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Abstract: Manganese slag is a kind of industrial waste produced by electrolytic production of
manganese metal. The traditional method of stacking manganese slag not only causes waste of
resources, but also produces environmental pollution. Finding harmless, effective, and economical
disposal technology of manganese slag has gradually become a research hotspot and difficulty in the
field of electrolytic manganese industry and environmental protection. To verify the feasibility of
using manganese slag as roadbed material, the basic physical and chemical properties of manganese
slag were analyzed based on X-ray diffraction, X-ray fluorescence spectrum, SEM scanning electron
microscope, and particle analysis, the basic engineering characteristics of raw materials of manganese
slag and solidified manganese slag mixed with quicklime were analyzed through a compaction
test and a CBR test. Finally, based on the Monte Carlo method, the stability of a highway slope in
the Guizhou Province of China is simulated by the finite element method, considering the spatial
variability of manganese slag material strength parameters. The results show that the solidified
manganese slag material can be used as highway subgrade material. This study has important
reference significance for manganese slag highway construction projects.

Keywords: manganese slag; physical and chemical properties; engineering characteristics; Monte
Carlo simulation; slope stability

1. Introduction

Electrolytic manganese metal is an important metallurgical and chemical raw material,
which is widely used in metal alloys, electronic devices, power batteries, construction,
sewage treatment, pharmaceuticals, and other industries [1–4]. It is an important basic
material and national strategic resource in the national economy [5,6]. Electrolytic man-
ganese slag is a mixture of acid leaching slag, sulfide slag, and anode slag [7]. There are
many heavy metals in electrolytic manganese slag. These heavy metals are transformed
through the changes in the natural environment, and the adverse effects on the surrounding
people’s health and ecological environment are persistent [8,9]. China is a major producer
of manganese slag [10]. In China, manganese slag is mainly stored in wet dams. This
not only takes up precious land, but also produces excessive ammonia nitrogen, sulfate,
and other harmful heavy metal ions [11], causing serious pollution to the surrounding
soil [12], and heavy metals, etc., easily penetrate into the soil, groundwater, and surface
water, causing serious environmental pollution and safety risks to aquatic ecosystems and
agricultural ecosystems [13], and eventually manganese residue enters the human body
through the role of the food chain, affecting human health. At the same time, under the
influence of wind and sun, some manganese slag is scattered in the air, which pollutes the
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surrounding atmospheric environment [14]. A large amount of manganese slag has caused
serious social and environmental pollution problems in China, such as water pollution,
heavy metal pollution, residue accumulation and solid waste pollution [15,16], etc., Geoff
et al. [17] found that an old waste dump can cause potential heavy metal pollution to the
ecosystem by analyzing the accident of a tailings dam rupture. Ran et al. [18] analyzed the
sources, spatial distribution of metal(loid)s, and the risks to public health at an abandoned
arsenic mine site. Therefore, exploring the use of industrial waste residue as a subgrade
filler has become the focus of scholars in recent years. Electrolytic manganese residue
(EMR), red mud (RM), and carbide slag (CS) are three kinds of solid waste that are largely
produced and difficult to recycle. At present, the utilization of these three types of waste
residues is mainly focused on the preparation of building materials. For example, EMR
is used in autoclaved bricks, ecological cement, geopolymer; RM is used to replace clay
for non-burned brick, road materials, and cementitious material; while CS can be used
as an alternative for limestone in cement production, or xonotlite [19]. At the same time,
landfilling or open-air accumulation is the main disposal method of these residues, which
causes harm to the soil and groundwater, thereby harming the ecological environment.
Recycling and reusing them can effectively protect the environment. Zhang et al. [19]
used electrolytic manganese slag, red mud and calcium carbide slag as road materials,
and investigated their mechanical properties, durability, strength formation mechanism
and environmental behavior. Using manganese slag as subgrade material and reasonably
recycling manganese slag materials cannot only solve the problems of manganese slag
storage, environmental pollution and land occupation, but it can reduce the production
cost and bring considerable ecological and social benefits.

In this study, the basic physical and chemical characteristics of manganese slag were
analyzed based on X-ray diffraction, X-ray fluorescence spectrum, SEM scanning electron
microscope, and particle analysis test. The basic engineering characteristics of raw materials
of manganese slag and solidified manganese slag mixed with quicklime are analyzed
through a compaction test and a CBR test. Considering the spatial variation in manganese
slag material strength parameters, the stability of a highway slope was simulated by
the finite element method. This study has important reference significance for highway
construction projects using manganese slag.

2. Experimental Study
2.1. Basic Physical and Chemical Properties of Manganese Slag
2.1.1. X-ray Diffraction Analysis

The principle of XRD is that X-ray irradiates atoms and molecules in the crystal to
produce a diffraction phenomenon, and the diffraction law follows the Bragg’s Law:

2dsinθ = nλ (1)

where d is the crystal plane spacing, θ is the diffraction angle, λ is the X-ray wavelength,
and n is the integer. Through the Bragg’s Law, we can use the known X-ray to diffract the
crystal with an unknown structure, and use the diffraction angle to calculate the crystal
plane spacing, and then we can determine the crystal type and structure of the object to
be measured. Escalab250xi X-ray photoelectron spectrometer (Thermo Fisher Scientific
Company, 81 Wyman Street, Waltham, MA 02454, USA) produced by Thermo Fisher
Scientific Company of the United States was used in the X-ray diffraction analysis test. The
main technical specifications of the instrument are shown in Table 1.

Table 1. Main technical specifications of X-ray photoelectron spectrometer.

Vacuum Degree of
Analysis Chamber

Optimal Energy
Resolution

Minimum Spatial
Resolution Electronic Counting Rate Sensitivity

5 × 10−10 mbar 0.43 eV 1 µm 4 Mcps 1,000,000



Materials 2021, 14, 5530 3 of 17

The XRD pattern of manganese slag obtained by the XRD test is shown in Figure 1.
According to the qualitative analysis of the XRD pattern, there are six types of characteristic
peaks in manganese slag, among which quartz is the most prominent, indicating that the
crystallinity of quartz in manganese slag is higher.
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Figure 1. XRD pattern of manganese slag.

The second characteristic peak is hemihydrate gypsum (CaSO4-(H2O)0.5), which is
mainly formed by the reaction of CaMn(CO3)2 and CaCO3 in manganese carbonate ore
with H2SO4. In addition, a small amount of Pyrite, illite, albite, and dolomite are also
found in the manganese slag, which is consistent with the existing literature [20–22].

2.1.2. XRF Spectrometry Analysis

X-ray fluorescence spectroscopy (XRF) can more accurately analyze the elements
qualitatively and quantitatively, and can accurately identify multiple elements. The XRF
test instrument used in this study is the ARL Perform X-ray fluorescence spectrometer
produced by Thermo Fisher Scientific in the United States. XRF was used to test the element
distribution in the manganese slag and calculate the oxide content. The test results are
shown in Tables 2 and 3, respectively.

Table 2. Element content of manganese slag.

Element O Si S Al Ca Fe Mn Mg K Total

Percentage (%) 47.77 16.38 10.36 6.62 5.17 3.83 3.56 2.38 1.99 98.06

Table 3. Chemical composition of manganese slag.

Chemical
Composition SiO2 SiO3 CaO Al2O3 Fe2O3 MnO MgO K2O Total

Percentage (%) 35.04 25.88 7.23 12.50 5.48 4.59 3.94 2.93 97.59

Table 2 shows the content of elements in manganese slag. It can be seen that the main
elements (content > 1%) in manganese slag include O, Si, S, A1, Ca, Fe, Mn, Mg, K, etc.,
which account for 98.06% of all elements. Among them, the content of O, Si is the highest,
accounting for more than 60% of all elements. Table 3 shows the chemical composition
of manganese slag. The oxides in manganese slag include SiO2, SO3, CaO, Al2O3, Fe2O3,
MnO, MgO, and K2O, accounting for 97.59% of all oxides. The content of SiO2 and SO3
is the highest, accounting for about 60% of the total content, which is in contrast with the
XRD analysis, because the main chemical composition of quartz is SiO2.

The chemical composition of manganese slag is similar to that of ordinary silicate,
mainly clay minerals. The crystal structure and material composition of manganese slag
determines its natural form. The fresh manganese slag generally has low water content
and presents fine particles; after being stored for a period of time, the manganese slag
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is eroded by rain and presents the shape of flowable slurry, which is similar to that of
general cohesive soil, which is one of the feasible conditions for using manganese slag as
subgrade filler.

2.1.3. SEM Scanning Electron Microscope Analysis

In order to clarify the microscopic morphology of natural manganese slag, observe
its pore state, aggregate structure characteristics, and other information, scanning electron
microscopy tests were carried out on uncured manganese slag samples. The scanning
electron microscope images of manganese slag under the scale length of 2 µm and 1 µm are
shown in Figures 2 and 3. It can be seen that under the 2 µm scale length, the microscopic
morphology of the manganese slag presents massive and strip-shaped crystal particles
covered by a large number of spherical flake particles. The scanning electron microscope
image under the 1 µm ruler length shows this feature. Combined with the analysis of the
XRD and XRF results of the manganese slag, it is judged that the massive and band-like
crystal particles in the manganese slag should be hemihydrate gypsum (CaSO4-(H2O)0.5),
and many flake and spherical particles attached to its surface may be silicon dioxide
crystals (SiO2). In addition, the size distribution of manganese slag particles is relatively
uneven, there are a lot of pores between the particles, and no obvious cementation is found
between the particles. These structural characteristics indicate that the connection between
manganese slag particles is not tight, so when manganese slag is used as slope material,
solidification treatment should be considered first.
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2.1.4. Particle Analysis Test

By testing the percentage of different particle sizes in the total mass of manganese slag,
the particle size distribution curve of manganese slag can be drawn, and the characteristics
of particle size distribution can be determined. In this study, Malvern Mastersizer 2000 laser
particle size analyzer was used to analyze the particle size distribution of manganese slag.
Figure 4 shows the particle size distribution curve of manganese slag, the results of particle
size distribution in manganese slag are shown in Table 4. The content of clay in manganese
slag is small, accounting for only 7.37% of the total particle size. The proportion of silt and
sand is as high as 92.63%, in which silt accounts for 60.20% of the total particle size.
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Table 4. Analysis of particle composition of manganese slag.

Sample Name Percentage of Each Particle Size (mm) in Total Mass (%)

Manganese Slag >0.02 (Sand) 0.02~0.002 (Powder) <0.002 (Cosmid)
32.43 60.20 7.37

According to the comprehensive test results, the particle size distribution of man-
ganese slag is similar to that of sandy silt. Its particles are fine and uniform, mainly sand
and powder particles, with little clay content, making sand and powder particles relatively
large. The voids between the particles are not filled with fine clay particles, forming a
so-called “building block” type framework, which makes it difficult to compact. Therefore,
from the perspective of particle size distribution, manganese slag is not suitable for direct
use as roadbed filler.

2.2. Engineering Characteristics before Solidification
2.2.1. Compaction Test

The compaction characteristics of subgrade fillers can be determined through indoor
compaction tests. The maximum dry density and optimal moisture content are of great
significance for guiding construction, which can be determined by controlling different
compaction powers to hammer filler samples with different moisture contents. A standard
light compaction test was carried out on the manganese slag sample, the dry density
corresponding to different moisture contents after compaction was calculated by the
following formula, and the relationship between moisture content and dry density was
drawn. The curve is the compaction curve.

ρd =
ρ

1 + 0.01ω
(2)

where: ρd, dry density of manganese slag (g/cm3); ρ, the wet density of manganese slag
(g/cm3);ω, Water content (%).

The maximum dry density reflects the densest state that the soil can reach within a
certain range of water content under the action of a certain compaction work. According to
the test record data in Table 5, the compaction curve is drawn as shown in Figure 5. The
compaction curve of manganese slag is similar to that of soil. The dry density first increases
and then decreases with the gradual increase in water content. The optimal water content
is 20.1%, and the corresponding maximum dry density is 1.71 g/cm3. Compared with
the natural moisture content of 32.7%, the optimal moisture content of manganese slag is
obviously lower than the optimal moisture content. Therefore, when using manganese
slag as subgrade filler, how to reduce its moisture content to the optimal moisture content
should be considered to achieve the best compaction effect.
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Table 5. Calculation results of CBR value.

Sample Number Penetration L/mm Unit Pressure P/kPa CBR Value/% Water Absorption/g Expansion Rate/%

sample 1 2.5 110 1.6 238 6.465.0 161 1.5
sample 2 2.5 132 1.9 224 6.375.0 198 1.9
sample 3 2.5 161 2.3 203 6.135.0 227 2.2
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Figure 5. Compaction test curve.

2.2.2. CBR Test

CBR can be used to evaluate the load-bearing properties of materials. The CBR value
refers to the ratio of the unit pressure to the standard load strength (7 Mpa or 10.5 Mpa)
when the penetrator penetrates the sample 2.5 mm or 5 mm when the standard crushed
stone is pressed into the same penetration amount, expressed as a percentage. At present,
the CBR value was used as an important basis for the selection of roadbed fillers. The unit
pressure can be calculated based on the dynamometer reading, and the relationship curve
between unit pressure and penetration can be drawn, and the unit pressure value when
penetration is 2.5 mm and 5 mm can be found on the curve, and the CBR value can be
calculated according to the following formula:

CBR2.5 =
P

7000
× 100 (3)

CBR5.0 =
P

10500
× 100 (4)

where: P, unit pressure, CBR2.5 is the CBR value of manganese slag when the penetration is
2.5 mm; CBR5.0, the CBR value of manganese slag when the penetration is 5 mm.

CBR tests were carried out on three groups of manganese slag samples, and the
relationship curve between unit pressure and penetration is shown in Figure 6. According
to the curve, the unit pressure when the penetration is 2.5 mm and 5 mm can be found,
the CBR value can be calculated. Table 5 shows that the CBR value of manganese slag is
between 1.5 and 2.2, which does not meet the construction strength standard of highway
subgrade; therefore, manganese slag cannot be directly used as subgrade filler.
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Figure 6. The relationship curve between unit pressure and penetration.

In addition, the expansion amount and expansion rate of compacted manganese
slag samples were also tested. It was found that the manganese slag had a certain water
absorption after compaction, the water absorption amount was between 203 and 238 g, and
the expansion rate was between 6.13 and 6.46. Therefore, it was judged that manganese
slag had micro expansion.

2.3. Engineering Characteristics after Solidification

The CBR value of manganese slag is between 1.5 and 2.2, which does not meet the
construction strength standard of highway subgrade, and the gap between manganese slag
particles is not filled with fine clay particles, which makes it difficult to compact. Therefore,
from the point of strength and particle size distribution, manganese slag is not suitable to
be used as subgrade filler directly, and it needs to be treated by solidification. In this study,
quicklime was used to solidify the manganese slag. For the solidified manganese slag, a
compaction test and a CBR test were carried out to study its engineering characteristics.

2.3.1. Compaction Test

Mix 10%, 11%, and 12% lime into manganese slag, respectively to compact the mixture
of lime and manganese slag. The compaction curve of manganese slag with different lime
content is shown in Figure 7. With the gradual increase in lime content, the compaction
curve gradually shifts to the upper right, indicating that the incorporation of lime increases
the optimal moisture content of manganese slag and reduces the maximum dry density.
The optimum moisture content of uncured manganese slag is 20.1%, and the corresponding
maximum dry density is 1.71 g/cm3. When 10% lime is added, the optimum moisture
content is 21.8%, and the maximum dry density is 1.613 g/cm3. With the increase in lime
content to 11% and 12%, the optimal moisture content and maximum dry density change
little, indicating that when the lime content reaches 10%, the continuous increase in lime
content has limited improvement on the compaction effect of manganese slag.

Based on the above test results, it can be found that the incorporation of lime improves
the compaction characteristics of manganese slag. When the moisture content of the
uncured manganese slag is higher than the optimal moisture content of the subgrade filler
in the project, it is generally necessary to carry out drying treatment to control the moisture
content near the optimal moisture content. The addition of lime improves the optimal
moisture content of the manganese slag, reduces the gap between the moisture content of
the uncured manganese slag and the optimal moisture content, reduces the drying time,
shortens the construction period, and saves the construction cost.
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Figure 7. Compaction curve of lime-solidified manganese slag.

2.3.2. CBR Test

A total of 10%, 11% and 12% lime were added into the manganese slag, and the
CBR test was carried out after the lime manganese slag mixture was compacted. The
relationship between the penetration amount and the unit pressure under different lime
content is drawn as shown in Figure 8. The results were compared with the CBR curves of
uncured manganese slag. It can be seen from Figure 8 that with the addition of lime, the
required unit pressure increases obviously under the same penetration, which indicates that
lime solidifies the bearing capacity of manganese slag. According to the relationship curve
between penetration and unit pressure, the CBR value of manganese slag with different
lime content is calculated (Table 6).
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The CBR test results (Figure 8) showed that the CBR value of uncured manganese slag
is relatively low. When the penetration is 2.5 mm, CBR2.5 = 2.3, and when the penetration is
5.0 mm, CBR5.0 = 2.2, which does not meet the minimum CBR standard of subgrade. When
10% lime is mixed, the value of CBR2.5 increases to 55, with an increase of 27.5 times; the
value of CBR5.0 increased to 68, an increase of 30 times. With the increase in lime content
to 11% and 12%, the CBR value of manganese slag does not increase obviously. When the
lime content is 12%, the CBR value even decreases slightly. Therefore, the addition of 10%
lime produced a significant solidification effect on the CBR value of manganese slag, and
its CBR value fully reached the standard of subgrade design.

Table 6. CBR value of manganese slag with different lime content.

Material Penetration/mm Unit Pressure/kPa CBR Value/%

Mixed with 10% lime
2.5 3850 55
5.0 7140 68

Mixed with 11% lime
2.5 4095 58.5
5.0 7717.5 73.5

Mixed with 12% lime
2.5 3850 55
5.0 6720 64

Natural manganese slag 2.5 161 2.3
5.0 227 2.2

According to the compaction curve of lime-solidified manganese slag in Figure 7,
the optimum water content corresponding to the lime content of 10%, 11%, and 12% is
21.8%, 23.5%, and 21.7%, respectively. According to the CBR values of manganese slag
under different lime content in Table 7, when the lime content is 10%, 11% and 12%,
the CBR values are 68%, 73.5% and 64%, respectively, which meet the subgrade design
standards. Therefore, 10% quicklime content is selected as the best mix proportion of
solidified manganese slag.

Table 7. Parameters of seepage calculation.

Partition Volume-Weight (kN/m3) Permeability Coefficient (m/s) Saturated Volumetric Moisture
Content (m3/m3)

Manganese slag 18.8 1.38 × 10−7 0.417
clay layer 21.6 5.21 × 10−8 0.15

3. Numerical Simulation
3.1. Methods and Theory
3.1.1. Theory of Strength and Slope Stability

Fredlund’s double stress variable formula is used as the unsaturated shear strength
theory:

s = c′ + σntanϕ′ + (ua − uw)tanϕb (5)

where c′, ϕ′ are effective strength parameters; σn is net normal stress, the difference between
normal normal stress and pore gas pressure; ua is the pore gas pressure; uw is the pore water
pressure; and ϕb is angle indicating the rate of increase in shear strength with respect to a
change in matric suction. The stability analysis of the slope adopts the Morgenstern–Price
method in the limit equilibrium method. The Morgenstern–Price method can meet the
balance of forces and moments in all directions, and can solve the sliding arc surface with
arbitrary shape. The assumption of this method is that there is no tension between the soil
strips, the ratio of the tangential force at the bottom of the soil strip to the horizontal thrust
is the product of the undetermined parameter λ and the inter-strip force function f(x). The
safety factor of slope stability is obtained by solving the differential equations of force and
moment balance.
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3.1.2. Monte Carlo Theory

The single method of using the safety factor to represent the safety state of the slope
cannot reflect the risk state of the slope. Due to the spatial variability of soil, the random-
ness of soil parameter distribution also needs to be considered in the actual finite element
calculation. The Monte Carlo method [23] is a numerical method based on a large number
of random event statistics to obtain event probability characteristics such as expectation
or probability distribution, which are connected with the solution of mathematical anal-
ysis, and use experimental methods to solve approximate solutions to problems such as
mathematics, physics and engineering technology by experimental method.

In this study, random sampling was performed on the bulk density, cohesive force,
and internal friction angle of the slope soil parameters. The number of times Fn < 1 is
counted as M, which is recorded as failure times. The total sampling times is counted as N,
and the failure probability can be expressed as:

Pf = P(Pn ≤ 1) =
M
N

(6)

the mean value can be expressed as:

µF =
1
N

N

∑
j=1

Fj (7)

the standard deviation can be expressed as:

σF =

[
1

N − 1

N

∑
j=1

(Fj − µ f )
2

] 1
2

(8)

the critical safety factor of landslide is defined as µ′, and the reliability index can be
defined as:

β =
µF − µ′

σF
(9)

the failure probability can be defined as:

Pf = 1−Φ(β) (10)

3.2. Finite Element Simulation of Slope Stability
3.2.1. Finite Element Model

In this study, the finite element simulation of the stability of a highway slope was
carried out by using the GeoStudio software. Figure 9 shows the finite element model of
the slope, the slope height of 10m and the slope ratio of 1:1.5. It is assumed that the failure
of the manganese slag highway slope obeys the Mohr Coulomb criterion. The model mesh
is divided into 3113 nodes and 3008 elements.
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Figure 9. Finite element model and field material.

3.2.2. Calculation Parameters and Working Conditions

The cohesion and friction angle of manganese slag is determined by the triaxial shear
test, it should be noted that manganese slag doped with 10% lime is used for the triaxial test
(Figure 10). Salazar et al. presented a new method to measure the volume and volumetric
strains of soil specimens during the triaxial test [24]. Mehdizadeh et al. developed a
modified triaxial apparatus connected to a water supply system and collection tank to
investigate the post-erosion behavior of soil under different loading patterns in undrained
conditions [25]. In this study, the data of numerical simulation are from experiments [26].
The manganese slag in this state was solidified in advance. The calculation parameters
(Tables 7 and 8) of the finite element model were measured through the field test.
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Figure 10. Envelope of consolidated undrained shear strength.

Table 8. Parameters of stability calculation.

Partition Poisson’s Ratio Internal Friction Angle (◦) Cohesion (kPa) Elastic Modulus (MPa)

Manganese slag 0.25 19.82 57.11 174.6
clay layer 0.35 7.4 45 35

Considering the influence of continuous rainfall, the rainfall intensity in the finite
element model is respectively taken as 0 mm/d, 10 mm/d, 30 mm/d, and 50 mm/d. The
rainfall duration in the model was set to 10 days, and the total calculation time was set
to 30 days. The number of calculation steps was set to 30 steps. Considering the spatial
variation in the parameters of the manganese slag slope material, it was assumed that the
material parameter distribution obeys the normal distribution, the standard deviation of
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the parameters was set to 1, the number of Monte Carlo sampling was 2000. The normal
probability density functions of the physical and mechanical parameters (cohesion, volume-
weight, internal friction angle) of manganese slag and clay layer are shown in Figures 11
and 12.
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Figure 11. Probability density function distribution of manganese slag parameters.
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Figure 12. Probability density function distribution of clay layer.

3.2.3. Reliability and Failure Probability Analysis

The stability of the manganese slag slope was simulated by Monte Carlo random
sampling for 2000 times, and the reliability index and failure probability of the manganese
slag slope under different rainfall intensities were calculated. In this study, the reliability
index and failure probability are taken as the main indexes to evaluate slope stability. At
the same time, the average safety factor, reliability index, minimum safety factor, maximum
safety factor, and other index parameters under various working conditions are also
calculated.

The probability and probability density distribution of the slope safety factor under
different rainfall intensities are shown in Figures 13 and 14, respectively. The statistics of
various indicators are shown in Table 9.
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Table 9. Statistics of various indexes of manganese slag slope under different rainfall intensities.

Rainfall Intensity
0 mm/d 10 mm/d 30 mm/d 50 mm/d

Index

Average safety factor 2.905 2.905 2.743 2.733
Reliability index 21.778 21.477 15.787 15.762

Probability of failure (%) 0 0 0 0
Minimum safety factor 2.573 2.539 2.255 2.247
Maximum safety factor 3.323 3.213 3.142 3.130

In combination with Figures 13 and 14, and Table 9, it can be seen that under all rainfall
intensity conditions, the failure probability of the manganese slag slope is 0, which means
that the manganese slag slope is in a safe state at this time. When the rainfall intensity is
0 mm/d, the average safety factor is 2.905, the reliability index is 21.778, the minimum
safety factor is 2.573, and the maximum safety factor is 3.323.

When there is no rainfall, the failure probability of the manganese slag slope is less
than the working condition when rainfall occurs. With the increase in rainfall intensity,
the average safety factor, reliability index, minimum safety factor, and maximum safety
factor of manganese slag slope under various conditions generally tend to decrease, which
indicates that rainfall reduces the safety factor, and the greater the rainfall intensity, the
greater the reduction in rainfall on the safety factor, the lower the reliability index. When
the rainfall intensity is 50 mm/d, the average safety factor is 2.733, the reliability index is
15.762, the minimum safety factor is 2.247, and the maximum safety factor is 3.130. The
failure probability under different rainfall intensities is 0. This is because the manganese
slag slope safety factor is greater than one during the random sampling process, which is
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in a safe state. It also shows that although the manganese slag material is a solid waste
slag, its water resistance is good, its stability meets the design requirements, and it can
replace earth and stone materials to build highway roadbeds.

4. Conclusions

In this study, the physical and chemical characteristics of manganese slag were ana-
lyzed based on X-ray diffraction, X-ray fluorescence spectrum, SEM scanning and a particle
analysis test. At the same time, the engineering characteristics of manganese slag before
solidification and after solidification with quicklime were analyzed through heavy a com-
paction test and a CBR test. Then, the stability of a highway slope was simulated by the
finite element method based on the Monte Carlo method. The conclusions are as follows:

(1) The XRD and XRF test results of manganese slag show that the crystallinity of quartz
and hemihydrate gypsum (CaSO4-(H2O)0.5) in manganese slag is high, the content of
silicon dioxide and silicon trioxide is high, and some metal oxides are also contained.
The crystal structure and material composition of manganese slag make it appear as
fine particles when the moisture content is low, and become slurry after being eroded
by rain;

(2) The SEM results of manganese slag show that the size distribution of manganese
slag particles is uneven, there are a lot of pores between the particles, and there is no
obvious cementation between the particles, so the solidification of manganese slag
should be considered in practical application;

(3) The engineering characteristic test of manganese slag shows that the particle size
distribution characteristics and critical moisture content of manganese slag are similar
to those of silt. The content of sand and powder particles is relatively high, and
the content of clay particles is relatively small. It belongs to high plasticity silt in
the plastic map. The optimum moisture content of manganese slag is 20.1%, the
corresponding maximum dry density is 1.71 g/cm3, and its CBR value is about
1.5~2.3. It does not meet the subgrade design standard, and the manganese slag in an
uncured state cannot be directly filled as subgrade filler;

(4) Mixing with lime can improve the compaction characteristics of the manganese slag,
increase the optimal moisture content of the manganese slag, and reduce the gap
between the moisture content of the unsolidified manganese slag and the optimal
moisture content. Mixing with 10% lime can produce a significant solidification effect
on the CBR value of manganese slag, and its CBR value can fully reached the standard
for subgrade filling;

(5) The greater the rainfall intensity, the lower the safety factor of manganese slag slope,
and the lower the slope reliability index. In the actual project operation and manage-
ment process, the stability of the manganese slag slope under high-intensity rainfall
conditions should be paid attention to. Considering the spatial variability of man-
ganese slag and clay layer, the failure probability of manganese slag slope is 0 under
different rainfall intensities conditions.
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