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Abstract: In this paper, the effect of early curing temperature on the tunnel fire resistance of self-
compacting concrete (SCC) coated with aerogel cement paste (ACP) was studied. The physical
properties in terms of the compressive strength, flexural strength, and thermal conductivity of ACP
were tested under different early curing temperatures. The tunnel fire resistance of ACP and SCC
coated with ACP was determined, and the microstructure of ACP and SCC after a tunnel fire were
characterized by scanning electron microscopy. The results show that the strength of ACP initially
increased (by 10–40 ◦C) and then later decreased (by 40–60 ◦C) with the increase in early curing
temperature. ACP under 40 ◦C early curing exhibited the minimum number of cracks and mass loss
after the tunnel fire. Too high or too low early curing temperature reduced the thermal conductivity
of ACP but accelerated the formation and expansion of microcracks during the tunnel fire. The
residual compressive strength of SCC coated with ACP under 40 ◦C early curing after the tunnel fire
was the highest, demonstrating the best tunnel fire resistance.

Keywords: early curing temperature; aerogel cement paste; self-compacting concrete; tunnel fire resistance

1. Introduction

Self-compacting concrete (SCC) was first developed for antiseismic reinforced concrete
in 1986 in Japan [1]. Due to its high flowability, it can flow and fill the formwork under
its own weight without external force [2,3]. SCC shows good performance in terms of
segregation resistance, mechanical properties, and durability [4]. Moreover, the application
of SCC decreases the construction time and structure cost, representing sustainable devel-
opment [5]. Because of its excellent properties, SCC is widely used all over the world in
many concrete structures, especially in tunnel structure [6,7].

However, the SCC in tunnel structures encounter more challenges in the event of
tunnel fires [8]. When a fire occurs, SCC will spall, cracks will generate, and its strength
will decline. The main mechanism leading to failure of SCC in a tunnel fire is that the
high temperature of the tunnel fire alters the pore structure of the SCC and reduces the
compressive strength, leading to failure of the concrete structure [9,10]. Moreover, SCC is
more vulnerable to fire attack [11]. Due to the low porosity and permeability, the water
vapor pressure is not easy to release; the high internal pressure could cause spalling of
the concrete. According to the Chinese code GB 50016-2014, the fire resistance limit of a
tunnel load-bearing structure under the standard CH heating curve is 2.5 h. Therefore,
it is of significant importance to improve the tunnel fire resistance of SCC. To solve this
problem, fire-resistant coating is a useful method to limit the heat transfer in concrete that
has recently received increasing attention [12,13].

Aerogel is defined as a type of nanostructured material with high porosity and specific
surface area [14]. In recent years, SiO2 aerogel has become a research hotspot due to its low
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thermal conductivity and hydrophobicity, which has been widely used in aerogel insulation
boards, aerogel insulation blankets, and other thermal insulation materials [15,16]. There
are few studies on the application of SiO2 aerogel cement paste (ACP) as a fireproof coating.
Kim et al. [17] reduced the thermal conductivity of cement slurry by adding aerogel powder
to cement. Liu et al. [18] compared the thermal insulation effect between SiO2 aerogel-
coated lining and conventional lining after a simulated fire, and the internal temperature of
the SiO2 aerogel-coated lining was far below that of the conventional lining. Zhu et al. [19]
found that using ACP improved the fire safety of high-performance concrete linings in
tunnels. Using aerogel mortar as a fireproof coating can significantly improve the heat
insulation performance of SCC in tunnel fires.

The curing regime has a great significance on the porosity of ACP, which determines
thermal conductivity and tunnel fire resistance. Among many factors, curing temperature
is the key factor affecting the hydration degree of ACP. Tam et al. [20] studied the effects
of a thermal curing temperature of 100 ◦C at durations of 8 h, 16 h, and 24 h on concrete
microstructure. Results showed that continuous high-temperature curing had a positive
effect on the formation of crystal hydrate. Ng et al. [21] proposed that appropriate curing
regimes can improve the properties of aerogel-incorporated mortar to achieve the desired
requirements. Wang et al. [22] studied the effect of curing temperature on the tunnel fire
insulation of the ACP coating. Current research on the fire resistance of ACP mainly focuses
on SiO2 aerogel content and coating. However, the influence of an early curing method on
tunnel fire resistance of SCC coated with ACP is not clear.

Hydration kinetics of cementitious materials are closely related to curing temperature.
Appropriate curing temperature can not only improve the fire resistance of ACP but also
allow formulating corresponding construction strategies of tunnel fireproof coating to
improve production efficiency. Therefore, this paper aims to reveal the effect of early
curing temperature on the tunnel fire resistance of SCC coated with ACP. The compressive
strength, flexural strength, and thermal conductivity of ACP were tested under different
early curing temperatures. The tunnel fire resistance of ACP and SCC coated with ACP was
determined and the microstructure of ACP and SCC after a tunnel fire was characterized
by scanning electron microscopy (SEM). The research results can provide optimal new
theories and methods for the maintenance of ACP and provide a valuable theoretical basis
for the revision of ACP technology in the future.

2. Experimental
2.1. Materials

Ordinary Portland cement (P.O 42.5), silica fume, fly ash, and slag were used as
cementitious materials. The chemical compositions of cementitious materials are shown in
Table 1. The air-entraining agent (GYQ-I) and polycarboxylate high-performance water
reducer (JK-PCA) were from Jiangsu Subor Co. Ltd., Nanjing City, Jiangsu Province, China.
Performance indicators for additives are shown in Tables 2 and 3. The hydrophobic aerogel
granules were provided by Guangdong Alison Hi-Tech Co. Ltd., Yingde City, Guangdong
Province, China. The macroscopic morphology and scanning electron microscopy (SEM)
pictures of aerogel are shown in Figure 1; the physical properties of aerogel are shown in
Table 4. Crushed limestone with a size range of 5–16 mm was used as the natural coarse
aggregate. Local river sand was used as the fine aggregate, which had a fineness modulus
of 2.4. The gradation curves of aggregates are shown in Figure 2.

Table 1. Chemical composition of cement, fly ash, and silica fume (% by mass).

Binding
Material SiO2 Al2O3 Fe2O3 TiO2 SO3 CaO Na2O MgO K2O Other

Cement 12.54 4.41 3.41 0.59 1.96 72.97 0.26 0.21 0.90 2.75
Fly ash 37.96 24.35 12.06 1.97 0.95 14.83 2.27 1.03 1.86 2.72

Silica fume 94.30 0.04 – – 0.08 1.21 – 0.08 0.01 4.28
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Table 2. Performance parameters of water reducer.

Water Reduction
Rate (%)

Chloride Ion
Content (%)

Alkali Content
(%)

Water Content
(%)

Solid Content
(%) pH

25 0.038 ≤0.2 <3 40 ± 2 8.3

Table 3. Performance parameters of air-entraining agent.

Ratio of Bleeding Rate
(%)

Gas Content
(%)

Solid Content
(%)

Corrosion of
Reinforcement pH

49.3 5.3 15 No 8.2

Table 4. Physical characteristics of SiO2 aerogel.

Particle Size (mm) Porosity (%) Density (kg/m3) Thermal Conductivity (W/m·K)

0–2 > 90 100 0.020
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2.2. Preparation of ACP and SCC

ACP was prepared according to the premixed cement paste process [23]. The specific
mix proportion of the ACP that was used was designed as shown in Table 5. The sizes of
the ACP samples were 40 mm × 40 mm × 160 mm and 250 mm × 250 mm × 50 mm. The
mix proportion of SCC is shown in Table 6. The ACP strength was 40 MPa (C40). The size
of the SCC samples was 100 mm × 100 mm × 100 mm. In order to determine the tunnel
fire resistance of concrete, one surface of the SCC was coated with ACP; the thickness of the
ACP coating was 10 mm. The flow chart of the ACP composite SCC specimen preparation
is available in a previously published paper [22].
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Table 5. Mix proportion of ACP (kg/m3).

Cement Water Aerogel Silica Fume Fly Ash Air-Entraining Agent Water Reducer

324 180 65 36 90 4.5 4.5

Table 6. Mix proportion of C40 SCC (kg/m3).

Cement Fly Ash Silica Fume Slag Water Fine
Aggregate

Coarse
Aggregate

Water
Reducer

335 111.7 55.8 55.8 173.1 814 858 1.7

After casting, all the samples were employed with different curing methods. For the
early curing (1 day before demolding), the temperature was set as 10 ◦C, 20 ◦C, 30 ◦C,
40 ◦C, 50 ◦C, and 60 ◦C; the relative humidity was above 95%. The early curing lasted
1 day. After that, it was demolded and experienced 14 days wet curing and 14 days dry
curing, simulated with on-site construction curing. The average temperature during the
experiment period was 13–24 ◦C and the relative humidity was 70 ± 15%. For the 14 days
wet curing, the surface of the specimen was sprayed with water every 6 h and covered
with a film. The different curing regimes are presented in Table 7.

Table 7. The different curing regimes.

Curing
Regime Early Curing (RH > 95%) Wet Curing Time

(13–24 ◦C, 70 ± 15% RH)
Dry Curing Time

(13–24 ◦C, 70 ± 15% RH)

10 C 10 ◦C, 1 days 14 days 14 days
20 C 20 ◦C, 1 days 14 days 14 days
30 C 30 ◦C, 1 days 14 days 14 days
40 C 40 ◦C, 1 days 14 days 14 days
50 C 50 ◦C, 1 days 14 days 14 days
60 C 60 ◦C, 1 days 14 days 14 days

2.3. Measurements
2.3.1. Physical and Mechanical Properties of ACP

The flexural strength of the ACP sample (40 mm × 40 mm × 160 mm) was mea-
sured with a WA-600C electro-hydraulic servo universal testing machine (Wuxi xinluda
Instrument Equipment Co., Ltd., Wuxi city, Jiangsu Province, China), and the final value
was taken as the average value of the three specimens. The compressive strength was
measured on the six prisms generated by the flexural test. The number of specimens used
for determining the ACP physical properties was 36. The final value in this paper was the
average of the three test results.

The thermal conductivity of the ACP sample (250 mm × 250 mm × 50 mm) was
tested by hot-wire method [24]. For specific methods and principles, see [24]. The thermal
conductivity of the ACP can be obtained by Equation (1):

λ =
Q

4π[T(t2)− T(t1)]
ln(

t2

t1
) (1)

where λ is thermal conductivity, (W/m·K); Q is the power of unit length of the heating
source, (W/m); T is temperature at time t, (K); and t is time, (s).

In order to accurately compare the thermal conductivity of ACP under different curing
methods, three specimens were measured, and the average value was taken. The number
of specimens used for ACP thermal conductivity was 18.

2.3.2. Simulated Tunnel Fire

A simulated tunnel fire test was conducted on the SCC coated with ACP, ACP samples,
and 10 mg ACP powders. An RTD-45-13 Bend resistance furnace (Jiangsu Jinhuan Test
Equipment Co., Ltd., Taizhou City, Jiangsu Province, China) was used as the tunnel fire test
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device. The temperature of the tunnel fire reached 1100 ◦C within 30 min and maintained
for 2.5 h, according to the HC standard tunnel fire temperature rising curve. The resistance
furnace and temperature rising curve of the tunnel fire is shown in a previous paper [22].
To ensure that only the ACP surface was tested for the simulation tunnel fire, the uncoated
surface of the SCC was covered with a 100 mm thick zirconium fiber blanket. The number
of specimens used for the simulated tunnel fire test was 36.

The macroscopic morphology of the ACP before and after the simulated tunnel fire
was analyzed. In addition, the mass loss of the ACP samples (50 mm × 50 mm × 50 mm)
and 10 mg ACP powder before and after the simulated tunnel fire were measured to assess
the fire resistance of the ACP under various curing regimes. The tunnel fire resistance of
the SCC coated with ACP was determined in terms of the residual compressive strength.

2.3.3. SEM

Before and after the tunnel fire, samples were taken at the center of the specimen
(ACP and SCC coated with ACP) surface. The morphology of samples was analyzed
using a Supra 55 scanning electron microscope (Carl Zeiss, Oberkochen, Baden Voorburg,
Germany); the SEM image was carried out under 20 kV acceleration voltage.

3. Results and Discussion
3.1. Physical Properties of ACP

The compressive strength and flexural strength of the ACP under different early
curing regimes are shown in Figure 3. The compressive strength and flexural strength of
ACP increased at first and then decreased later with the increase of early curing tempera-
ture. More specifically, the highest compressive strength (3.63 MPa) and flexural strength
(0.85 MPa) of ACP occurred in the specimen under 40 ◦C early curing. The compressive
strength and flexural strength of ACP under 10 ◦C early curing were reduced by 4% and 5%,
respectively, compared with that under 40 ◦C early curing. This suggests that increasing the
early curing temperature appropriately (no more than 40 ◦C) was beneficial in accelerating
the hydration reaction and in raising the compressive strength and flexural strength of
ACP [25]. Conversely, when the early curing temperature was higher than 40 ◦C, the
compressive strength and flexural strength of ACP gradually decreased with the increase
of early curing temperature and reached the lowest point at 60 ◦C. This was due to the
high early curing temperature in the curing process, leading to the formation of internal
cracks and a reduction in the mechanical properties of ACP [26]. These internal cracks
could reduce the durability and service life of ACP [27].

The thermal conductivity of ACP under different early curing temperatures is shown
in Figure 4. It can be seen that the thermal conductivity increased at first as the early curing
temperature increased up to 40 ◦C and then decreased when the temperature increased
from 40 ◦C to 60 ◦C. Nevertheless, in all cases, ACP had low thermal conductivity and
good thermal insulation.

The thermal conductivity reached a maximum value of 0.171 W/(m·K) in the specimen
under 40 ◦C early curing. The thermal conductivity of ACP under 10 ◦C early curing was
the lowest, nearly 3% less than that under 40 ◦C early curing. The low early curing
temperature slowed the hydration rate and increased the porosity of the ACP, leading to
low thermal conductivity. This indicates a better thermal insulation performance of ACP
with low early curing. In addition, the tunnel fire resistance could also be reduced due to
the large porosity. It is necessary to further analyze the tunnel fire resistance of ACP.
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Figure 6 shows the morphology of ACP under different early curing conditions after
the simulated tunnel fire. In general, the ACP surface morphology was gray and yellow
after the tunnel fire test. No large areas of spalling occurred; although cracks generated,
indicating the high stability of ACP in a tunnel fire. In addition, the cracks in the ACP
under different early curing temperatures were not the same. In Figure 6a, the ACP
under 10 ◦C early curing had two tiny cracks with loose texture after the tunnel fire. In
Figure 6b, the ACP had a large main crack with a small number of tiny cracks around it. In
Figure 6c,d, with the increase of early curing temperature (20–40 ◦C), the cracks gradually
decreased, with only a small number of pores appearing. The ACP under 40 ◦C early
curing temperature was the best preserved and showed the minimum number of pores. In
Figure 6e,f, a large number of cracks and connected pores formed in the ACP under the
early curing temperature of 50 and 60 ◦C. This indicated that severe damage was caused
by the tunnel fire and the tunnel fire resistance of SCC coated with ACP could be reduced
when the early curing temperature is increased to 50 ◦C.
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It is evident that the aerogels on the surface shrank greatly and had suffered damage
visible after the tunnel fire. Some scholars [28] pointed out that in order to make better
use of the low thermal conductivity of aerogel, it can be used in combination with other
materials to enhance its fire resistance.

3.3. Mass Loss of ACP

Figure 7 shows the mass loss of the ACP specimen and the 10 mg ACP powder before
and after the tunnel fire and the ratio between them (mass loss ratio). The mass loss
of the ACP powder was determined by the thermal conductivity of hydration products
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when neglecting the specimen microstructure. The mass loss of the ACP specimen and
the mass loss ratio of the ACP reflected the combined effect of the microstructure and the
thermal conductivity of hydration products. In Figure 7, the mass loss of the ACP powders
gradually reduced with early curing temperatures. The minimum mass loss of the ACP
powders was under 60 ◦C early curing (21.4%). This suggests that early high-temperature
curing could make dense structure hydration products, which are beneficial in improving
the fire resistance of ACP hydration products.
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As shown in Figure 7, the mass loss of the ACP specimen or the mass loss ratio of ACP
decreased at first and then increased with the increase of early curing temperatures. The
ACP specimen with 40 ◦C early curing showed a minimum mass loss ratio with a value
of 63%. Excessively high early curing temperatures led to an uneven microstructure and
internal cracks, which had a negative impact on the fire resistance of the ACP specimen. In
conclusion, with respect to the ACP microstructure, 40 ◦C early curing temperature was
optimal to obtain a better tunnel fire resistance and heat insulation performance of the ACP.

3.4. The Residual Compressive Strength of SCC Coated with APC

The residual compressive strength of SCC coated with ACP under different early
curing regimes is shown in Figure 8. It can be seen that the residual compressive strength
of the SCC gradually enhanced with the early curing temperature when the temperature
was 10–40 ◦C. Higher early curing temperature accelerated the hydration reaction of ACP.
More calcium hydroxide can react with silica fume and fly ash to generate stable C-S-H
gel, which can raise the tunnel fire resistance and heat insulation performance of the ACP.
However, the residual compressive strength of the SCC decreased with the early curing
temperature when the temperature was 40–60 ◦C. The residual compressive strength of the
SCC under 60 ◦C early curing reduced nearly 10% compared with that under 40 ◦C early
curing. The effect of curing temperature on the performance of specimens as reported in
other studies is shown in Table 8. When the curing temperature was greater than 90 ◦C, the
compressive strength and flexural strength decreased. When the curing temperature was
20–80 ◦C, the compressive strength of the specimen increased at first and then decreased.
The curing temperature corresponding to higher performance was approximately 40–50 ◦C,
which was similar to the experimental results.
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Table 8. Effect of curing temperature on the performance of specimens.

Reference Temperature
(◦C)

Compressive
Strength

(MPa)

Flexural
Strength

(MPa)

Permeability
(mm)

Thermal
Conductivity

(W/m·K)

[2] 60–70 ↓ – ↑ –
[21] 80–120 ↓ ↓ – ↓
[25] 15–70 ↓ – – –
[26] 20–90 ↑first, ↓ after 50 ◦C – – –
[29] 60–100 ↓ ↓ – –
[30] 20–50 ↑ – – –
[31] 20–60 ↑first, ↓ after 40 ◦C – – –
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Figure 8. Residual compressive strength of SCC coated with ACP under different early cur-
ing regimes.

In addition, the compressive strength of SCC before the tunnel fire was also measured
with the value of 42.3 MPa. It was found that the compressive strength of the SCC after the
tunnel fire was only 50–60% of the initial compressive strength, in spite of the protection of
10 mm ACP fireproof coating. Therefore, it is suggested that the coating thickness of ACP
be appropriately increased in order to improve the residual compressive strength of SCC
after a tunnel fire in actual engineering.

3.5. SEM Analysis of ACP before and after Tunnel Fire

SEM images of ACP under different early curing conditions before the tunnel fire are
shown in Figure 9. It can be seen that there was a pore (nearly 1–5 µm) between the aerogel
and paste, which was caused by shrinkage of the paste during curing. Ng et al. [32] pointed
out that these pores are conducive to water transport in the curing process, which is better
for ACP curing. In Figure 9, the ACP specimen under 40 ◦C early curing had the smallest
micropores. There were more pores in the ACP specimen under 10 ◦C early curing than
that under 40 ◦C early curing, which was due to the slow hydration reaction and uneven
paste when the early curing temperature was 10 ◦C. Appropriately raising the early curing
temperature was conducive to the densification of the ACP microstructure. In contrast, the
ACP specimen under 50 ◦C and 60 ◦C early curing had more rough pores than those under
30 ◦C and 40 ◦C early curing. In addition, internal cracks caused by early fast curing can
be seen in the ACP specimen under 60 ◦C early curing. The pores produced in early curing
could accelerate damage of the ACP specimen during a tunnel fire.

Figure 10 shows the SEM images of ACP under different early curing conditions after
the tunnel fire. It can be seen from the figure that the aerogel shrank after the tunnel fire,
and there were huge cracks between the paste and aerogel, especially for the ACP specimen
under 10 ◦C and 20 ◦C early curing. The microcracks of the ACP specimen under 40 ◦C
early curing were the shortest.
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Too high or too low early curing temperatures increased the porosity of the ACP
specimen, which can reduce the thermal conductivity and enhance the thermal insulation
ability. However, it also exerted adverse effects on the ACP microstructure [29–31], acceler-
ating the formation and expansion of microcracks during the tunnel fire, which reduced
the fire resistance and heat insulation performance of ACP. With respect to the thermal
conductivity and microstructure, ACP under 40 ◦C early curing had the best tunnel fire
resistance and heat insulation performance.
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Figure 9. SEM images of ACP under different early curing regimes before the simulated tunnel fire:
(a1) aerogel under 10 C; (a2) interface under 10 C; (a3) paste under 10 C; (b1) aerogel under 20 C; (b2)
interface under 20 C; (b3) paste under 20 C; (c1) aerogel under 30 C; (c2) interface under 30 C; (c3) paste
under 30 C; (d1) aerogel under 40 C; (d2) interface under 40 C; (d3) paste under 40 C; (e1) aerogel under
50 C; (e2) interface under 50 C; (e3) paste under 50 C; (f1) aerogel under 60 C; (f2) interface under 60 C;
(f3) paste under 60 C.
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Figure 10. SEM images of ACP under different early curing regimes after the simulated tunnel fire:
(a1) interface under 10 C; (a2) aerogel under 10 C; (a3) paste under 10 C; (b1) interface under 20 C; (b2)
aerogel under 20 C; (b3) paste under 20 C; (c1) interface under 30 C; (c2) aerogel under 30 C; (c3) paste
under 30 C; (d1) interface under 40 C; (d2) aerogel under 40 C; (d3) paste under 40 C; (e1) interface under
50 C; (e2) aerogel under 50 C; (e3) paste under 50 C; (f1) interface under 60 C; (f2) aerogel under 60 C;
(f3) paste under 60 C.
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3.6. SEM Analysis of SCC Coated with ACP after Tunnel Fire

Figure 11 shows the SEM images of SCC with different early curing after the simulated
tunnel fire test. In general, microcracks occurred in SCC, indicating that SCC coated with
ACP still suffered damage from the tunnel fire. By comparing the SEM pictures of SCC
under different early curing conditions, it can be seen that the width of microcracks in SCC
decreased gradually at first and then increased with the early curing temperature. The
microcrack width of SCC with 40 ◦C early curing was the least; it showed the best tunnel
fire resistance, which is consistent with the results of residual compressive strength. The
SCC under 10 ◦C early curing showed the largest and longest microcracks, suggesting that
it is better to raise the early curing temperature in practical engineering.
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Figure 11. SEM images of SCC coated with ACP under different early curing regimes after the
simulated tunnel fire: (a1) aggregate under 10 C; (a2) mortar under 10 C; (b1) aggregate under 20 C;
(b2) mortar under 20 C; (c1) aggregate under 30 C; (c2) mortar under 30 C; (d1) aggregate under 40 C;
(d2) mortar under 40 C; (e1) aggregate under 50 C; (e2) mortar under 50 C; (f1) aggregate under 60 C;
(f2) mortar under 60 C.
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4. Conclusions

The following conclusions can be drawn:

(1) The compressive strength and flexural strength of ACP increased at first and then
decreased later with the increase of early curing temperature. The highest compres-
sive strength and flexural strength of ACP occurred in the specimen under 40 ◦C
early curing.

(2) For the ACP specimen, the aerogels on the surface shrank greatly and cracks generated
after the tunnel fire, although no large area of spalling occurred. The ACP under
40 ◦C early curing exhibited the minimum number of cracks and mass loss after the
tunnel fire.

(3) The residual compressive strength of SCC coated with 10 mm ACP after the tunnel
fire was only 50–60% of the initial compressive strength. The residual compressive
strength of SCC increased at first as the early curing temperature of the ACP increased
up to 40 ◦C and then decreased when the temperature of the ACP increased from
40 ◦C to 60 ◦C.

(4) Too high or too low early curing temperature reduced the thermal conductivity of ACP
but accelerated the formation and expansion of microcracks during the tunnel fire.

(5) With respect to the thermal conductivity and microstructure, ACP under 40 ◦C
early curing had the best tunnel fire resistance and heat insulation performance.
In addition, the SCC coated with ACP under 40 ◦C early curing showed the best
tunnel fire resistance.
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