w
∂x

, γyz =
∂v
∂z

+
∂w
∂y

(3)

With the help of the above equation, the following equation is obtained:


εxx
εyy
γxy

 =


εx0
εy0
εxy0

+ z


θx,x
θy,y

θx,y + θy,x

− 4z3

3h2


(Kx + K∗x)(
Ky + K∗y

)(
Kxy + K∗xy

)
{

γxz
γyz

}
=

{
φx
φy

}
+ z
{

Kxz
Kyz

}
− 4z2

3h2

{
K∗∗xz
K∗∗yz

}
+ 4z3

3h2

{
K∗xz
K∗yz

} (4)

where
{

εxo, εxyo, εyo
}

=
{

uo,x, uo,y + vo,x, vo,y
}

,
{

φx, φy
}

=
{

wo,x + θx, wo,y + θy
}

,{
Kx, K∗x , Ky, K∗y , Kxy, K∗xy

}
=

{
θx,x, ψ∗x,x, θy,y, ψ∗y,y, θx,y + θy,x, ψ∗x,y + ψ∗y,x

}
, and{

K∗∗xz , K∗∗yz

}
=
{

θx + ψ∗x , θy + ψ∗y

}
.

Henceforth, by adopting the standard procedure of FEM, the element matrices are
assembled which results in global stiffness matrices.

2.2. Finite Element Formulation

Figure 2 shows a nine-noded isoparametric C0 element. Each node has seven un-
knowns. It is utilized to frame the FE model employed in the present study.

Materials 2021, 14, x FOR PEER REVIEW 6 of 28 
 

 

𝑢 = 𝑢 + 𝑧𝜃 1 − 4𝑧3ℎ − 4𝑧3ℎ 𝜕𝑤𝜕𝑥 = 𝑢 + 𝑧𝜃 1 − 4𝑧3ℎ − 4𝑧3ℎ 𝜓∗ 
𝑣 = 𝑣 + 𝑧𝜃 1 − 4𝑧3ℎ − 4𝑧3ℎ 𝜕𝑤𝜕𝑦 = 𝑣 + 𝑧𝜃 1 − 4𝑧3ℎ − 4𝑧3ℎ 𝜓∗ 𝑤 = 𝑤  

(2)

where {𝜓∗} = and 𝜓∗ = , h is the thickness of the laminated composite plate. 
In the present study, C0 finite element model has been developed based on the TSDT 

[38] for laminated composite plates. The actual displacement fields require C1 continuity 
of the transverse displacement for the finite element implementation. To avoid the diffi-
culties associated with the C1 continuity requirement, the derivatives of w with respect to 
x and y are expressed as follows: {𝜓∗} =  and 𝜓∗ = , which help to define all the nodal variables as C0 continuous. 

Linear strain-displacement equations are written as: 𝜀 = ,𝜀 =  , 𝛾 = + , 𝛾 = + , 𝛾 = +  (3)

With the help of the above equation, the following equation is obtained: 𝜀𝜀𝛾 = 𝜀𝜀𝜀 + 𝑧 𝜃 ,𝜃 ,𝜃 , + 𝜃 , − 4𝑧3ℎ (𝐾 + 𝐾∗)(𝐾 + 𝐾∗)(𝐾 + 𝐾∗ )  𝛾𝛾 = 𝜙𝜙 + 𝑧 𝐾𝐾 − 4𝑧3ℎ 𝐾∗∗𝐾∗∗ + 4𝑧3ℎ 𝐾∗𝐾∗  

(4)

where 𝜀 , 𝜀 , 𝜀 = 𝑢 , , 𝑢 , + 𝑣 , , 𝑣 , , 𝜙 ,  𝜙 = 𝑤 , + 𝜃 ,  𝑤 , + 𝜃 , 𝐾 ,  𝐾∗,  𝐾 ,  𝐾∗,  𝐾 ,  𝐾∗ = 𝜃 , ,  𝜓 ,∗ ,  𝜃 , ,  𝜓 ,∗ ,  𝜃 , + 𝜃 , ,  𝜓 ,∗ + 𝜓 ,∗ , and 𝐾∗∗,𝐾∗∗ = 𝜃 + 𝜓∗,  𝜃 + 𝜓∗ . 
Henceforth, by adopting the standard procedure of FEM, the element matrices are 

assembled which results in global stiffness matrices. 

2.2. Finite Element Formulation 
Figure 2 shows a nine-noded isoparametric C0 element. Each node has seven un-

knowns. It is utilized to frame the FE model employed in the present study. 

 
Figure 2. Nine-noded isoparametric elements with typical node numbering and Gauss points. 

Figure 3 shows the present plate with a mesh size of 20 × 20. 

Figure 2. Nine-noded isoparametric elements with typical node numbering and Gauss points.

Figure 3 shows the present plate with a mesh size of 20 × 20.
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For a typical element on the middle surface, unknown nodal vector {d} is expressed by:

{d} =
9

∑
i=1

Ni(x, y){di} (5)

here, Ni is the interpolating shape function and di is an unknown nodal vector that belongs
to the ith node.

Concerning the global displacement, the generalized mid-plane strains can be ex-
pressed as:

{ε} =
9

∑
i=1

[Bi]{di} (6)

here, [Bi] is the interpolation function differential operator matrix.
Using the expression mentioned above, the element stiffness matrix is evaluated and

stated as:

[Ke] =
∫ 1

−1

∫ 1

−1
[B]T [D][B]|j|dxdy (7)

[Me] =
∫ 1

−1

∫ 1

−1
[N]T [m][N]|j|dxdy (8)

here, [N], [m], and |j| represent shape function, inertia matrix, and determinant of the
Jacobian matrix, respectively.

The natural frequency produced during free vibration is evaluated using the follow-
ing equation:

[K]− w2
n[M] = [0] (9)

where w is the fundamental natural frequency of the hybrid angle ply laminated composite
plate. The matrices K and M are the element stiffness matrix.

2.3. Gaussian Process Regression (GPR)

Gaussian process (GP) is a normal stochastic process, i.e., it has a joint Gaussian
distribution [39]. Gaussian process (f (x)) is parametric, and it is parameterized with mean
and kernel or covariance function evaluated at points x and x′. A Gaussian function is
defined in the equation below:

m(x) = E( f (x))
Cov( f (x), f (x′)) = k(x, x′ : θ) = E(( f (x)−m(x))( f (x′)−m(x′)))

(10)

where θ is hyperparameters set. Henceforth, a Gaussian process f (x) is written as:

f (x) ∼ GP
(
m(x), k

(
x, x′

))
(11)
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This implies that f (x) is distributed as a GP with mean m(x) and covariance k (x, x′).
GPR is a non-parametric Bayesian model which is generally used to solve non-linear

regression problem. Response variable y can be related to input variable x via fundamental
regression function f (x) with random uniformly distributed noise (ε) by the following
equation:

yi = f (xi) + ε (12)

ε (noise) has mean = 0 i.e., m(x) = 0 and variance = 0 i.e., σn
2 = 0, and it is expressed as:

ε = N
(

0, σ2
n

)
The Gaussian process represented in the above equation becomes:

f (x) ∼ GP
(

m(x), k
(
x, x′

)
+ σ2

n I
)

(13)

here I is the identity matrix. Depending on the noise ε and the GP’s marginalization
property, the joint distribution of the train output y at train points X and test output f* at
test points X* is expressed as:[

y
f∗

]
∼
([

m(X)
m(X∗)

]
,
[

k
(
X, X + σ2

n
)

k(X, X∗)
k(X∗, X) k(X∗, X∗)

])
(14)

A kernel or covariance function is the principal element in a GPR model. Hence,
choosing the appropriate kernel function is important for the evaluation of the sample
function being moulded. There are several kernel functions used in literature as per the
suitability of data. For the present paper, the rational quadratic covariance function is used.

2.4. Multivariate Adaptive Regression Spline (MARS)

MARS model is an extended version of a linear model having non-parametric nature.
It is suitable for data that are linear but also contain some sort of non-linearity.

The MARS develops the model in two phases. Initially, it splits the data into splines
and creates knots at end of the splines [40] as shown in Figure 4.
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Basis functions characterize the data in each spline. A basis function represents a
regression equation between two knots having a specific slope (Figure 4) and describes the
relationship between multiple input variables and responses. MARS examines the data
very efficiently to search the best spots to place the knots. The model parameters and basis
function together predict the output without any prior information of associations between



Materials 2021, 14, 395 9 of 26

input and output variables. They predict the result via the relation that is learned with
data divided into splines. MARS is represented by the following equation:

y = g(x) + ε (15)

where y is predicted response, ε is estimated error, and g(x) is a linear combination of basis
function and coefficient expressed as:

g(x) = βo +
N

∑
n=1

βnBF(x) (16)

here, N is the number of basis functions, βo is intercept, and βn are the coefficients cor-
responding to the given specific basis function (BF(x)), which is estimated by the least
squares method.

2.5. Particle Swarm Optimization (PSO)

The PSO is an evolutionary algorithm proposed by Kennedy and Eberhart in 1997 [41].
It simulates the behavior of fish flocks. It has a fast convergence rate, high efficiency,
and continuous nature [42] but lacks adaptive learning ability. Hasanipanah et al. [43]
employed PSO for their work. In PSO, a fitness function that needs to be optimized is
primarily defined. Afterwards, swarms are produced and spread in the high-dimensional
problem space. The fitness function is to be calculated for the respective particle that holds
the variables of the problem. Ultimately, the position and the velocity of the respective
particle is updated as per Equations (17) and (18) until the algorithm converges [44]:

Ui
k+1 = wUk

i + α1·
(

Pk
best,i − xk

i

)
/∆t + α2·

(
Gk

best,i − xk
i

)
(17)

xk+1
i = xk

i + Uk+1
i (18)

i is the iteration number and k is a particle. xi and Ui are position vector and velocity
vectors of iteration i and the instance number k. The vectors Pk

best,i and Gk
best,i are the best

current local best fitness function and global fitness function. α1 = C1r1 and α2 = C2r2,
where αi represents the coefficient factor. C1 and C2 are learning parameters that represent
the degrees of local search and global search level, respectively. r1 and r2 represent random
numbers distributed uniformly between 0 and 1. w is the initial weight that stores previous
particle velocity during the optimization problem.

2.6. ANN-PSO

ANN is inspired by biological treatment mode, having the capability of learning
patterns and predicting results for a problem consisting of high-dimensional space (a large
number of input parameters). It maps input sets to the output sets under the environment
of noisy and complex data and solves a complex practical problem. Backpropagation
neural network algorithms are commonly used to train a neural network [45] and have
robust adaptive learning and non-linear simulation capabilities, but they very easily fall
into a local minimum. The proper design of the network is subjected to the experience of
the designer and sample data with no speculative guidance. Henceforth, getting the global
optimal solution with only a backpropagation neural network is unlikely. Thus, an ANN
leads to a minimization problem and easily falls into the local minimum. The mathematical
formulation for ANN can be written as:

yi = f

(
n

∑
i=1

wijxi + bj

)
(19)
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where xi and yj are nodal values in the preceding layer i and present layer j. n is the total
number of the nodal values received from the preceding layer. wij and bj are weight and
biases of the network and f is the activation function.

PSO in ANN-PSO checks the inaccuracies of the ANN by assessing the optimal values
of weights and biases [27]. Henceforth in ANN-PSO weights and biases are variables, and
the probable space of the problem is subjected to the interval at which weight and biases
vary. In terms of RMSE, the fitness function of ith particle is defined as [46]:

E(wi, b)

√√√√1
s

s

∑
k=1

[
o

∑
l=1

(Tkl − Pkl(wi, bi))

]
i

(20)

where E, Tkl, and Pkl represent fitness value, target value, and predicted value, respectively.
wi are weights, bi represents biases, S is training samples, and O is neurons.

Following steps is followed for building the PSO-ANN model:

1. A neural network is created with initial weights and biases by fixing the number of
neurons in the hidden layer.

2. Weights and biases are updated regularly to represent the particle location in the
high-dimensional (N) space of the problem.

3. For each particle in a particular iteration, output values can be predicted, and corre-
spondingly, the value of cost function in Equation (20) is evaluated.

4. For particular populations and iterations, PSO updates the location of particles until
the fitness function is not minimized.

2.7. Adaptive Network Fuzzy Inference System (ANFIS)

ANFIS is a combination of the Fuzzy Inference System (FIS) and Artificial Neural
Network (ANN) for solving complex and nonlinear problems. In the present work, the
Takagi-Sugeno system is employed as FIS. To simplify the model used, it is assumed that
the framework of ANFIS comprises two inputs (x, y) and one output (F). Thus, a fuzzy rule
based on the Takagi–Sugeno type can be represented as below [47].

Rule 1:

If x is A1 and y is B1, then
F1 = a1x + b1y + r1 (21)

Rule 2:

If x is A2 and y is B2, then
F2 = a2x + b2y + r2 (22)

where A1, A2, B1, and B2 are nonlinear parameters and membership functions for inputs,
and a1, a2, b1, b2, r1, and r2 are linear and output’s function (F) parameters. The ANFIS
architecture includes five different layers termed as a fuzzy layer, product layer, normalized
layer, de-fuzzy layer, and output layer. Each layer has unique functions. The function of
each layer is depicted in Equations (23)–(28).

In the first layer, the membership relationship including the input and output functions
can be written as:

Fi1 = µAi(x); i = 1, 2, 3. (23)

Fi1 = µBi(y); i = 1, 2, 3 . . . (24)

where Fi1 and Fi1 indicate the output functions, and µAi(x) and µBi(y) show membership
functions.

In the second layer, each node computes the ‘firing strength’ (wi) of each rule. The
output (Fi2) of this layer is the product of input signals and is represented as:

Fi2 = wi = µAi(x)× µBi(y), i = 1, 2, 3. (25)
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Layer 3 gives normalized firing strength (Fi3), or it can be said that the weight function
is under normalization as:

Fi3 = w = wiw1 + w2, i = 1, 2, 3. (26)

In the fourth layer, the output of the preceding layer is multiplied with Equation (23)
and Equation (24), and the output (Fi4) of the 4th layer is stated as:

Fi4 = wi fi = wi(aix + biy + ri), i = 1, 2, 3, . . . (27)

The fifth layer calculates overall output as follows, where Fi5 represent response
predicted by the ANFIS model:

Fi5 = overall output = ∑ wi fi = ∑ wi fi ∑ wiiii (28)

In the ANFIS structure, the first layer and the fourth layer include parameters that
can be changed over time. The first layer contains the nonlinearities of the precursor
parameters, while the fourth layer contains the linear result parameters. Both of these
parameters can be modified and updated with a learning method that trains both of these
parameters and also adapts to their conditions.

3. Model Development
3.1. Data Preparation

Following the random variable framework, design points are selected from the dataset
generated using MCS based FEM. With these design points, the frequency of hybrid angle
ply laminated composite plate is calculated using the deterministic finite element model
(FEM) coded in FORTRAN. Design points and corresponding frequency evaluated by FEM
are used for training the metamodels. The trained metamodels are further used to predict
the frequency of the hybrid angle ply laminated composite plate.

3.2. GPR Model Architecture

The parameters for the mean and covariance (kernel) function are called hyperparame-
ters. These hyperparameters describe the performance of the GPR model. Hyperparameters
allied with the mean and kernel functions must be learned to properly train and formulate
the Gaussian process regression model, and it is achieved with optimization or sampling
techniques. However, the extensively used approach is to maximize the log marginal
likelihood. shown as:

log p(y|X, θ) = −1
2

yT(K + σ2
n I)
−1

y− 1
2

log|K + σ2
n I| − n

2
log 2π (29)

where yT represents the transpose of vector y and θ represents a vector containing entire
hyperparameters.

In the proposed GPR model, a simple mean function with constant c is used. Various
other hyperparameters used in the proposed GPR model are rational quadratic covariance
function as covariance (kernel) function, the likelihood function is likGauss, and the
inference method used is infGaussLik. The present inference method is an exact inference
method used only when the likelihood function likGauss is used. The equation proposed
for rational quadratic covariance function is mentioned below:

k
(
xi, xj

)
= σ2

f exp
[

1 +
d2

2α`2

]−α

(30)

3.3. MARS Model Architecture

MARS is proposed as a flexible regression model for high-dimensional data. It uses a
piecewise linear regression basis function and establishes the relationship between input
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and output value. The parameter associated with each basis function is spontaneously
evaluated by the data from side to side via a forward/backward iterative approach.

MARS builds the model in two stages: first, it performs forward selection, and then the
backward deletion stage is performed. In the first stage, MARS only assumes the intercept
factor and then subsequently in each iteration adds redirected sets of basis functions such
that least training error is produced.

After the first stage of modeling, the formulated model over-fits the data, and hence
the backward deletion stage is employed. In one phase at a time, MARS removes one
insignificant basis function such that the end model has only the intercept factor. Finally,
when the backward phase is over, the model with the least value of Generalized Cross-
Validation (GCV) is nominated as the final model. GCV estimates predicted Mean Squared
Error for the MARS, and it is evaluated as [40]:

GCV =
MSE(train)(

1− pe f f
n

)2 (31)

where MSEtrain represents the mean square error of the model for the training data set, n is
the number of training data, and peff is the number of effective parameters.

3.4. ANN-PSO Model Architecture

After performing several trials at a different number of neurons, for the present study,
it is found that the model performs at its best with five numbers of neurons. With PSO,
the various parameters that need to be optimized are C1, C2, w, and population (swarm)
size, i.e., the number of particles. The value of C1 and C2 ranges between 0 and 4. Model is
simulated several times with different values of C1 and C2, and it is found that for a value
of C1 = 2 and C2 = 2, the ANN-PSO model converges very quickly and gives the best fitness
value. The initial value of w is taken as 0.1. For good results swarm size generally varies in
the range of 20 to 40. To determine the optimum swarm size (population), the model is
simulated several times for different swarm sizes, it is found that with a swarm size of 35,
the model performs at its best. Henceforth in the present work, a swarm size of 35 is taken.

3.5. ANFIS Model Architecture

To obtain sufficient prediction capability using ANFIS, it must be provided with an
adequate number of clusters for the model. The present ANFIS model uses fuzzy c-means
clustering to formulate a fuzzy inference system, and it is subjected to the number of data
being applied for training. To find the number of rules and membership function, the rule
extraction method is applied. The rule extraction method mainly uses the FCM clustering
function (also known as Fuzzy C-means or genfis3). The Fuzzy c-means (FCM) clustering
techniques were also used to optimize the result by evaluating the set of rules that model
the data and generates an initial FIS for ANFIS training. This parameter of the ANFIS
model provides specifications about the number of clusters used to model the data. Details
of the ANFIS parameter are mentioned in Table 1.

Table 1. Details of the parameters of the ANFIS model.

Parameter Value

Fuzzy structure Sugeno-type
Initial FIS for training Genfis3

Maximum Iterations Number 1000
Number of Fuzzy rules 15

Input MF type Gaussian
Output MF type Linear
Initial Step size 0.01

Step Size Decrease Rate 0.9
Step Size Increase Rate 1.1
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3.6. Random Input Representation

In the present work, layer-wise random input parameters are considered. Only
the material property is varied, keeping other variables such as geometric property and
stacking constant at a given time. The material property to which variations are provided
is Young’s Modulus (E1, E2), Poisson’s ratio (υ1, υ2), and shear modulus of rigidity (G12,
G13, and G23). Density remains constant in the analysis. Layerwise stochasticity in material
property is written as S(v).

S(v) =
{

E1(1,2), E2(1,2), υ1(1,2), υ2(1,2), G12(1,2), G13(1,2), G23(1,2)

}
(32)

In this study, hybrid angle ply is considered, which implies that laminated composite
plates are made of two different materials. Angle ply means that the stacking angle would
vary within range from 15◦ to 75◦. Subscript 1 and 2 refer to two different materials that
are used in the present hybrid angle ply laminated composite plate. Variations in material
1 and material 2 are taken as ±10, ±10, ±10, ±10, ±10, ±10, and ±10, respectively, and are
in agreement with industry standard. A total of 14 parameters are varied in the present
analysis, seven from each material.

4. Results and Discussion

The FE model used in the present work is based on TSDT and has been used in the
analysis of the fundamental natural frequency of hybrid angle ply laminated composite
plate. The computer code of the above finite element formulation is done in FORTRAN
90. In Table 2a, first, the convergence study of the developed finite element code is done
to check the stability of the solution at a suitable mesh size. Further, the comparison of
the present results with journal papers by Mandal et al. [48] and Reddy and Chao [49] has
been done. Mandal et al.’s [48] and Reddy and Chao’s [49] work is based on first-order
shear deformation theory (which considers linear transverse shear stress variation across
the thickness of the plate) using finite element and closed-form solutions, respectively.
The present results are based on third-order shear deformation theory (which considers
the realistic parabolic transverse shear stress variation across the thickness of the plate)
using finite element solutions; hence, slight variation is observed with reference papers by
Mandal et al. [48] and Reddy and Chao [49].

The boundary condition used in the present study is:
Simply supported (SSSS):

v = w = θy = ψ∗y , at x = 0, a
u = w = θx = ψ∗x , at x = 0, b

(33)

The present work results are in good agreement with published results of Mandal et al. [48]
and Reddy and Chao [49].

Following the deterministic approach, validation of the FE model developed for the
present analysis is done. Few fundamental natural frequencies for simply supported
boundary conditions at all four edges (SSSS) for two different aspect ratios 0.01 and 0.1 are
evaluated and tabulated in Table 2a.
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Table 2. (a) Convergence and comparison of non-dimensional frequency parameter of simply sup-
ported cross-ply laminate; (b) comparison study of the fundamental frequency of simply supported
cross-ply square laminate with HSDT C1 finite element model; (c) comparison study of the fun-
damental frequency of simply supported cross-ply square laminate with HSDT C0 finite element
model.

(a)

h/a Lamination References
Mode

1 2 3 4

0.01

0◦/90◦/0◦

8 × 8 18.866 27.153 47.920 71.140
12 × 12 18.848 26.969 46.723 70.757
16 × 16 18.848 26.939 46.493 70.709
18 × 18 18.848 26.922 46.358 70.676
20 × 20

(Present) 18.848 26.922 46. 358 70.675

[48] 18.838
[49] 18.733

0.1

8 × 8 15.108 24.295 24.334 26.462
12 × 12 15.107 24.317 24.334 26.445
16 × 16 15.107 24.325 24.334 26.442
18 × 18 15.107 24.328 24.334 26.442
20 × 20

(Present) 15.107 24.328 24.334 26.441

[48] 15.214
[49] 15.145

(b)

Reference
a/h

5 10 50

HSDT C1 FE [50] 9.087 10.569 11.276
Present 9.085 10.571 11.314

(c)

Reference
a/h

5 10 50

HSDT C0 FE [51] 8.660 10.382 11.287
Present 9.085 10.571 11.314

In Table 2b, the free vibration response of a simply supported cross-ply (0◦/90◦)
square laminate obtained from present C0 finite element model has been compared with
the results of Serdoun and Hamza [50] based on HSDT C1 finite element model.

In Table 2c, the free vibration response of a simply supported cross-ply (0◦/90◦) square
laminate obtained from present C0 finite element model has been compared with the results
of Ganapathi et al. [51] based on HSDT C0 finite element model.

It may be observed in Table 2b,c that present results are in good agreement with
published works in the literature.

For the study, non-dimensional frequency is considered. The equation employed for
calculation of non-dimensional frequency is given as:

λ =
wa2

h

√
ρ

E2
(34)

where λ is non-dimensional frequency, w is frequency obtained by FE model, a is the plate
lateral dimension, h represents the thickness of the plate, ρ is density, and E2 is Young’s
modulus in the transverse direction.
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The relative dimension of the plates studied in the present work is a = 1, b = 1, and the
thickness (h) is a/100. Asymmetric laminated composite plate with four different layers
of the lamina are analyzed in the present work with simply supported boundary (SSSS)
conditions at all four edges. For the present plate, stacking sequences for all four laminae
are 15◦, 30◦, 45◦, 60◦ from the top layer to the bottom layer. Figure 1 represents the present
plate model. Figure 2 shows a nine-noded isoparametric plate element that is employed to
analyze the present plate model.

Relative material property and covariance incorporated agreeing with the industry
standard for the present study are tabulated in Table 3.

Table 3. Relative material property of two different materials used in hybrid angle ply laminated
composite plate.

Sl. No. Material 1 Relative
Property

Material 2 Relative
Property

Variation Provided in the
Material Property (%)

1 E1 = 25 E1 = 40 ±10
2 E2 = 1 E2 = 1 ±10
3 υ12 = 0.25 υ12 = 0.25 ±10
4 υ21 = 0.01 υ21 = 0.00625 ±10
5 G12 = 0.5 G12 = 0.6 ±10
6 G13 = 0.5 G13 = 0.6 ±10
7 G23 = 0.2 G23 = 0.5 ±10
8 ρ (density) = 1.0 ρ (density) = 1.0 0

Figure 5 shows that for all four mode shapes, at an iteration equal to 3000, error be-
comes constant and concludes that 3000 MCS-FEM simulations are sufficient for describing
the stochasticity in all four mode shapes of the present plate. Evaluation of 3000 MCS-FEM
simulations is a very tedious task because it requires too much time (more than 24 h) to
simulate on the workstation, which becomes a major drawback of finite element analysis.
To sort out this limitation, soft computation metamodels are favored.
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Figure 5. Variation of covariance with a number of iterations for hybrid angle ply laminated compos-
ite plate.

Figure 6 shows the ANN architecture employed in the present PSO-ANN metamodel.
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The flow chart of the present study is shown in Figure 7.
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In the present study, stochasticity in the material property as described in random
input generation is provided. The relative combined effect of the input parameters includes
Young’s modulus of elasticity, longitudinal shear modulus, and Poisson ratio.

Different metamodels employed in the present work are GPR, MARS, PSO-ANN, and
ANFIS. These metamodels are applied to explore the predictive and representative models
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that could be used in place of the finite element model. Corresponding to the stochastic
input variables and frequency evaluated by MCS-FEM, four mode shape frequencies are
predicted by the trained metamodels. For training the metamodels, design points are
selected using a random variable framework. Design points from 30 to 300 are randomly
selected to train the model, and then new results are predicted. Further corresponding to
each mode shape predicted frequency, root mean square error (RMSE) value is evaluated
to find out the appropriate number of design points which will be sufficient to train the
metamodels. Figure 8 presents the RMSE plot for various metamodels at a different number
of design points for all four mode shapes.
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Figure 8. RMSE plot for predicted output by 4 metamodels for all 4 mode shape at a different number of design points from
30 to 300 (Y-axis represents RMSE value, the X-axis represents the number of design points).

That number of design points for which RMSE value is minimum for all four mode
shapes is further used for training the metamodels from which new results are predicted.
For training the GPR model, the number of design points used corresponding to the 1st–4th
mode shapes are 120, 300, 150, and 300 respectively. For the MARS model, design points
corresponding to the 1st–4th mode shapes are 210, 240, 240, and 240 respectively. For the
PSO-ANN model, design points corresponding to the 1st–4th mode shapes are 210, 240,
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240, and 240 respectively. Similarly for the ANFIS model, design points used for training
corresponding to the 1st–4th mode shapes are 300, 300, 300, and 300 respectively.

For validation of these metamodels as a surrogate of the actual FE model, various scat-
ter plots, a probability distribution plot, and statistical parameters tabulated in Tables 4–11
are presented.

Table 4. Statistical description of target and predicted dataset for 1st mode shape.

Combined Variation of Material Property
Frequency for 1st Mode Shape

Value MCS-FEM GPR MARS PSO-ANN ANFIS

S(v)

Max 1.5609 1.5716 1.5645 1.5474 1.5621
Min 1.1411 1.1487 1.1461 1.1885 1.1480

Mean 1.3398 1.3398 1.3398 1.3399 1.3398
SD 0.0631 0.0631 0.0631 0.0628 0.0631

Table 5. Statistical description of target and predicted dataset for 2nd mode shape.

Combined Variation of Material Property
Frequency for 2nd Mode Shape

Value MCS-FEM GPR MARS PSO-ANN ANFIS

S(v)

Max 3.0034 2.9982 3.0111 2.9171 3.0062
Min 2.1724 2.1789 2.1777 2.2770 2.1740

Mean 2.5667 2.5668 2.5667 2.5673 2.5667
SD 0.1252 0.1251 0.1252 0.1238 0.1252

Table 6. Statistical description of target and predicted dataset for 3rd mode shape.

Combined Variation of Material Property
Frequency for 3rd Mode Shape

Value MCS-FEM GPR MARS PSO-ANN ANFIS

S(v)

Max 4.6979 4.6613 4.7064 4.5615 4.7015
Min 3.3932 3.3937 3.4045 3.5581 3.3962

Mean 4.0128 4.0127 4.0127 4.0138 4.0128
SD 0.1964 0.1963 0.1964 0.1942 0.1964

Table 7. Statistical description of target and predicted dataset for 4th mode shape.

Combined Variation of Material Property
Frequency for 4th Mode Shape

Value MCS-FEM GPR MARS PSO-ANN ANFIS

S(v)

Max 4.7304 4.7108 4.7425 4.5935 4.7339
Min 3.4158 3.4181 3.4245 3.5818 3.4192

Mean 4.0403 4.0403 4.0403 4.0413 4.0404
SD 0.1980 0.1979 0.1980 0.1958 0.1980

Table 8. Statistical parameters for the 1st mode shape results predicted with various metamodels.

Parameter GPR MARS PSO-ANN ANFIS

RMSE 0.0011 0.0011 0.0047 0.0009
NS 0.9999 0.9999 0.9999 0.9999

RSR 0.0009 0.0009 0.0039 0.0008
VAF 99.9681 99.9717 99.4386 99.9792

R 0.9998 0.9999 0.9972 0.9999
R2 0.9999 0.9997 0.9944 0.9998

Adj.R2 0.9997 0.9997 0.9944 0.9998
PI 1.9982 1.9984 1.9840 1.9987
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Table 9. Statistical parameters for the 2nd mode shape results predicted with various metamodels.

Parameter GPR MARS PSO-ANN ANFIS

RMSE 0.0006 0.0007 0.0099 0.0005
NS 1 1 0.9999 1

RSR 0.0002 0.0003 0.0041 0.0002
VAF 99.9979 99.9971 99.3688 99.9984

R 0.9999 0.9999 0.9969 0.9999
R2 0.9999 0.9999 0.9938 0.9999

Adj.R2 0.9999 0.9999 0.9937 0.9999
PI 1.9994 1.9993 1.9774 1.9995

Table 10. Statistical parameters for the 3rd mode shape results predicted with various metamodels.

Parameter GPR MARS PSO-ANN ANFIS

RMSE 0.0009 0.0007 0.01560 0.0004
NS 1 1 0.9999 1

RSR 0.0002 0.0002 0.0040 0.0001
VAF 99.9977 99.9985 99.3712 99.9996

R 0.9999 0.9999 0.9968 0.9999
R2 0.9999 0.9999 0.9938 0.9999

Adj.R2 0.9999 0.9999 0.9937 0.9999
PI 1.9990 1.9992 1.9719 1.9996

Table 11. Statistical parameters for the 4th mode shape results predicted with various metamodels.

Parameter GPR MARS PSO-ANN ANFIS

RMSE 0.0006 0.0008 0.0157 0.0004
NS 1 1 0.9999 1

RSR 0.0002 0.0002 0.0040 0.0001
VAF 99.9989 99.9983 99.3707 99.9997

R 0.9999 0.9999 0.9968 0.9999
R2 0.9999 0.9999 0.9937 0.9999

Adj.R2 0.9999 0.9999 0.9937 0.9999
PI 1.9994 1.9991 1.9717 1.9996

The greater the deviation of points from the diagonal line, the poorer the model
appears. Less deviancy represents a more accurate model, and it validates the use of a
developed surrogate model.

The study is performed with stochastic variation in material property and with four
mode shapes to observe the effect of stochasticity on various mode shape frequency of
hybrid angle ply laminated composite plate. Figure 9a–d shows the regression plot between
MCS-FEM mode shape frequency and mode shape frequency predicted by the metamodels.

For the present work, initially, four-mode shapes are analyzed with MCS-FEM, and
then corresponding mode shape frequency is predicted by trained metamodels. Each figure
represents a particular mode shape regression plot for four different metamodels. The
regression plot of the PSO-ANN model is much staggered when compared with the GPR,
MARS, and ANFIS model because PSO only tunes the parameter of ANN but it does not
add inference capability to ANN as in ANFIS; FIS (fuzzy inference system) provides a
reasoning capability that enhances the prediction capacity of ANN. Further regression plots
for GPR, MARS, and ANFIS models nearly overlap each other and are almost aligned along
the diagonal line, which shows that these metamodels are better than PSO-ANN and that
results predicted by these are similar to MCS-FEM. Here, it should be noted that PSO-ANN
and ANFIS are modified forms of neural network and that these models learn from the
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input provided and further predict the results, whereas GPR and MARS are state-of-the-art
regression algorithms.
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Figure 9. (a) Regression plot for 1st mode shape, (b) regression plot for 2nd mode shape, (c) regression plot for 3rd mode
shape, and (d) regression plot for 4th mode shape.

Figure 10a–d represent the probability distribution plots for each mode shape and
all five different models employed in the present study i.e., MCS-FEM, GPR, MARS, PSO-
ANN, and ANFIS.

MCS-FEM probability distribution plot is a benchmark plot, and from this, probability
distribution plots obtained from other models are compared. The probability distribution
plots based on the five models nearly overlap, but it can be observed that tail endpoints
of the plot lack the frequency predicted by the PSO-ANN model, whereas the frequency
predicted by the rest of the model uniformly overlaps the MCS-FEM probability distribution
plot. This shows that GPR, MARS, and ANFIS performances are much better than the
PSO-ANN, and ANFIS is the most accurate.

Probability distribution plots for four mode shapes frequencies of a simply supported
hybrid angle ply laminated composite plate due to combined variation in the material
property (S(v)) are presented in Figure 11a–e.
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Figure 10. (a) Probability distribution (PD) plot for 1st mode shape, (b) PD plot for 2nd mode shape, (c) PD plot for 3rd
mode shape and (d) PD plot for 4th mode shape.

As the mode shape increases, a trend is noticed that the mean and response bound
increases. Here again, it can be observed that the probability distribution plot of the
mode shape frequency obtained by the PSO-ANN model is somewhat different from
MCS-FEM as at tail points it does not coincide with MCS-FEM. Whereas for the rest of the
metamodels, the plots are nearly identical to the MCS-FEM plot. This again validates the
use of metamodels in stochastic analysis of a hybrid angle ply laminated composite plate
and shows that of the four models, ANFIS is most accurate in predicting the results and
PSO-ANN is least accurate.

Statistics of four-mode shape frequencies obtained by MCS-FEM and frequency pre-
dicted by metamodels are summarized in Tables 4–7. It can be observed that the result
predicted by the metamodels agrees with MCS-FEM. Parameters like maximum value
(Max), minimum value (Min), mean value (Mean), and standard deviation (SD) of GPR,
MARS, and ANFIS are nearly identical to MCS-FEM, whereas PSO-ANN deviates from
the MCS-FEM value. Of all four metamodels, the best result is obtained with the ANFIS
model, and the result predicted by PSO-ANN is close to MCS-FEM, but its precision, when
compared with the rest of the three models, is less. These tables further validate the use
of metamodels for stochastic analysis of the mode shapes of a hybrid angle ply laminated
composite plate.
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Figure 11. (a) Probability distribution (PD) plots of MCS-FEM for all four mode shapes; (b) (PD) plots of GPR for all four
mode shapes; (c) (PD) plots of MARS for all 4 mode shapes; (d) (PD) plots of PSO-ANN for all 4 mode shapes; and (e) (PD)
plots for ANFIS for all 4 mode shapes.

Tables 8–11 presents various statistical parameters of each mode shape that shows the
precision level of various soft computation metamodels. Different statistical parameters
calculated are root mean square error (RMSE), root mean square error to observations
standard deviation ratio (RSR), Nash Sutcliff coefficient (NS), variance account factor (VAF),
maximum determination coefficient value (R2), performance index (PI), and adjusted
determination coefficient value (Adjusted R2). Optimum values of the statistical parameter
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presented in Tables 8–11 are as follows: RMSE should be close to 0, NS value should be
close to 1, RSR should be close to 0, VAF should be close to 100, R2 value should be close to
1, R should be close to 1, adjusted R2 should be close to 1, and PI should be greater than
1. From Tables 8–11, it is observed that although every model performance is good, and
ANFIS dominates the rest of the metamodels.

5. Conclusions

Scatter plots, probability distribution plots, and statistical parameters presented and
discussed above show that there is a negligible deviation of GPR, MARS, and ANFIS
model from MCS-FEM, which indicates the high precision of these metamodels. However,
the deviation of PSO-ANN predicted mode shape frequencies from MCS-FEM is notable
and shows that its precision concerning the rest of the metamodel is less. Notably, the
present metamodels are trained with different design points and corresponding mode
shape frequency evaluated with MCS-FEM. Further, these trained metamodels evaluate
3000 results for each mode shape within seconds to describe the scatter plots, probability
distribution plot, and statistics of the four-mode shape frequencies of a hybrid angle ply
laminated composite plate. Though the same number of frequency, i.e., 3000, is evaluated
with MCS-FEM for describing the scatter plots, the probability distribution plot of mode
shape frequencies of a hybrid laminated composite plate takes more than 24 h on a work
station (a powerful computation tool). For the metamodels, the number of FEM simulations
required is much less compared to MCS-FEM, as with limited design points, metamodels
are trained and 3000 results are evaluated within seconds. Henceforth, when the analysis
is performed with metamodels, the computational time, cost, and effort are considerably
reduced concerning MCS-FEM. This offers an effective and inexpensive way of simulating
the stochasticity in mode shape frequencies. The best possible number of finite element
simulations requisite to train the metamodels are determined by evaluating the RMSE
value. In the present analysis, all the layer-wise combined cases of stochasticity are studied
as described in the random input representation section.

• The novelty of the article is a probabilistic description of four mode shapes of hybrid
angle ply laminated composite plates with MCS-FEM and efficient metamodels GPR,
MARS, PSO-ANN, and ANFIS and showing the advantage of metamodels over the FE
model, as in earlier published articles, no or very limited work is found on mode-shape
analysis using soft computation metamodels.

• Mode-frequency always increases from the 1st to 4th mode and remains the same
in very limited cases. The first, second, third, and fourth non-dimensional mode-
frequency parameter monotonically increases, and there is very little difference be-
tween 3rd and 4th mode-frequencies. This monotonous increase is due to an increase
in the degree of orthotropy.

• The regression plot and probability distributions plots of various mode shapes are
analyzed by taking the combined variation of material property.

• The present work explains the effect of stochasticity on various mode shapes of a
hybrid angle ply laminated composite plate by employing the MCS-FEM and meta-
models.

• Various metamodels are formed along with MCS-FEM to characterize the variation of
mode shape frequencies produced due to uncertainty in material properties, where
it is witnessed that the number of finite element simulations is remarkably shrunk
compared to MCS-FEM without compromising the precision of the result, thereby
reducing the computational cost, time, and effort.

• The data shown in the study show that uncertainty in material properties of the hybrid
angle ply laminated composite plate has a substantial influence on the dynamics of
the composite structure and its various mode shapes. Hence, it is significant to count
the uncertainty in the analyses, design, and control of the hybrid angle ply laminated
composite plate.
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• The anticipated GPR, MARS, PSO-ANN, and ANFIS metamodel-based stochastic anal-
ysis may be stretched further to analyze other stochastic systems in the forthcoming
research.
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Nomenclature

a, b, h Dimension of the plate along x, y,
and z axes, respectively {ε}, [Bi]

Global displacements and differential
operator matrix

µ, µo, θy

Displacement, midplane
displacement, and rotation along the
x-axis respectively

[m], |j| Inertia matrix and determinant of the
Jacobian matrix

v, vo, θx

Displacement, midplane
displacement and rotation along the
y-axis, respectively

k, m Element stiffness matrices

w, wo
Displacement, midplane
displacement along the z-axis

(f (x)), m(x) θ, k (x,
x′)

Gaussian process function (GP),
mean of GP, Hyperparameter of GP
and Covariance of GPR respectively

ϕx, χx, ϕy, χy
Higher-order terms of Taylor series
expansion βo, βn, BF

Intercept in MARS, coefficient
corresponding to given specific
function and Basis function,
respectively

εxx, εyy, γxy
γxz, γyz Strain displacement terms xi, Ui Position vector and velocity vector

E1, E2, v1, v2
In-plane Modulus of elasticity and
Poisson’s ratio G12, G13, G23

Modulus of rigidity (in-plane and
out of plane)

{d}, Ni

Unknown nodal vector on middle
surface of the element and
interpolating shape function
respectively

Pk
best,i, Gk

best,i
Local best fitness function and global
best fitness function respectively

Tkl Target value Pkl Predicted value

A1, A2, B1, B2

Nonlinear parameter and
membership function for input
variables

a1, a2, b1, b2, r1,
and r2

Linear and output’s function
parameters

MSEtrain Mean squared error of the model peff Effective parameters

ρ, E2 The density of material and Modulus
of elasticity in a transverse direction. E The fitness value of PSO-ANN model

λ, w
Non-dimensional frequency
parameter and dimensional
frequency parameter
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