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Abstract: The fundamental idea in phase field theories is to assume the presence of an additional state
variable, the so-called phase field, and its gradient in the general functional used for the description
of the behaviour of materials. In linear elastic fracture mechanics the phase field is employed to
capture the surface energy of the crack, while in damage mechanics it represents the variable of
isotropic damage. The present paper is concerned, in the context of plasticity and ductile fracture,
with a commonly used phase field model in fracture mechanics. On the one hand, an appropriate
framework for thermodynamical consistency is outlined. On the other hand, an analysis of the model
responses for cyclic loading conditions and pure kinematic or pure isotropic hardening are shown.

Keywords: phase field; damage; plasticity; hardening; non-standard thermodynamics

1. Introduction

In fracture mechanics, the phase field theory has been introduced and developed in
order to capture the surface energy of cracks. There have also been various attempts to
extend these ideas to describe crack propagation in the case of materials exhibiting plastic
material properties (see, e.g., [1–4], among others). The basic idea of phase field theories is
to introduce an additional variable and its gradient in the constitutive functional modeling
of the material response. Such variables are employed in physics in order to model phase
transformations and the corresponding theories are known as Cahn–Hilliard theories (see,
e.g., [5,6]). Generally, the gradient of the phase field variable is introduced in the theory
in order to regularize the resulting field equations. In continuum damage mechanics the
phase field corresponds to the isotropic damage variable and reflects, in a natural way, the
physical mechanisms of crack initiation and crack propagation. The evolution of damage
during the loading process causes a softening material response, rendering loss of ellipticity
in the governing differential equations. Regularization by taking into account, for example,
the gradient of the damage variable, is a possibility to avoid such problems [7,8]. Thus, any
gradient enhanced isotropic damage theory is in principle a phase field theory (see also
related remarks in [8]).

The particular advantage of damage models based on the concepts of the phase field
theory, is that fracture mechanics phenomena, such as initiation, propagation, kinking and
bifurcation of cracks, can be conveniently addressed in a unified manner [1]. Especially,
phase field models have been applied successfully, for example, in fracture of quasi-brittle
and ductile materials [1,3,4,9–12], dynamic fracture mechanics [12,13], and fatigue crack
propagation [14–16]. The numerical benefit of the phase field method, when modeling
crack propagation, is that all state variables remain continuous and the crack geometry is
determined by critical values of the phase field variable. Therefore, the theory is suitable to
describe equally well, both two and three dimensional problems.

A feature of special interest, when dealing with phase field models, is the appropriate
thermodynamics framework. As stated above, phase field theories in fracture mechanics are
nothing but gradient damage theories. Therefore, if the free energy function should depend
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explicitly on the phase field variable and its gradient, then thermodynamics frameworks
for gradient enhanced theories in continuum mechanics will be suitable for phase field
models as well. Thermodynamical concepts based on the existence of so-called microforces
offer the possibility to elaborate gradients of state variables in the constitutive theory. Such
ideas were introduced by Gurtin [5] and have been applied to phase field models, for
example, by Borden et al. [2]. An alternative framework for gradient enhanced theories
is to adopt concepts of non-conventional thermodynamics. A basic assumption in these
concepts is the existence of an energy flux vector besides the standard heat flux vector
(cf. [17]). Following Toupin [18], Dunn and Serrin [17] developed a non-conventional
thermodynamics theory to address gradient elasticity of the Korteweg type. The main
ideas of [17] are adopted in the present work to address gradient enhanced damage in
plasticity. Our special interest is in a phase field law in common use, made widely known
by Miehe and co-workers [9,19]. This law has been introduced primarily to model brittle
fracture and is employed in several works to model ductile fracture under monotonic
loading conditions. However, the question arises whether this model works equally well,
when cyclic loading conditions prevail.

Thus, the paper provides both a thermodynamical and a mechanical analysis of the
damage law proposed in [4,9,19]. On the one hand, consistency of the model with the
governing equations of the assumed non-conventional thermodynamics is verified for
the case, where the free energy function depends explicitly on the phase field variable
and its gradient. On the other hand, the abilities of the model to address crack initiation
and crack propagation in plasticity are reviewed. In particular, the predicted model
responses in the case of cyclic loading conditions and pure kinematic or pure isotropic
hardening are analysed. It is shown, that the considered model, in its basic form, is not
able to describe cyclic loading programs adequately. This might be the motivation, for
example, for Ulloa et al. [20] and Seles et al. [21], who introduced interesting extensions
of the model, allowing them to describe loading histories involving cyclic parts. These
extensions rely upon the work of Alessi et al. [16] and are briefly discussed at the end of
the paper. Alternative possibilities, based on the concepts of continuum damage mechanics
are also proposed.

2. Plasticity Coupled with Damage

A von Mises-plasticity model coupled with damage and exhibiting isotropic and
kinematic hardening is assumed. All tensorial components are referred to a Cartesian
coordinate system {xi}. Unless stated otherwise, all indices will have the range of in-
tegers (1, 2, 3), while summation over repeated indices is implied. Confining on small
deformations, the components εij of the strain tensor ε are denoted by

εij :=
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, (1)

where ui are the components of the displacement vector u. As usual, it is assumed that
the additive decomposition of the strain tensor into elastic and plastic parts, εe and εp

respectively, applies,
εij = εe

ij + ε
p
ij. (2)

Let D ∈ [0, 1] be a scalar valued damage (phase field) variable and denote by ∇D the
gradient of D. In analogy to the concepts of continuum damage mechanics (cf., e.g., [22]),
the decomposition

ψ := ψep + ψD = ψe + ψ
(iso)
p + ψ

(kin)
p + ψD, (3)

ψep := ψe + ψp, ψp := ψ
(iso)
p + ψ

(kin)
p . (4)
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is assumed for the free energy per unit volume ψ. In metal plasticity, the parts ψe and
ψ
(iso)
p , ψ

(kin)
p , ψD are responsible for the energies stored in the material due to elastic de-

formation of the lattice and due to distortion of the lattice caused by isotropic hardening,
kinematic hardening and damage evolution, respectively. There are some characteristic
features with regard to the form of ψ. First, a common assumption is, that ψe = ψe(εe, D).
Often, an additive decomposition of ψe into tensile and compressive contributions ψ+

e and
ψ−e is adopted. A possibility advocated, for example, by Miehe et al. [9], is to relate ψ+

e and
ψ−e to the sign of the principal strains. This approach will not be considered here, because
of numerical instabilities and convergence problems in the case of plasticity (cf. also related
remarks in [2]). Another possibility proposed by Amor et al. [23] and used in the current
paper, is based on a volumetric-deviatoric split and can be expressed in the form

ψe = ψe(ε
e, D) := ψ+

e (εe, D) + ψ−e (εe), (5)

ψ+
e = ψ+

e (εe, D) := g(D)ψ0+
e = g(D)

{
1
2

K〈εe
kk〉

2 + µ(εe
ij)

dev(εe
ij)

dev
}

, (6)

ψ−e = ψ−e (εe) :=
1
2

K〈−εe
kk〉

2, (7)

where K is the compression modulus, µ is the shear modulus, g(D) is a scalar valued
degradation function and 〈x〉 := 1

2 (x + |x|). Tensile and compressive contributions to the
elastic part of the free energy are distinguished on the basis of the sign of the trace of the
elastic strain tensor. Damage accumulation affects only the tensile part by reduction of the
elastic stiffness through g(D). A common assumption for the degradation function is

g(D) = (1− D)2 + κ, (8)

where κ � 1 is a parameter for numerical stability. In Equation (6) and in the following,
undegradated parts of the free energy are denoted with the superscript 0. The elasticity
law for the Cauchy stress σ may then be viewed as defined by the potential relation

σij =
∂ψ

∂εe
ij
= g(D)

∂ψ0+
e

∂εe
ij

+
∂ψ0−

e
∂εe

ij
= K[g(D)〈εe

kk〉 − 〈−εe
kk〉]δij + g(D)2µ(εe

ij)
dev, (9)

where δij is the Kronecker-delta symbol and Adev is the deviator of the second-order
tensor A.

Another characteristic feature concerns the form of ψp, which may or may not depend
on the damage variable D. Generally, in continuum damage mechanics the assumed
form of ψp is closely related to the assumed form of the yield function. There are several
concepts for deriving the form of the part ψp and the form of the yield function from
corresponding plasticity models without damage mechanisms. These concepts are based
on the principles of stress, strain or energy equivalence (see, e.g., [22,24–27]). Here, we
adopt the formulations proposed in Grammenoudis et al. [27], which are based on a specific
version of the principle of energy equivalence. Moreover, for the purpose of the present
work, it suffices to confine to linear isotropic and linear kinematic hardenings. Hence,

ψp = ψp(s, εp, D) = g(D)ψ0
p(s, εp) = g(D)ψ

0(iso)
p + g(D)ψ

0(kin)
p , (10)

ψ
0(iso)
p = ψ

0(iso)
p (s) :=

1
2

γs2, (11)

ψ
0(kin)
p = ψ

0(kin)
p (εp) :=

1
2

cε
p
ijε

p
ij, (12)

ψ0+
ep := ψ0+

e + ψ
0(iso)
p + ψ

0(kin)
p , (13)
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where γ, c are the respective hardening coefficients. On defining by ˙(·) the derivative of (·)
with respect to time t, the plastic arc length s is given by

ṡ :=

√
2
3

ε̇
p
ij ε̇

p
ij. (14)

Scalar internal stress R reflecting isotropic hardening and the backstress tensor ξ of
kinematic hardening are given by the potential relations

R = R(s, D) =
∂ψ

∂s
= g(D)γs, (15)

ξij = ξij(ε
p, D) =

∂ψ

∂ε
p
ij
= g(D)cε

p
ij. (16)

A generalization of the von Mises-yield function reads in [27]

F = F(σ, R, ξ, D) := g f (D) f (σ, ξ, R)− k0, (17)

f :=

√
3
2
(σij − ξij)dev(σij − ξij)dev − R. (18)

In this equation, k0 is a material parameter representing the initial yield stress and
g f (D) is a further degradation function capturing damage mechanisms during plastic
flow. Here,

g f (D) = g−1(D) (19)

is chosen, so that the yield function in Equation (17) is the same as in Borden et al. [2],
Kuhn et al. [3] and Huang et al. [28]. Other possibilities for the function g f are discussed in
Reckwerth et al. [29]. For the evolution law of plastic strain, an associated normality rule
is assumed,

ε̇
p
ij = Λ

∂F
∂σij

, (20)

with Λ denoting a scalar plastic multiplier, together with the Kuhn–Tucker conditions
(cf. [30,31]),

Λ ≥ 0, F ≤ 0, ΛF = 0, (21)

and the consistency condition, that during plastic flow

Λ ≥ 0, Ḟ ≤ 0, ΛḞ = 0. (22)

A further characteristic feature of interest refers to the term ψD. Some works (see,
e.g., [4,9,19]), dealing with classical thermodynamics, assume a vanishing part ψD and
incorporate ∇D in the postulated damage criterion and dissipation function. Other ap-
proaches, pursued, for example, by Borden et al. [2], admit the existence of ψD and assume
it to depend on D and ∇D. Such works deal with classical thermodynamics, but postulate
the existence of microforces and related balance laws, in order to render the constitutive
theory thermodynamically consistent. The microforces approach has been employed by
Gurtin in order to establish equations of the Ginzburg–Landau and Cahn–Hilliard type [5].
Note, that an evolution equation of the Ginzburg–Landau type for the damage variable in
plasticity coupled with damage has been supposed in the works [3,10,32]. Generally, when
gradients of state variables are present in the response function for ψ, classical thermody-
namics, dealing only with classical forces, is not an appropriate framework. Whenever ψD,
and therefore ψ too, depend on∇D, an alternative to the approach based on microforces, in
order to achieve thermodynamical consistency, is provided by non-conventional thermody-
namics frameworks. In the next section, the non-conventional thermodynamics proposed
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by Dunn and Serrin [17] are applied in order to model gradient damage mechanisms. The
obtained results rely upon the ansatz

ψD = ψD(D,∇D) = Gc

(
1
2l

D2 +
l
2
|∇D|2

)
, (23)

which is standard in this subject matter (cf., e.g., [1,2,10,28,33]). In this equation, Gc and l
are material parameters, with l denoting a material internal length.

3. Thermodynamical Formulation
3.1. Non-Conventional Thermodynamics

Let V be the range in the three dimensional Euclidean point space occupied by a
material body B, with boundary ∂V, and denote by n the outward unit vector on ∂V.
The location vector to material points in V ∪ ∂V is denoted by x with components xi. In
standard thermodynamics, the energy balance law is expressed in terms of the heat flux
vector q̄. For the aims of the present work, and following the suggestions by Toupin [18]
and Dunn and Serrin [17], the conventional form of the energy balance law is generalized
by admitting the existence of an energy flux vector q′, besides the heat flux vector q̄. Thus,
omitting acceleration terms, body forces and heat supply, and denoting by e the internal
energy per unit volume, the global form of the energy balance law reads

d
dt

∫
V

e dV =
∫

∂V

niσiju̇j dA−
∫

∂V

q′ini dA−
∫

∂V

q̄ini dA. (24)

After localization, and keeping in mind the definition of strain in Equation (1), the
local form of the energy balance

ė = σij ε̇ij − ∂iq′i − ∂i q̄i (25)

is obtained, where ∂i( ) = ∂( )/∂xi. The energy carriers responsible for q′ in the cases of
gradient elasticity, gradient plasticity and gradient damage mechanisms may be viewed
to be related to interstitials, dislocations and initiation and evolution of damage defects,
respectively.

Let θ > 0 be the absolute temperature, η the entropy per unit volume and ψ, as above,
the free energy per unit volume, so that the Legendre transformation

e = ψ + θη (26)

applies. For general thermomechanical processes, the constitutive theory dealt with, is
characterized by a free energy of the form

ψ = ψ(εe, s, εp, D,∇D, θ). (27)

It follows from Equations (25) and (26), that

σij ε̇ij − ψ̇− θη̇ − θ̇η − ∂iq′i − ∂i q̄i = 0. (28)

Further, the validity of the Clausius–Duhem inequality in the local form is assumed
(cf. [17])

η̇ + ∂i

(
q̄i
θ

)
≥ 0, (29)

or equivalently, by virtue of Equation (28),

σij ε̇ij − ∂iq′i − ψ̇− ηθ̇ − 1
θ

q̄i∂iθ ≥ 0. (30)

In the next section, the response function for the energy flux vector q′ is specified.
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3.2. Dissipation Inequality

Equations (2) and (27) are now inserted into Equation (30), to obtain

σij ε̇ij − ∂iq′i −
[

∂ψ

∂εe
ij

ε̇ij −
∂ψ

∂εe
ij

ε̇
p
ij +

∂ψ

∂s
ṡ +

∂ψ

∂ε
p
ij

ε̇
p
ij +

∂ψ

∂D
Ḋ +

∂ψ

∂(∇D)i
(∇Ḋ)i +

∂ψ

∂θ
θ̇

]
− ηθ̇ − 1

θ
q̄i∂iθ ≥ 0. (31)

Using standard arguments, it can be deduced from this inequality, that

σij =
∂ψ(εe, s, εp, D,∇D, θ)

∂εe
ij

, (32)

η = −∂ψ(εe, s, εp, D,∇D, θ)

∂θ
, (33)

and that

− ∂iq′i −
[
−σij ε̇

p
ij +

∂ψ

∂s
ṡ +

∂ψ

∂ε
p
ij

ε̇
p
ij +

∂ψ

∂D
Ḋ +

∂ψ

∂(∇D)i
(∇Ḋ)i

]
− 1

θ
q̄i∂iθ ≥ 0. (34)

As usual, the sufficient conditions

− ∂iq′i −
[
−σij ε̇

p
ij +

∂ψ

∂s
ṡ +

∂ψ

∂ε
p
ij

ε̇
p
ij +

∂ψ

∂D
Ḋ +

∂ψ

∂(∇D)i
(∇Ḋ)i

]
≥ 0, (35)

− 1
θ

q̄i∂iθ ≥ 0, (36)

are assumed for Equation (34) to apply. Equation (35) is called the intrinsic dissipation
inequality. In the remainder of the paper, isothermal deformations with uniformly dis-
tributed temperature are supposed to apply, so that θ can be omitted in the response
functions. Then, by assuming ψ to be given as in Section 2, so that σij in Equation (32) is
given by the elasticity law (9), and making use of the potential relations for ξ, R introduced
in Equations (15) and (16), Equation (35) becomes

− ∂iq′i + (σij − ξij)ε̇
p
ij − Rṡ− δψ

δD
Ḋ− ∂

∂xi

(
∂ψ

∂(∇D)i
Ḋ
)
≥ 0. (37)

Here, the variational derivative δψ/δD is defined through

δψ

δD
:=

∂ψ

∂D
− ∂

∂xi

(
∂ψ

∂(∇D)i

)
. (38)

During plastic flow

F = 0⇔
√

3
2
(σij − ξij)dev(σij − ξij)dev = R +

k0

g f (D)
, (39)

so that evolution Equation (20) can be written in the form

ε̇
p
ij =

3
2

Λg f (D)
(σij − ξij)

dev

R + k0/g f (D)
, (40)

from which ṡ = Λg f (D). It follows, that

(σij − ξij)ε̇
p
ij = (σij − ξij)

dev ε̇
p
ij =

(
R +

k0

g f (D)

)
ṡ, (41)



Materials 2021, 14, 5842 7 of 16

or
(σij − ξij)ε̇

p
ij − Rṡ =

k0

g f (D)
ṡ ≥ 0 (42)

provided g f (D), k0 ≥ 0. Therefore, it suffices to require

− ∂iq′i −
δψ

δD
Ḋ− ∂

∂xi

(
∂ψ

∂(∇D)i
Ḋ
)
≥ 0, (43)

in order to satisfy Equation (37). The simplest possibility to always fulfil this inequality is
to make the constitutive assumption

q′i = −
∂ψ

∂(∇D)i
Ḋ + ci = −Gcl(∇D)iḊ + ci, (44)

where ci are the components of a divergence-free vector c. For reasons of simplicity, c is
assumed to vanish in the following. This way, Equation (43) reduces to

ΩḊ ≥ 0, (45)

where

Ω := − δψ

δD
= −

∂ψep

∂D
− δψD

δD
. (46)

Before closing this section, it should be mentioned, that Maugin [34] also derived
Equation (45) without assuming the existence of an energy flux vector in the energy balance
law. His theory is based on a form of the second law proposed by Müller [35], which
introduces an extra entropy flux term in the Clausius–Duhem inequality, besides the
classical one. Therefore, for general thermomechanical processes, the two approaches
are different.

4. The Damage Law of Miehe and Co-Workers

The aim of this section is to prove consistency with the adopted non-conventional
thermodynamics of a damage law in common use, which has been proposed by Miehe and
co-workers (see, e.g., [19]).

It can be recognized from Equation (45), that Ω is the driving force for damage
evolution. Therefore, in analogy to plasticity and in order to always fulfil Equation (45),
the existence of a damage function FD ≤ 0 of Ω is admitted with the assumption that
the set of Ω-values with FD ≤ 0 includes Ω = 0. Damage evolution takes place only
when the damage condition FD = 0 holds. Additionally, Ḋ is set to be directed along the
outward normal to the level set of FD, Ḋ = ΛD∂FD/∂Ω, where FD, ΛD are subject to the
Kuhn–Tucker conditions

ΛD ≥ 0, FD ≤ 0, ΛDFD = 0, (47)

and the consistency condition during damage evolution

ΛD ≥ 0, ḞD ≤ 0, ΛD ḞD = 0 (48)

(cf. Equations (21) and (22)). A simple form for FD reads

FD := Ω− kD ≤ 0, (49)

where kD is the analog of the yield stress in the yield function and can depend on the
material state. Aifantis [36] proposed to assume the yield stress in gradient plasticity as
a function of the plastic arc length s and its spatial derivative ∆s, where ∆ is the Laplace
operator. In its linear form, and when the initial yield stress k0 vanishes, this function reads

R = γs− α∆s (50)
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and represents isotropic hardening, where γ is defined as in Equation (15) and α is a
further non-negative material parameter (cf. also Section 89 in [37]). In the damage
model, D is considered to be the counterpart of s in plasticity. Further, it is assumed,
that kD in Equation (49) does not include a constant threshold and it is remarked from
Equation (23), that

δψD
δD

=
Gc

l

(
D− l2∆D

)
. (51)

A comparison of the latter with Equation (50) suggests to set

kD = β
δψD
δD

, (52)

with β being a non-negative parameter. It follows from Equations (46), (49) and (52), that

−
∂ψep

∂D
≤ (β + 1)

δψD
δD

. (53)

Then, from Equations (4)–(8), (10) and (13), we have

−
∂ψep

∂D
= 2(1− D)ψ0+

ep = 2(1− D)
(

ψ0+
e + ψ

0(iso)
p + ψ

0(kin)
p

)
≥ 0, (54)

and by virtue of Equation (53),
δψD
δD
≥ 0. (55)

Because of the latter, the sufficient and necessary condition for Equation (45) is Ḋ ≥ 0,
which means that damage can only increase and that healing processes are excluded. In
fact, from Equations (47)–(49), we have

Ḋ = ΛD ≥ 0, (56)

and hence Equation (45) is always satisfied. The two Equations (53) and (56) are essentially
the damage law proposed in Miehe et al. [19]. It is readily seen, from Equations (51), (53)
and (54), that during damage evolution

2(1− D)ψ0+
ep − (β + 1)

Gc

l
(D− l2∆D) = 0. (57)

Clearly, during damage evolution ψ0+
ep is a monotonically increasing function of time

and thus, following Miehe et al. [19], it is convenient to define the history variable

H(x, t) := max
τ∈[0,t]

ψ0+
ep (x, τ). (58)

Hence, the governing partial differential equation to be solved for the phase field
problem reads

2(1− D)H− (β + 1)
Gc

l
(D− l2∆D) = 0. (59)

Section 6 provides an analysis of the damage model with reference to one- and two-
dimensional examples.

5. Finite Element Implementation

The numerical integration of the constitutive theory presented in the previous sections
is performed in a finite-element framework, with the damage variable being treated as
an additional degree of freedom at every node. A staggered algorithm, as proposed in
Miehe et al. [19], is implemented in the commercial software package ABAQUS. Within a
time increment, the displacement problem is solved first, while the damage variable is held
constant. In a second step, the phase field problem is solved, while the displacement is held
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constant. A user material subroutine (UMAT) has been developed for the displacement
problem, which is based on the method of elastic predictor and plastic corrector, cf. Simo
and Hughes [30]. The required consistent tangent operator is calculated by numerical
differentiation. The solution of the phase field problem is based on a weak form of the
partial differential equation Equation (59), see, for example [21,38]. The discretized form
of the resulting formulation was incorporated in a user element subroutine (UEL). The
advantage of the staggered algorithm is its great robustness. This is of particular interest,
since the deformations in the vicinity of the crack tip are very high, which can lead to
convergence problems in the context of elastoplastic material models.

For the examples discussed in the next section, linear shape functions for both the
displacement and the phase field problem are used. All material parameters are listed in
Table 1. Note, that the material parameters in the phase field model are the same as in [9].

Table 1. Material parameters used in the finite element model.

K µ k0 γ = 3c/2 (1 + β)Gc l

175,000 MPa 80,769 MPa 200 MPa 5000 MPa 2.7 N/mm 0.0075 mm

6. Analysis of Predicted Responses

It is of interest now to analyse the effect of the damage model on the predicted
responses. For the aims of the present paper, as mentioned in the introduction, it suffices
to confine the analysis to cyclic loading conditions for the cases of pure kinematic or pure
isotropic hardening. The discussions rely upon one- and two-dimensional examples. The
one-dimensional examples refer to an eight-node element, cf. Figure 1, while the two-
dimensional examples concern the cracked specimen shown in Figure 2. In the latter, linear
four-node plane strain elements (CPE4) are used for the displacement problem. In all
cases, homogeneous Neumann boundary conditions are supposed to apply for the phase
field problem. In order to facilitate comparison of the results, the material parameters for
isotropic and kinematic hardening are chosen in the form γ = 3c/2, so that the predicted
strain–stress distributions for one-dimensional monotonic loading are identical. This is
demonstrated in Figure 1b, where σ = σ22 and ε = ε22 are the stress and strain components
in the loading direction. Note that only the form of the strain–stress curve in Figure 1b,
which is a characteristic feature of the assumptions made, is of interest. Moreover, such
distributions as (ε, σ) indicate graphs of points (ε(t), σ(t)) parametrized by time t. In both,
the one- and the two-dimensional examples, the top boundary is subjected to a prescribed
displacement, while all other boundary conditions are as shown in Figures 1 and 2. The
imposed displacement in the one-dimensional case varies harmonically with vanishing
mean value. This corresponds to strain-controlled, homogeneous tension/compression
loading between two bounding strains −ε0 and ε0. The cracked specimen is also subjected
to harmonically varying displacement, but with positive mean value, cf. Figure 2.

First, pure kinematic hardening in the one-dimensional case is considered. From the
predicted (ε, σ)-distributions displayed in Figure 3a, it can be recognized, that the material
response reduces to a closed hysteresis loop just after one loading cycle. This behaviour is
quite similar to the case of cyclic plasticity without damage and arises from the fact, that
damage evolution is involved only in the first tension loading branch (see Figure 3b). It
becomes clear from Equation (59), that damage evolution can only occur, if the value of the
history variableH increases. In the present case, the maximum value ofH, and hence of
the damage variable D too, is obtained at the end of the first tension loading branch. After
that, bothH and D always remain constant for this model. As a consequence, the split in
the elasticity law in Equation (9) has a negligible effect and the maximal amounts of the
plastic strains in both tension and compression, remain constant and practically equal to
each other.
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u

x1

x2

Figure 1. (a) One-dimensional model. Eight-node element subjected to tension/compression loading
along the x2-axis. (b) Identical (ε, σ)-distributions due to pure isotropic and pure kinematic hardening
for monotonic loading conditions.

u

0.5

0.5

0.5

0.5x1
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Figure 2. Geometry and loading history for the cracked specimen. The specimen is discretized by
6684 linear, four-node plane strain elements. All dimensions are in mm.

Figure 3. Cyclic, uniaxial tension/compression loading: pure kinematic hardening. Predicted
(a) (ε, σ)-distribution and (b) (ε, D)-distribution.

These issues for one-dimensional homogeneous deformations are somewhat similar in
the case of the cracked specimen indicated in Figure 2. To elucidate, the nearest integration
point behind the crack tip is considered. The predicted (ε22, σ22)- and (ε, D)-distributions
for this point are shown in Figure 4a,b and reveal, that after the first tension loading branch,
the damage value remains practically constant, whereas the plastic strain is changing
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in every loading cycle. The damage distribution for the whole specimen after one and
after ten loading cycles is shown in Figure 5a,b, where the respective maximum values of
damage are depicted in a red colour. It is obvious, that damage does not accumulate and
therefore the model fails to describe fatigue crack propagation. These results make clear,
that in general, the adopted phase field theory is not qualified to address ductile fracture,
when only kinematic hardening is present.

Next, the case of pure isotropic hardening is discussed. Predicted responses for the
imposed one-dimensional cyclic loading conditions are illustrated in Figures 6 and 7, where
εp = ε

p
11. It can be seen from Figures 6d and 7d, that the increase of damage is practically

equal for tension and for compression. The reason for this behaviour is that the history vari-
ableH in Equation (59) is dominated by ψ

0(iso)
p , which increases practically equally in both

tension and compression, see Figure 8. That means, the tension/compression asymmetry
in the elasticity law has a minor influence on the damage model under consideration.

Figure 4. (a) (ε22, σ22)-distribution and (b) (ε, D)-distribution for the first integration point behind
the crack tip.

Figure 5. Pure kinematic hardening: damage evolution for the cracked specimen after (a) one loading
cycle and after (b) ten loading cycles.
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Figure 6. Pure isotropic hardening: cyclic, uniaxial tension/compression loading with ε0 = 0, 01. Pre-
dicted (a) (ε, σ)-distribution, (b) (t, εp)-distribution, (c) (t, s)-distribution and (d) (ε, D)-distribution.

Figure 7. Pure isotropic hardening: cyclic, uniaxial tension/compression loading with ε0 = 0, 03. Pre-
dicted (a) (ε, σ)-distribution, (b) (t, εp)-distribution, (c) (t, s)-distribution and (d) (ε, D)-distribution.
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Figure 8. Pure isotropic hardening: evolution of ψ0+
e and ψ

0(iso)
p with time t for ε0 = 0.03.

It can be seen from Figures 6b and 7b, that with increasing number of loading cycles,
the amount of plastic strain decreases and approaches to a constant value. This is a
consequence of the assumption, that the mean value of the strain disappears. At the same
time, the plastic arc length s and the damage variable D approach to limits s∗ and D∗, each
of which is a monotonically increasing function of ε0. This behaviour is again similar to
the case of cyclic plasticity without damage. Actually, it can be verified for cyclic plasticity
without damage, that the yield radius approaches a limiting value k0 + γs∗. The value s∗

can be estimated from the yield condition and the elasticity law to be s∗ = (Eε0 − k0)/γ,
where E is the Young’s modulus. It is worth remarking, that opposite to the case of
plasticity without damage, there is a limiting constant value of plastic strain, which is
negative. This is an implication of both the split in the elasticity law in Equation (9), that
now has a noticeable influence, and the isotropic hardening, that changes in every cycle. It
is concluded, that for the considered one-dimensional problems, similarly to the case of
pure kinematic hardening, damage accumulation can be bounded by values smaller than
one.

Opposite to pure kinematic hardening, these conclusions do not hold for the structural
problem of the cracked specimen. Since the amount of the local strains are not subjected
to constraints, damage accumulates continuously in the vicinity of the crack tip and
approaches 1. Figure 9a,b illustrates the damage distribution after one and after ten
loading cycles and makes clear, that the range with values of D close to 1 becomes larger
with increasing number of loading cycles. Consequently, a description of fatigue crack
propagation is possible in principle. However, the following should be remarked. It is
well known, that linear isotropic hardening cannot capture adequately effects of cyclic
plasticity. Furthermore, if non-linear isotropic hardening is assumed, so that R is bounded
from above, then this model does not permit D → 1 even for monotonic, homogeneous
loading. This assertion can be proved on the basis of Equation (59), from which

D =
2H

2H+ (1+β)Gc
l

. (60)

Evidently, D → 1 only whenH → ∞, which cannot happen, as ψ0+
ep , and henceH too,

are bounded for this case.
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Figure 9. Pure isotropic hardening: damage evolution for the cracked specimen after (a) one loading
cycle and after (b) ten loading cycles.

7. Concluding Remarks

The present paper provides an analysis of a phase field model in common use. The
analysis comprises thermodynamical aspects and characteristic features concerning duc-
tile fracture mechanics. It is shown that, if the free energy function depends explicitly
on D,∇D, then thermodynamical consistency of the phase field model can be well ad-
dressed in the framework of non-conventional thermodynamics. The basic structure of
the constitutive theory is adopted from phenomenological plasticity combined with con-
tinuum damage mechanics methods. For the sake of simplicity, only pure kinematic or
pure isotropic hardening are incorporated. It is shown, with reference to cyclic loading
conditions, that the phase field model under consideration, in its basic form, is not able
to address ductile fracture mechanics problems. A further characteristic feature is that
tension/compression asymmetry is modeled in the elastic part of the free energy function
and cannot be controlled separately by material parameters during plastic loading.

The results of this or similar analyses were certainly known, for example, to the
authors of the papers Ulloa et al. [20] and Seles et al. [21]. Therefore, as mentioned in
the introduction, based on an idea developed for the first time in Alessi et al. [16], these
authors proposed extensions of the basic structure of the model by introducing a further
degradation function, depending on a so-called fatigue variable. It is worth noting, that like
the basic form of the model discussed in the present paper, the fatigue generalizations of the
model are rather extended models of fracture mechanics. As such, they originate from the
regularization of sharp crack topologies, where the relevant crack propagation mechanism
is based on the debonding of atomic planes. Therefore, both the formulations in Miehe and
co-workers [4,9,19], as well as the mentioned fatigue extensions, only consider degradation
of the material stiffnesses in the free energy. Energy stored in the material due to the
damage process, as modeled by the part ψD in the present paper, is not intended. Note also,
that cyclic loading effects are reflected in the work of Alessi et al. [16] by degradation of
the fracture toughness depending on the accumulated plastic strain. It should be outlined,
however, that the present forms of these extensions deal with evolution equations of the
damage variable that do not account for plastic rate effects.

An alternative to such approaches arises, if the analysis above is interpreted to suggest
modeling of the constitutive response of ductile materials within the context of continuum
damage mechanics. Accordingly, the failure process of, for example, metallic materials, has
to be viewed as the result of initiation, growth and coalescence of voids. Opposite to brittle
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materials, local distortion of the lattice due to the existence of voids will now contribute to
the energy stored in the material in terms of the part ψD, besides the energy stored due to
the elastic deformation of the lattice and distortion of the lattice due to the creation and
motion of dislocations, leading to hardening effects. The analysis of the present paper
demonstrates, that non-conventional thermodynamics is an appropriate framework for free
energy functions of such forms. Further, according to the methods of continuum damage
mechanics, the evolution equation of D should be related to the rate of the plastic arc length
ṡ. A common simplification is to regard the tension/compression asymmetry to be relevant
only for the damage law. In this case, the asymmetry can be reflected by the damage
potential on which the damage evolution is based (see, e.g., Malcher and Mamyia [39]
and the references cited there). This way, tension/compression asymmetry aspects can
be controlled by material parameters. The thermodynamics adopted can address such
issues appropriately as well. It is perhaps of interest to remark, that the structure of such
continuum damage mechanics models is different from the one according to ductile fracture
models, for example, by Park and Kim [40], Papasidero et al. [41] or Cerik et al. [42]. A
damage indicator variable is also used in these ductile fracture models, but this variable
does not affect the elastic–plastic model responses. Of course, micromechanics damage
models of the Gurson type (see, for example, Tvergaard and Needleman [43]) can also be
incorporated, but such models do not account for damage degradation of the elasticity
response as well, which is fundamental in the basic form of the model considered in this
paper. A phase field theory for ductile materials of the proposed type will be discussed in
forthcoming papers.
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