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Abstract: Comparing with the traditional construction process, 3D printing technology used in
construction offers many advantages due to the elimination of formwork. Currently, 3D printing
technology used in the construction field is widely studied, however, limited studies are available
on the dynamic properties of 3D printed materials. In this study, the effects of sand to binder ratios
and printing directions on the fractal characteristics, dynamic compressive strength, and energy
dissipation density of 3D printed cement mortar (3DPCM) are explored. The experiment results
indicate that the printing direction has a more significant influence on the fractal dimension compared
with the sand to binder ratio (S/B). The increasing S/B first causes an increase and then results in a
decline in the dynamic compressive strength and energy dissipation of different printing directions.
The anisotropic coefficient of 3DPCM first is decreased by 20.67%, then is increased by 10.56% as the
S/B increases from 0.8 to 1.4, showing that the anisotropy is first mitigated, then increased. For the
same case of S/B, the dynamic compressive strength and energy dissipation are strongly dependent
on the printing direction, which are the largest printing in the Y-direction and the smallest printing
in the X-direction. Moreover, the fractal dimension has certain relationships with the dynamic
compressive strength and energy dissipation density. When the fractal dimension changes from 2.0
to 2.4, it shows a quadratic relationship with the dynamic compressive strength and a logarithmic
relationship with the energy dissipation density in different printing directions. Finally, the printing
mortar with an S/B = 1.1 is proved to have the best dynamic properties, and is selected for the 3D
printing of the designed field barrack model.

Keywords: 3D printing; mortar; dynamic compressive strength; anisotropy; energy dissipation
density; fractal dimension

1. Introduction

With the development of the global construction industry, traditional construction
is facing the problems of environmental pollution, a shortage of labor, overuse of raw
materials, etc. [1,2]. Compared with the traditional construction process, 3D printing
technology, as used in construction, has the advantages of high design flexibility, short
construction periods for the single irregularly shaped components, and lower resource
consumption due to the elimination of formwork [3–5]. These advantages of 3D printing
techniques can resolve a series of problems faced by traditional construction [6]. Hence,
with the development of building digitization and automation, 3D printing technology is
being studied extensively in civil engineering [7,8].

In recent years, many buildings were successfully built with the aid of the rapid de-
velopment of 3D printing techniques [9–11]. For those printed buildings with cementitious
materials, it is not required to have a beautiful appearance, but they must have enough
strength to ensure their safety in use. As a result of the special extrusion process and
layer-by-layer stacking, the overall strength of printed cementitious materials is greatly
influenced by the interlayer bond strength, so the research tends to focus on the interlayer
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bond strength (Table 1) [12]. Moreover, the fundamental mechanical behaviors of 3D
printed cementitious materials are also dependent on printing directions, giving rise to
the anisotropy of mechanical properties. In the experimental results of Pham et al. [13],
the compressive strengths of the printing direction and the horizontal expanding direction
were lower than that in the vertical build-up direction. Similar results were also found in
terms of the tensile, bending and shearing strength [14].

Table 1. Research into the interlayer bond strength of 3D printed cementitious materials.

Reference Study Findings

Wolf et al. [15]
The bond strength of 3D printed concrete was reduced significantly
when specimens were exposed to dry curing conditions, resulting in

the decrease of compressive strength.

Sanjayan et al. [16]
The decrease in the surface moisture content with the increasing
print-time interval caused the decline of interface bond strength

between layers.

Panda et al. [17]
The low yield strength material could be well mixed with the previous

layer to form a good bond strength; reducing the nozzle height
improved interface bond strength.

The properties of materials under dynamic loading change greatly due to the strain
rate effect, which is different from that under static loading. Up to now, the dynamic prop-
erties of many cementitious materials have been investigated through the Split Hopkinson
Pressure Bar (SHPB) test (Table 2); however, limited studies are available on the dynamic
properties of 3D printed cementitious materials using a SHPB. In defense engineering,
buildings are usually designed to bear dynamic loading [18]. The US Marine Corps used
3D printing to build a concrete barrack within 40 h, and the printed living space could
withstand a certain impact and explosion [19]. In addition, defense works and civil infras-
tructure are at risk of terrorist attack. In consequence, the dynamic mechanical behaviors
of printed cementitious materials warrant investigation.

Table 2. The dynamic properties of cementitious materials as evinced by SHPB tests.

Reference Research Contents

Wang et al. [20] The dynamical compressive properties of fiber reinforced high strength
concrete (FRHSC)

Ma et al. [21] The dynamic behavior and the absorbed energy of basalt fiber
reinforced cement soil

Li et al. [22] The dynamic compressive properties of light-weight geopolymer
composites

Since fractal characteristics exist in the evolution of structure from original defects
to macroscopic fractures, many research studies on the fracture behavior of materials
have adopted fractal geometry theory [23,24]. Energy dissipation analysis is considered
as an important index to reveal the fracturing mechanism of materials, which has been
widely applied to the research on the impact crushing characteristics of materials, such as
rock [25], concrete [26], and porous materials [27]. The application of fractal theory and
energy dissipation analysis can provide a theoretical foundation for analyzing the fractal
characteristics of fragments [28]. However, there are relatively few studies of the fractal
feature and energy dissipation characteristics of 3D printed cementitious materials.

A 100-mm-diameter SHPB was adopted to measure the dynamic behavior of 3D
printed cement mortar (3DPCM). The purpose of this work is to investigate the effects
of sand to binder ratio (S/B) and printing direction on the fractal features and dynamic
behaviors of 3DPCM. For the 3DPCM with different sand to binder ratios, the fractal
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characteristics in different printing directions were quantitatively studied by the fractal
dimension. In addition, the anisotropy coefficients with different sand to binder ratios
were compared. The compactness of 3DPCM in different printing directions was evaluated
by use of the ultrasonic pulse velocity (UPV–NU61, Tiance Technology Company, Nanjing,
China). The corresponding empirical equations were obtained by correlating dynamic com-
pressive strength and energy dissipation density with the fractal dimension, respectively.
The printing mortar with S/B = 1.1 was selected to print a full-scale model barracks. The
findings provide a certain reference for understanding the dynamic performance of 3D
printed cementitious materials.

2. Experimental Process
2.1. Preparation of Printable Mortar

This work attempts to develop a printable 3D printing cement mortar based on S/B
of 0.5 to 1.7 (0.5, 0.8, 1.1, 1.4, and 1.7). The binder component used in this experiment
consists of ordinary Portland cement (Grade 42.5;), fly ash 33% and silica fume 2% (by
mass of cement). The water to cement ratio of the prepared cement mortar is about 0.34. To
improve the fluidity and viscosity, polycarboxylate superplasticizer 0.1% and thickening
agent 0.05% (by mass of cement) were added to the mixture, respectively. Table 3 displays
the particle size distribution of the river sand used in the present work.

Table 3. Particle size distribution of river sand.

Diameter (mm) ≥2.5 1.18–2.5 0.63–1.18 0.315–0.63 0.16–0.315 <0.16

Percentage by mass (%) 0.40 1.52 2.30 50.48 41.38 3.92

According to the convenient method for evaluating the changes in workability and
buildability with time intervals [29], as illustrated in Figure 1, mortar specimens prepared
with S/B = 0.5 and S/B = 1.7 fail to satisfy the requirement of printability due to the
poor buildability and workability, respectively. Based on trial-and-error optimization,
when 0.8 ≤ S/B ≤ 1.4, the prepared mortar could be used for printing and mortar mixes
with S/B = 0.8, 1.1, and 1.4 were selected to evaluate the dynamic properties of 3DPCM.
The printability test results of the mortar with three different sand to binder ratios are
summarized in Table 4.

2.2. 3D Printing Process and Specimen Processing

A large-scale Cartesian frame 3D printer with a mobile platform along the X, Y, and
Z-axes was used: The printer has a round nozzle with a diameter of 20 mm, and the
effective printing space is 3 m (L) × 3 m (W) × 3 m (H). During the printing process, the
fresh mixture was spirally squeezed from the V-shaped storage bin to the nozzle, and
printed by the nozzle at a horizontal speed of 9 m/min. The size of the extruded filament
was about 22–25 mm in width and 13–15 mm high. The printing mortar was finally printed
into cuboids measuring 1500 mm (L) × 150 mm (W) × 150 mm (H) (Figure 2). Each printed
cuboid was cured at 20 ◦C and a relative humidity of 90% for 28 d. After the curing period,
a certain number of cylinder specimens were processed from the three printing directions
(X, Y, Z) of the printed cuboids, which had a diameter of 80 mm (D) and a length of 40 mm
(L), as shown in Figure 3. Furthermore, some cast cylinder specimens with the same size
and mix proportions as the printed cylinder specimens were prepared for comparisons.
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Figure 1. Printability tests with (a) S/B = 0.5 and (b) S/B = 1.7.

Table 4. The weight ratio of raw materials and printability test results.

Cement Silica Fume Fly Ash Sand Water Superplasticizer Thicker
Agent

Workability
(mm)

Buildability
(mm)

1 0.02 0.33 0.8 0.34 0.001 0.0005 190 77
1 0.02 0.33 1.1 0.34 0.001 0.0005 172 79
1 0.02 0.33 1.4 0.34 0.001 0.0005 156 80
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Figure 2. 3D printed cuboid.

2.3. UPV Testing

Due to the special stripe stacking characteristics of 3D printing technology, a certain
number of voids and flaws in the interlayers between filaments can be formed during the
deposition process. When ultrasonic waves transmit in the printed specimen, the voids
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and flaws inside printed specimens may change the form of ultrasonic waves through
absorbing and reflecting waves, thus affecting the wave energy and transmission time [30].
The more defects, the lower the density, and UPV [31]. Therefore, it is reasonable to reflect
the void features of 3DPCM in different printing directions based on the variation of UPV.
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The velocity v is calculated from the thickness of specimen P and the transmission
time T, as follows:

v =
P
T

(1)

The UPV testing of specimens processed from three printing directions (X, Y, Z)
was conducted at a pulse frequency of 60 kHz. The surfaces of two transducers and
specimen were smeared with a small amount of Vaseline to ensure good contact between
the transducer and the specimen (Figure 4). Three measuring points in the outer surfaces
of the specimen were selected for testing and the average value of measurement results
was regarded as the UPV value of 3DPCM in this direction.
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2.4. Dynamic Compression Test

The 100 mm-diameter SHPB testing system used in this research is shown in Figure 5.
All the bars are made of high-strength alloy steel, with a density of 7850 kg/m3 and an
elastic modulus of 210 GPa. The sensitivity coefficients of the semiconductor strain gauge
and resistance strain gauge used in this test are 105 and 2.2, respectively. To satisfy the
uniform stress hypothesis in the SHPB test of 3DPCM, some measures were taken to
improve the validity of test data. A moderate amount of Vaseline was smeared on the
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bar-specimen interfaces to reduce the friction between the specimen and the end-face of the
bars. To reduce the effects of dispersion, a rubber disk used as a pulse shaper was installed
in front of the incident bar, measuring 30 mm in diameter and 2 mm thick. Figure 6 presents
the stress equilibrium for dynamic compression test: the curve after superposition of the
incident and reflected waves was almost identical with the transmitted wave, showing
that the dynamic stress equilibrium at both ends of the specimen was reached. In this test,
the impact pressure was 0.1 MPa and the corresponding strain rate was approximately
120 s−1. The SHPB specimens with the same S/B were divided into four groups: mold
cast specimens, and three groups of printed specimens (X, Y, and Z-directions); each group
included three identical specimens, and the result of the corresponding group was the
average value of three test specimens.
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On the basis of one-dimensional wave theory [32], the incident pulse εi(t), reflected
pulse εr(t) and transmitted pulse εt(t) measured by strain gauges are used for calculating
the dynamic compressive strength σ(t), strain ε(t) and strain rate

•
ε(t) histories as follows:

σ(t) = EAεt(t)/As

ε(t) = −2C
∫ t

0 εr(t)dt/Ls
•
ε(t) = −2Cεr(t)/Ls

(2)

where E, A, and C are defined as the elastic modulus, cross-sectional area, and longitudinal
wave velocity of bars, respectively; As and Ls are the cross-sectional area and length of the
SHPB test specimen, respectively.



Materials 2021, 14, 5554 7 of 20

3. Results and Discussion
3.1. Fractal Dimension of Failed 3DPCM Specimens

The change of S/B was achieved by keeping the amount of binding material constant
and changing the addition of sand. Figure 7 shows that the different printing directions and
sand to binder ratios exert influences on the size and number of broken fragments, leading
to the different failure modes of printed mortars. With the increase of the S/B (when the
sand content increases), it induces the formation of more sand–sand interfaces formed
inside printed samples (Figure 8). The internal cracks and defects formed by the sand–sand
interfaces can easily expand and connect, which makes the printed samples prone to break
into pieces of different sizes and shapes. Therefore, the large-size fragments (>26.5 mm)
in the same printing direction are decreased and gradually transformed into medium to
small-size fragments (<2.36 mm) with increases in S/B. Additionally, for the same case
of S/B, the size of broken fragments in the printing Y-direction is significantly decreased
compared to that in the other two printing directions. This result can be explained by
the different shapes of defects in different printing directions. Figure 9 demonstrates that
the main defects in the printing Y-direction are circular pores, which are slender cracks in
the printing X and Z-directions. Under the same impact, micro cracks are formed by the
expansion and connection of pores, which can eventually penetrate the printed sample
after their propagation and lead to macroscopic destruction of the sample. Compared with
pore defects, the penetration of crack defects causes the earlier failure of samples, and
many other internal defects have no time to expand or connect into new cracks, resulting
in the smaller crack density and larger broken fragments.

The particle size distribution of destructed 3DPCM is obtained by sieving, and the
results in different printing directions are demonstrated in Figure 10.

The fractal dimension is usually adopted to quantify the extent of impact crushing.
The relationship between the partial mass and total mass can be obtained with reference
to the functional model [33] and the mass-frequency relationship [34]. Then, invoking the
mass-granularity method [25], the fractal dimension DF is given by:

ln(Mr/Mt) = (3 − DF) ln(r/rmax) (3)

where Mr and Mt are the accumulated mass of fragments with a particle size less than r
and the total mass of fragments, respectively; r and rmax are the particle size of fragments
and the maximum particle size of fragments, respectively.

As (3–DF) is the slope of the ln(Mr/Mt)–ln(r/rmax) lines, DF can be obtained therefrom.
According to Equation (3) and sieving results of particle size distribution, the relationship
between the the relative mass and the relative size of the destructed 3DPCM in different
printing directions is illustrated in Figure 11.

As presented in Figure 11, the correlation coefficients of straight fitting lines are
all above 0.96, indicating the broken fragments in the same printing direction exhibit
self-similarity and fractality. The defects randomly distributed inside internal structure
have significant self-similarity [28]. Due to the evolution, connection, and propagation of
micro-pores, micro-cracks, and printing defects randomly distributed inside 3DPCM, the
printed specimens are damaged under impact loading. Therefore, the broken fragments of
destructed 3DPCM in the same printing direction show self-similarity characteristics.
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The fractal dimension DF illustrated in Figure 12 increases gradually as S/B increases
from 0.8 to 1.4. Compared with the case of S/B = 0.8, the average fractal dimension at
S/B = 1.4 in the printing X, Y, and Z-directions is increased by 4.50%, 1.14%, and 2.49%,
respectively. In the same printing direction, increasing sand–sand interfaces are formed
inside the printed mortars with the increase of S/B, which are prone to slip and develop
into cracks. Therefore, the crushing of 3DPCM becomes more serious as S/B increases,
and the corresponding fractal dimension gradually increases. In addition, at the same
S/B, the structural anisotropy of the printed samples leads to the differences in strength in
the different printing directions [35]. The differences in strength under the same impact
pressure eventually lead to the differences in the extent and severity of crushing, as evinced
by the differences in fractal dimension. When sand to binder ratios are 0.8, 1.1, or 1.4, the
average fractal dimensions obtained in the Y printing direction are respectively increased
by 17.43%, 15.40%, and 13.64% compared to that in the X printing direction. It is found that
the variation of the fractal dimension is only slightly influenced by S/B, but is significantly
affected by the printing direction.
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3.2. Evaluation of Compactness through UPV Testing

Ultrasonic pulse testing is a non-destructive testing method; the slower the UPV, the
more numerous the internal defects and the lower the density [31]. When S/B is in the
range of 0.8 to 1.4, the change in UPV of the printed mortar in different printing directions
is illustrated in Figure 13. At the same S/B, the density in the printing Y-direction is the
highest with the fastest UPV, but that in the printing X-direction is lowest with the slowest
UPV. In the same printing direction, the UPV continues increasing until S/B reaches 1.1,
and then gradually decreases, suggesting that the density of the printed mortars first
increases, then decreases with increasing S/B. Moreover, under the same change of S/B,
the change of ultrasonic pulse velocity in the printing direction Z is smaller than that
in the printing direction X, but larger than in printing direction Y. Correspondingly, the
change in density in the printing X-direction is the largest, but that in printing Y-direction
is the smallest.
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3.3. Dynamic Compressive Strength
3.3.1. Dynamic Stress-Strain Curves of 3DPCM

In this work, the impact compression test specimens processed from the printing X,
Y, and Z-directions of 3DPCM are denoted by DX, DY, and DZ, respectively. In addition,
the impact compression specimens processed from mold cast cement mortar are denoted
by DC. Figure 14 illustrates the dynamic compressive stress–strain curves of 3DPCM at
various sand to binder ratios and printing directions. The stress–strain curve generally
consists of three phases: (1) the elastic stage, the dynamic stress approximately linearly
increases with the increase in strain; (2) the yield stage, the stress–strain curves begin to be
non-linear and the slope thereof decreases before the stress reaches its largest value as the
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strain increases, corresponding to the development of bond cracks; (3) the failure stage,
the stress decreases rapidly, under a slow increase in the strain, showing the load-bearing
capacity of specimens decreases gradually. Furthermore, the dynamic compressive strength
and ultimate strain are defined as the peak stress and final strain on the stress–strain curves,
respectively. The dynamic compressive strength varies with the printing direction and
S/B, however, ultimate strains display a convergence regardless of the change of printing
direction and S/B, and become similar at 0.035. Therefore, it is evident that the dynamic
compressive strength of 3DPCM is affected by the printing direction and S/B, but the
ultimate strain remains unaffected.
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3.3.2. Variations of Dynamic Compressive Strength versus S/B and Printing Directions

At S/B is 0.8 (Figure 14a), and the dynamic compressive strengths of DC, DX, DY
and DZ are 47.01 MPa, 45.16 MPa, 55.07 MPa and 48.59 MPa, respectively. The dynamic
compressive strengths between 3D printed cement mortars in different printing directions
and mold cast cement mortar are ranked (in ascending order) as follows: DY, DZ, DC,
then DX, demonstrating the anisotropic dynamic compressive strength of 3DPCM. Similar
results are obtained at S/B = 1.1 (Figure 14b) and S/B = 1.4 (Figure 14c). There exists
weak bonding between filaments caused by air voids and longitudinal defects between
adjacent filaments formed during the printing process [14]. As a result, the air voids
and longitudinal defects form weak bonding surfaces between strip-like filaments. The
more defects there are, the more numerous are the weak interfaces formed, causing the
specimen to be more easily broken under impact, thus lowering the dynamic compressive
strength. Moreover, the dynamic compressive strength is not only dependent strongly
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on the printing direction, but is also affected by S/B. When S/B increased from 0.8 to 1.1,
some air voids are gradually filled by the added sand particles, so the strength is increased
because of the increased density [21]. Moreover, sand particles play a major supporting
role in the internal structure of printed cement mortars and adding a certain amount of
sand can improve the strength [36]. When S/B reaches 1.4, the presence of excessive sand
particles leads to a reduction of the slurry layer thickness, resulting in the decline of the
bonding force of sand particle–cementitious gel interfaces [37]. In addition, as shown in
Figure 15, pores and slip interfaces between sand particles are formed within the printed
cement mortars with the excess addition of sand [38], resulting in the decrease of dynamic
compressive strength in the same printing direction.

Materials 2021, 14, x FOR PEER REVIEW 14 of 22 
 

[38], resulting in the decrease of dynamic compressive strength in the same printing 
direction. 

 
 

(a)  (b)  

Figure 15. Schema of sand distribution in the internal structure. (a) With the appropriate amount of sand (b) With excess 
addition of sand. 

3.3.3. Anisotropy of 3DPCM with Different Sand to Binder Ratios 
The anisotropic coefficient Id is introduced to quantify the anisotropy of dynamic 

compressive strength, which can be represented by the Equation (4) [14]. 

CCZCYCXd fffffffI /)()()( 222 −+−+−=  (4)

where fX, fY, fZ, and fC represent the dynamic compressive strengths of DX, DY, DZ, and 
DC, respectively. 

Since the mold cast specimen is considered homogeneous, the calculated anisotropic 
coefficient is 0, however, the difference is that the printed specimen is considered to have 
a heterogeneous meso-structure, thus the larger the anisotropic coefficient, the greater 
the anisotropy. 

As shown in Figure 16, the anisotropic coefficient of 3DPCM decreases from 0.179 to 
0.142, corresponding to a decrease of 20.67% as S/B increases from 0.8 to 1.1. When S/B 
reaches 1.4, the anisotropic coefficient increases to 0.157, which shows an increase of 
10.56% compared with that at S/B = 1.1. This phenomenon is caused by the differences in 
defects (and thus density variation) in different printing directions. According to the data 
in Section 3.2, the changes in density of DX and DY are the largest and the smallest, 
respectively under the same change in S/B. Appropriate addition of sand can improve the 
density of specimens formed in different printing directions to different degrees and 
reduce the differences in defects therein. Consequently, the maximum difference in the 
dynamic compressive strength of 3DPCM in different printing directions decreases by 
2.3 MPa when S/B is increased from 0.8 to 1.1, and the anisotropic coefficient decreases 
accordingly. Moreover, the difference in density between different printing directions 
increases with the addition of excess sand, leading to the increase of anisotropy, which is 
also reflected in the maximum difference in strength being increased by 2.0 MPa as S/B 
is increased to 1.4. 

Figure 15. Schema of sand distribution in the internal structure. (a) With the appropriate amount of sand (b) With excess
addition of sand.

3.3.3. Anisotropy of 3DPCM with Different Sand to Binder Ratios

The anisotropic coefficient Id is introduced to quantify the anisotropy of dynamic
compressive strength, which can be represented by the Equation (4) [14].

Id =

√
( fX − fC)

2 + ( fY − fC)
2 + ( fZ − fC)

2/ fC (4)

where fX, fY, fZ, and fC represent the dynamic compressive strengths of DX, DY, DZ, and
DC, respectively.

Since the mold cast specimen is considered homogeneous, the calculated anisotropic
coefficient is 0, however, the difference is that the printed specimen is considered to have
a heterogeneous meso-structure, thus the larger the anisotropic coefficient, the greater
the anisotropy.

As shown in Figure 16, the anisotropic coefficient of 3DPCM decreases from 0.179
to 0.142, corresponding to a decrease of 20.67% as S/B increases from 0.8 to 1.1. When
S/B reaches 1.4, the anisotropic coefficient increases to 0.157, which shows an increase of
10.56% compared with that at S/B = 1.1. This phenomenon is caused by the differences
in defects (and thus density variation) in different printing directions. According to the
data in Section 3.2, the changes in density of DX and DY are the largest and the smallest,
respectively under the same change in S/B. Appropriate addition of sand can improve the
density of specimens formed in different printing directions to different degrees and reduce
the differences in defects therein. Consequently, the maximum difference in the dynamic
compressive strength of 3DPCM in different printing directions decreases by 2.3 MPa
when S/B is increased from 0.8 to 1.1, and the anisotropic coefficient decreases accordingly.
Moreover, the difference in density between different printing directions increases with the
addition of excess sand, leading to the increase of anisotropy, which is also reflected in the
maximum difference in strength being increased by 2.0 MPa as S/B is increased to 1.4.
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3.4. Relationship of Dynamic Compressive Strength to Fractal Dimension

For the same case of S/B, the dynamic compressive strength and fractal dimension of
3DPCM in three printing directions are non-linearly fitted, as shown in Figure 17. When
the fractal dimension increases from 2.0 to 2.4, there is a quadratic relationship between
dynamic compressive strength and fractal dimension of 3DPCM in different printing di-
rections. From the perspective of fractures mechanics, the greater the strain energy, the
more micro-cracks and flaws are activated, leading to an increase in the number of broken
fragments and energy dissipation [34], and the increased energy dissipation improves
the dynamic compressive strength [28]. As a result, the greater the dynamic compres-
sive strength in the printing direction, the larger the fractal dimension, and the dynamic
compressive strength with the same S/B is positively correlated with the fractal dimension.
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Figure 17. Correlation of dynamic compressive strength with fractal dimension.

Since the dynamic compressive strength and fractal dimension are both affected by
S/B, the relationship of dynamic compressive strength and fractal dimension with the
change of S/B can be determined from Figure 18, as expressed as Equation (5).

σ = 195.04DF + 62.46(S/B)−39.43D2
F − 35.71(S/B)2 + 6.92DF(S/B)− 226.35 (5)
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3.5. Variations of Energy Dissipation Density versus S/B and Printing Directions

According to the law of thermodynamics, the physical change process of materials
is essentially the result of energy conversion, and the macroscopic failure of materials is
accompanied by energy absorption, dissipation, and release [39]. The total absorbed energy
Ws can be obtained indirectly from the difference of incident energy Wi, reflected energy
Wr and transmitted energy Wt. In addition, different types of energy WI can be determined
by the corresponding pulse εI measured in the SHPB test [40]. The governing expression is:{

WI = EAC
∫

ε2
I(t)dt, I = i, r, t

Ws = Wi − Wr − Wt
(6)

The energy dissipation density U reflects the energy consumed by the material per
unit volume and the dissipated energy Wd is approximately equal to the total absorbed
energy Ws when the loading rate is not very high [41]. Accordingly:

U =
Wd

ASLS
=

WS
ASLS

(7)

Before S/B reaches the optimal value of 1.1, there is an improvement in the structural
compactness of 3DPCM due to the filling of original pores, and many new micro-cracks
are generated when the printed mortar is exposed to the same impact. Compared with the
original crack propagation, the formation of new cracks requires much more dissipated
energy [28]. Consequently, when S/B is between 0.8 and 1.1, the energy dissipation
densities of DX, DY, and DZ are increased by 28.20%, 19.63%, and 25.59%, respectively,
as shown in Figure 19, however, when S/B exceeds the optimal value, many sand–sand
interfaces are formed inside the internal structure. Since the sand–sand interfaces have
poorer stability compared with the sand–cementitious gel interfaces, which readily slips
and damages the structure [38]. Thus, the rapid expansion of the micro-cracks in the
sand–sand interfaces leads to the ultimate failure of 3DPCM, leaving no time for new
cracks to form elsewhere. As a result, the energy dissipation density declines with the
further increase of S/B, which in the printing X, Y, and Z-directions decreases by 12.41%,
9.34%, and 10.75%, respectively.

In addition, the energy dissipation density of different printing directions is obviously
different: at a given S/B, the energy dissipation density of DY is the largest, while that
of DX is smallest. This is mainly dependent on the difference of the internal structural in
different printing directions. For 3D printed specimens DX and DZ, it can be considered
as having been formed by the bonding of short beams. Under impact, there are inclined
shearing cracks generated along the weak interface (Figure 20a,c). When the shear failure
occurs along the weak interface in the specimen, the dynamic compressive strength of
the material is not fully mobilized [32]. As the main cracks (red dotted lines in Figure 20)
propagate through the specimen, other internal micro-cracks have little time to expand or
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connect along the weak interface and it is difficult for new main cracks to form. Compared
with DZ, DX is more prone to instability and failure due to the lower strength, resulting in
the reduced formation of main cracks after impact. Different from DX and DZ, the printed
filaments of DY are parallel to the direction of the applied load. In this case, the printed
mortar is in fact subjected to dynamic stress by evenly distributed short columns, and most
of the main cracks are longitudinal cracks formed parallel to the weak surface, as shown in
Figure 20b. Due to the better compressive resistance of short columns subject to a uniform
load distribution, the compressive strength of the specimen is improved [14]. When DY
is destroyed due to the failure of the short columns, many new micro-cracks are formed:
these then expand and interconnect, hence the greater number of main cracks in DY than in
DX and DZ. Since the formation of main cracks requires energy absorption [42], the larger
the number of main cracks, the more energy is absorbed, so the energy dissipation density
of DY under the same impact load is greater.
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3.6. Relationship of Energy Dissipation Density to Fractal Dimension

As illustrated in Figure 21, under the same S/B, the relationship between the energy
dissipation density and fractal dimension in different printing directions can be obtained
by non-linear fitting: the energy dissipation density in different printing directions has a
logarithmic relationship with fractal dimension. From the energy point of view, a certain
amount of energy was absorbed by the printed specimen under impact, which is instantly
dissipated upon the instability and failure of the specimen and drives the propagation,
connection and extension of micro-cracks [39]. In other words, the energy-driven instability
process caused the macroscopic failure of printed specimens [28], indicating that the larger
the energy dissipated, the more numerous the cracks, the more severe the damage to the
specimens, and the larger the corresponding fractal dimension. The results that energy
dissipation density is the largest in the printing Y-direction and the smallest in the printing
X-direction conforms well with the measured results showing that the fractal dimension is
the highest in the printing Y-direction and the lowest in the X-direction.
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Through the previous analysis, the energy dissipation density of 3DPCM under
impact loading is dependent on S/B and inherently related to the fractal dimension. The
relationship of energy dissipation density to S/B and fractal dimension can be obtained by
fitting the data in Figure 22; the relevant expression is

U = 7.84DF + 1.31(S/B)−1.65D2
F − 1.04(S/B)2 + 0.46DF(S/B)− 8.73 (8)

3.7. Manufacturing of the 3D Printed Barracks Model

Among the printable cement mortars prepared in the course of the present research,
the mortar mix with S/B = 1.1 was selected for the 3D printing of the barracks model
because of its optimal dynamic mechanical properties. As presented in Figure 23, the
model measuring 2 m (L) × 1.5 m (W) × 1.5 m (H) consists of two spaces and doors. The
entire printing process was finished (without using formwork) within 2 h at a print-head
speed of 9 m/min. Moreover, the printed model will be used for future explosion impact
experiments to explore the corresponding damage characteristics of a 3D printed structure.
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4. Conclusions

In this study, SHPB tests on 3DPCM with different sand to binder ratios were per-
formed in three printing directions. The fractal feature, dynamic compressive behavior,
and energy dissipation characteristics of destructed 3DPCM were investigated. Moreover,
the effects of S/B on the anisotropy of the dynamic compressive strength of 3DPCM were
evaluated. Main conclusions can be drawn from the current study.

1. The dynamic compressive strength of 3DPCM in the different printing directions
has various values even at the same S/B, showing the anisotropic characteristics of
the printed mortar. The relationship between the dynamic compressive strength of
3DPCM in different printing directions and the compressive strength of mold cast
cement mortar is ranked (in descending order) as follows: DY, DZ, DC, then DX.
Additionally, the internal defects are well filled so that the printed specimen is more
dense when S/B is 1.1, and the dynamic compressive strength in the same printing
direction reaches its maximum value.

2. For the same change in the value of S/B, the difference in density changes caused in
different printing directions causes various variations of the anisotropic coefficient.
When S/B increases from 0.8 to 1.4, the anisotropic coefficent of 3DPCM first de-
creases by 20.67%, then increases by 10.56%, indicating the anisotropy of the dynamic
compressive strength first becomes mitigated, and then increases.

3. The difference of the internal structure in different printing directions can result in
significantly different energy dissipation densities, which directly reflects various
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numbers of main-cracks formed during the failure process. At the same S/B, the
energy dissipation density of DZ is larger than that of DX, but smaller than DY.
Moreover, the energy dissipation density in the same printing direction first increases,
then declines as S/B is increased from 0.8 to 1.4.

4. At a given S/B, the fractal dimension of DY is largest among the three printing
directions and the fractal dimension of 3DPCM gradually increases with increasing
S/B. Compared with S/B, the printing direction has a more significant influence on
the fractal dimension. The higher the dynamic compressive strength in the same
printing direction, the greater the energy dissipation density, the more severe the
impact crushing, and the larger the fractal dimension. When the fractal dimension is
in the range of 2.0 to 2.4, it has a quadratic relationship with the dynamic compressive
strength and a logarithmic relationship with the energy dissipation density.
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