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Abstract: This work aims to synthesize and characterize a material that can be used as an effective
catalyst for photocatalytic application to remove both organic and inorganic compounds from
wastewater. In this context, sillenite Bi12ZnO20 (BZO) in a pure phase was synthesized using the
sol–gel method. Before calcination, differential scanning calorimetry (DSC) analysis was done to
determine the temperature of the formation of the sillenite phase, which was found to be 800 ◦C. After
calcination, the phase was identified by X-ray diffraction (XRD) and then refined using the Rietveld
refinement technique. The results prove that BZO crystals have a cubic symmetry with the space
group I23 (N◦197); the lattice parameters of the structure were also determined. From the crystalline
size, the surface area was estimated using the Brunauer-Emmett-Teller (BET) method, which was
found to be 11.22 m2/g. The formation of sillenite was also checked using the Raman technique. The
morphology of the crystals was visualized using electron scanning microscope (SEM) analysis. After
that, the optical properties of BZO were investigated by diffuse reflectance spectroscopy (DRS) and
photoluminescence (PL); an optical gap of 2.9 eV was found. In the final step, the photocatalytic
activity of the BZO crystals was evaluated for the removal of inorganic and organic pollutants,
namely hexavalent chromium Cr(VI) and Cefixime (CFX). An efficient removal rate was achieved for
both contaminants within only 3 h, with a 94.34% degradation rate for CFX and a 77.19% reduction
rate for Cr(VI). Additionally, a kinetic study was carried out using a first-order model, and the results
showed that the kinetic properties are compatible with this model. According to these findings, we
can conclude that the sillenite BZO can be used as an efficient photocatalyst for wastewater treatment
by eliminating both organic and inorganic compounds.

Keywords: sillenite; Rietveld; optical bandgap; photodegradation; photoreduction

1. Introduction

Water pollution is a significant concern that harms the environment, life, and living
creatures [1,2], and has been one of the main worldwide concerns in terms of environmental
remediation over the last few decades [3]. Organic contaminants and inorganic heavy metals
are the most common substances that can cause harmful water pollution [4–7]. No matter
how small the concentration of these pollutants in water may be, the organs of living beings
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might be damaged by long-term exposure to them [8,9]. Companies, such as pharmaceutical,
textile, and thinner and metallurgical industries, are the primary sources of these water
pollutants [10]. Among these compounds, antibiotics as organic compounds and heavy
metals (HMs) as inorganic compounds are two of the most hazardous contaminants.

Starting with antibiotics, which are a topical example of organic pollutants and are
extremely dangerous due to their wide use in both human and veterinary drugs [11], an
analysis of antibiotic use has shown that global antibiotic use was recorded at approxi-
mately 200,000 tons and has grown by 65% over only 15 years from 2000 and will double
by around 2030 [12,13]. This widespread use assures the presence of these antibiotics in
different water supplies, in quantities extending from ng/L to µg/L [14]. Taking cefixime
(CFX) as an example, it has been detected in various water environments with quantities
ranging from 278 to 422 ng/L [15,16]. However, even in small antibiotics doses, antibiotic
bacterial resistance (ABR) can increase and develop. This type of bacteria is well-known
as a severe threat to world health in the 21st century, because they cause nearly a mil-
lion deaths worldwide each year [17–20]. For this reason, we selected CFX as an organic
pollutant for this study.

Along with these organic pollutants, heavy metals (HMs) as inorganic contaminants
are also toxic to living beings above a threshold value because they are absorbed, kept, and
concentrated by many life forms [21]. Unlike organic contaminants that are sometimes
biodegraded in water, heavy metals can not be wholly removed from water, and are reduced
to other metal ions that are less damaging [22]. Amidst the rapid growth of industry and
human activities, water is constantly polluted by large amounts of heavy metal ions, such
as Cr (VI), Pb (II), O (III), Hg (II), and Cu (II) [8]. Among these HMs, chromium is a highly
toxic metal, widely found in many industrial processes, such as leather tanning, metal
plating, manufacturing of dye, stereotyping, ink, and paint and paper production [23,24].
It exists in water environments in various oxidation states, mainly hexavalent Cr(VI)
and trivalent Cr(III). Cr(VI) is the most stable state and is more harmful to humans than
other states, such as Cr(III, IV and V), because it is carcinogenic, mutagenic, and has high
mobility characteristics [1,22]. For these reasons, the World Health Organization (WHO)
has limited Cr(VI) concentrations in all water sources to below 0.05 mg [25]. These ions are
formed mainly from chromate ions, CrO4

2−, and dichromate ions, Cr2O7
2−. However, as

mentioned previously, metal ions can not be totally eradicated from water, but the ideal
elimination is to convert Cr(VI) ions to less damaging Cr(III) ions [5].

In this respect, for the elimination of both inorganic and organic pollutants, photocatal-
ysis was proposed as it has shown promising results for the elimination of a large number
of pollutants. It has been a widely studied technology since the 1970s due to its advantages,
such as its low cost, ecofriendliness, and reusability. The photocatalysis process generally
depends on a photocatalyst and an excitation source, such as light. When the excitation
source is exposed to a photocatalyst, electrons e− and holes h+ are produced, which can
eliminate organic and inorganic compounds via oxidation and reduction reactions [26].
Semiconductors are the most common catalyst in photocatalytic applications, as they are
efficient and cost-effective. Bismuth-based semiconductors have attracted considerable
research interest because bismuth ions are favorite materials for catalysts [27]. Furthermore,
as bismuth has toxic ions when they are free, synthesizing a stable useful material can help
to reduce their risk in the environment [28]. Within the bismuth semiconductor category,
sillenite forms of Bi12[M]O20 have attracted many scientists because of their unique crystal
structures, interesting photochromic qualities, peculiar electronics, and dielectric photore-
fractive properties, promising optical activity [29–31]. There are a large number of new
sillenites that have been used as photocatalysts in previous research, such as Bi12TiO20 [32],
Bi12GeO20 [33], Bi12NiO19 [34], Bi12CoO20 [35], and Bi12ZnO20 [36]. Among these, the bis-
muth zincate sillenite Bi12ZnO20 (BZO) has drawn tremendous interest because of its tiny
band gap, its stability, and its high photoconductivity [37–39]. BZO is an environmentally
friendly semiconductor without lead, which makes its application very promising.
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This work aimed to synthesize and use a new photocatalyst with an interesting
photocatalytic activity to remove various types of pollutants. Cefixime (CFX) was selected
as an organic pollutant and hexavalent chromium Cr(VI) as an inorganic contaminant
for application in the study. The efficient catalyst used in this research was the sillenite
Bi12ZnO20. It was successfully synthesized in a pure form using the sol–gel method. The
obtained phase was characterized and identified using various techniques, including X-
ray diffraction (XRD), Raman, SEM, DRS, and photoluminescence. Following catalyst
identification, removal tests for the chosen pollutants CFX and Cr(VI) under optimal
photocatalytic conditions were conducted. To our knowledge, only one study has dealt with
the synthesis and use of BZO as a photocatalyst for the removal of antibiotics. Moreover,
no study has been performed yet concerning the reduction of organic pollutants using this
catalyst. This work focuses on experimental and theoretical investigations of the structure,
and optical and photocatalytic properties of this interesting catalyst, which is in line with
the scope of the Materials journal.

2. Materials and Methods
2.1. Chemicals

The following products were used in this investigation: bismuth nitrate pentahydrate
[Bi(NO3)3·5H2O] from Chem-Lab (Zedelgem, Belgium) with a purity of 98.5% and zinc
nitrate hexahydrate [Zn(NO3)2·6H2O] from Biochem (Barcelona, Espagne) with a purity
of 98%; cefixime trihydrate C16H15N5O7S2 and polyvinylpyrrolidone (PVP K30) were
supplied by a pharmaceutical company (Algiers, Algeria), Pharmalliance; ethanol and nitric
acid (HNO3) were provided by Sigma-Aldrich (Saint-Quentin-Fallavier, France). Potassium
dichromate, K2Cr2O7, was supplied by Emsure (Algiers, Algeria). All compounds were
utilized as purchased without further purification. All preparations were made using
distilled water.

2.2. Synthesis of Bi12ZnO20 Crystals

Bi12ZnO20 (ZBO) was synthesized using the PVP sol–gel method. The gel was pre-
pared using a solution with a 15% w/w concentration of PVP K30 (to obtain the complexing
role [40]). [N2O6Zn 6H2O] and [Bi(NO3)3·5H2O] with ratio amounts (1:12) were dissolved
in ethanol with an excess of 5% nitric acid to ensure that the nitrates were soluble. After
a total solubility, the obtained solution was mixed with the gel and then placed on a hot
plate at 50 ◦C for 1 h. The obtained gel was evaporated at 80 ◦C for 24 h and then dried at
200 ◦C for 6 h. A precursor powder, called Xerogel, was obtained after drying using an
auto combustion reaction. The obtained Xerogel was crushed in an agate mortar and then
calcined at 800 ◦C (which was selected based on DSC analysis, Figure 1) for 6 h in an air
oven in a programmed furnace (5 ◦C min−1). Six hours was selected as the calcination time
because it was found to be the maximum calcination temperature; calcining the sample
for longer than 6 h can cause it to melt and stick in the oven. Moreover, the highest calci-
nation time was chosen to improve the crystallinity, as well as to eliminate carbonaceous
residue left from the combustion reaction [13,36]. The obtained whitish-yellow powder
was subjected to phase identification, optical characterization, and photocatalytic studies.
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Figure 1. The DSC curve of the Bi12ZnO20 nanoparticles. 
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Figure 1. The DSC curve of the Bi12ZnO20 nanoparticles.

2.3. Catalyst Characterization

XRD analysis was performed using a Phillips PW 1730 (Eindhoven, The Netherlands)
with 2θ ranging from 5 to 80◦. The lattice parameters of the structure were refined using
the Rietveld method using the software, MAUD (version 2.93). Structural presentation
was realized using the Vesta program. Raman spectra were obtained from 100 to 800 cm−1

using a Horiba Jobin-Yvon (LabRAM HR, Longjumeau, France). The morphology of the
sample was visualized by field emission scanning electron microscopy (FESEM) (JEOL
JSM-7610plus, Tokyo, Japan). The sample’s UV–visible diffuse reflectance spectrum (DRS)
was obtained from 200 to 800 cm−1 using a Cary 5000 UV−vis (Agilent, Stevens Creek
Blvd, Santa Clara, CA, USA). The photoluminescence spectra were determined using an
FL3-DFX-IHR320 spectrophotometer (Horiba, Longjumeau, France) with a wavelength
excitation of 342 nm.

2.4. Photocatalytic Performance Tests

The photocatalytic activity of the catalyst was examined for photodegradation of CFX
and photoreduction of Cr(VI) in a stirred double-walled reactor. For CFX degradation, the
test was carried out by mixing a quantity of BZO (0.1 g) in a 100-mL solution with an initial
CFX concentration of 10 mg/L and a neutral pH for an irradiation time of 180 min, which
were found to be the optimal conditions. Before exposing the reactor to irradiation, the
solution was stirred under dark conditions for 120 min to reach adsorption/desorption
equilibrium. The irradiation source was a UVA 24 W lamp (Philips, Eindhoven, The Nether-
lands) with a UV intensity of 20 mW/cm2, placed vertically at 10 cm from the solution
surface. The solution temperature was held constant at 25 ◦C in all photocatalytic applica-
tions by a thermostatic bath. During the process of the photocatalysis after illumination,
aliquots of 3.0 mL were collected and centrifuged to separate the photocatalyst from the
solution, and then measured using a UV-visible spectrophotometer (OPTIZEN, UV-3220UV,
Daejeon, Republic of Korea) at λmax = 288 nm, to determine the leftover CFX concentration.
The degradation rate of CFX was calculated using Equation (1).

Degradation rate % =
(Cad − C)

Cad
× 100 (1)

where Cad is the initial concentration after adsorption at (t = 0) and C is the concentration
after illumination at time (t).

For Cr(VI) reduction, a potassium dichromate solution (K2Cr2O7) was taken at a
concentration of 15 mg/L and the same approach as the experiment was used for organic
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degradation. Oxalic acid as a reduction agent was added to the Cr(VI) to slow down the pair
(e−/h+) recombination rate and to prevent the photo corrosion of the catalyst [25]. Cr(VI)
removal was followed by measuring the absorption at wavelength 344 nm using a UV-
visible spectrophotometer. The reduction rate of Cr(VI) was calculated using Equation (2).

Reduction rate % =
(absad − abs)

absad
× 100 (2)

3. Results
3.1. Catalyst Characterization
3.1.1. Investigation of Calcination Temperature

To clarify the calcination temperature effect on the thermal decomposition process
and the thermal properties of the Bi12ZnO20 nanomaterials, the obtained dried gel was
examined using DSC analysis at (Mettler Toledo, Bordeaux, France) a heating rate of
5 ◦C/min. The obtained results are illustrated in Figure 1. It was observed that the Zn-Bi-O
gel precursor exhibited two endothermic peaks; the first, an intense peak at ~279 ◦C, and
the second, a small peak at ~324 ◦C. These two endothermic peaks have been associated
with the decomposition of organic matter, including water, and denitrification. At around
510 ◦C, the reaction became exothermic and the peak at ~550 ◦C can be attributed to the
composition of Bi2O3 [41]. In the range of 750 to 850 ◦C, there was another increase, which
means an exothermic reaction occurs, which shows the formation of ZBO sillenite. The
distortion that occurs after 850 ◦C was attributed to the sillenite melting, it is well-known
that sillenites melt at these temperatures. The optimal calcination temperature can therefore
be concluded as 800 ◦C.

3.1.2. Phase Identification and Structural Investigation

After calcination, the prepared powder was subjected to XRD investigation (Figure 2)
to confirm the obtaining of the sillenite phase. The observed diffraction peaks correspond
to standard patterns of a cubic bismuth zinc sillenite (PDF #78-1325) [37]. Nonetheless,
no peaks corresponding to the precursor Bi2O3, ZnO, or other impurities were observed,
indicating high phase purity. The sharp intensity of the main diffraction peak in the (311)
plane exhibits good crystallization of the selenite, which has a monophasic cubic structure
with a space group of I23. As is well known, direct measurement of the lattice parameters
and determining the lattice of phase structure from XRD patterns is difficult, so the Rietveld
refinement method was used to refine them [42].

In this part, the XRD pattern was refined employing the Rietveld method with the
help of MAUD software using the I23 space group. The fitting after refinement is presented
in Figure 2. The observed and calculated profiles are suitable for one another, and all
experimental peaks are approved Bragg 2θ for the space group I23. Using Rietveld after
refinement, both the structural and lattice parameters were calculated, such as the lattice
constants, atomic positions, the Sig (goodness of fit), and also various R factors, such as Rwp
(weighted profile factor), Rexp (expected weighted profile factor), and Rb (Bragg factor).
The obtained results were gathered in Table 1. The goodness of fit, Sig, evaluated the fitting
quality of the experimental data; the closer to 1, the more the fitting was good; in our case, it
was 1.76, which is very significant. This showed the excellent quality of our sillenite phase.
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Table 1. Structural and lattice parameters.

Phase Bi12ZnO20

Groupe Space I 2 3
a (Å) 10.209611

Atoms
Atom x y z Occupancy Biso

Zn 0.000000 0.000000 0.000000 1 0.21184404
Bi 0.8251013 0.6822033 0.98639077 1 0.28883246
O1 0.31147724 0.31147724 0.31147724 1 0.2218582
O2 0.3605947 0.23639126 0.022656312 1 0.21213703
O3 0.006910957 0.006910957 0.006910957 1 0.20685276

V (Å3) 1064.210594
D (nm) 59.46

R Factors

Rb
Rexp
Rwp
Sig

24.588018
17.532957
30.810946
1.757316

The lattice table results enabled us to construct our exact sillenite structure using
Vista software and the resulting structure is shown in Figure 2 (inset), representing a total
of 66 atoms in a supercell. The red, purple spheres, and green represent O, Bi, and Zn
atoms, respectively.

Compared to our previous study that dealt with the synthesis of BZO using co-
precipitation [36], the purity of the catalyst that was synthesized using the sol–gel method
was higher than the co-precipitation method. This could be confirmed by taking the Sig
(goodness of fit) into account as sol–gel was closer to 1 (around 1.75) and was 3.21 for
co-precipitation, which is significantly high.
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The average crystallite size of the BZO selenite crystals (59.46 nm) was determined
using Scherrer’s equation.

D =
Kλ

β cos(θ)
(3)

where D is the crystal size, ω is the peak width of half maximum intensity, θ is the diffraction
angle, and λ represents the wavelength of the X-ray.

The photocatalytic process takes place on the photocatalyst’s surface, suggesting that
surface area is a crucial parameter that can affect catalyst photocatalytic activity [43]. The
greater the photocatalyst’s surface area, the greater the number of convenient reaction
sites, which heightens the catalyst activity. Crystallite size is another significant parameter
that can influence photocatalytic activity because it correlates well with surface area,
where surface area is inversely proportional to crystallite size [44]. Accordingly, the
smaller the crystallite size, the greater the surface area available to the catalyst, which also
enhances catalyst activity [45]. Therefore, it is very important to determine the surface
area of a catalyst. This surface can be determined from crystallite size values by assuming
nanocrystalline spheres and using the Brunauer-Emmett-Teller (BET) relation [46].

SBET =
6× 103

D× ρ
(4)

where ρ = 8.91 g/cm3 is the density and obtained from the equation, ρ = ZM
NA V [10], where

Z = 2 [35] is the number of model units in a single cell. According to these calculations, the
surface area for the sillenite nano-powder is 11.22 m2/g. Compared to a previous study
with a sample that was synthesized using the co-precipitation method, the special surface
area of the sol-gel method (11.22 m2/g) was lower than that of the co-precipitation method
(12.31 m2/g), due mainly to the crystallite size and also to the purity of the phase, as ZnO
as an impurity can increase the surface area in the co-precipitation method. Sillenites are
high in scatter yield and Raman spectra is a reliable technique that can characterize these
sillenite materials [38]. The Raman spectra of BZO crystals are given in Figure 3. As can
be seen, there are 12 peaks, from 50 to 700 cm−1, these peaks are lattice modes and match
pretty well with the form of sillenite [38,47]. Modes detected in 80, 92, 123, and 137 cm−1

are due to the vibration and respiration of the Bi and O bands at various positions, wherein
modes 162 between 207 cm−1 are attributed to the variations of the bands Bi–O–Bi [48]. All
of these bismuth modes correspond to the polyhedral BiO7 shape. The tiny Raman modes
at 251, 305, 372 and 527 cm−1 probably correspond to vibrations and breathing of oxygen
atoms (O). The two weakest modes at 444 and 666 cm−1 are related to the stretching and
vibrations of the bonds in the ZnO4 tetrahedra.

3.1.3. Morphology Investigation

The surface morphology of the sillenite Bi12ZnO20 was examined using scanning
electron microscopy and is illustrated in Figure 4. The SEM analysis was performed using
two different modes, FSE and TSE-AM. The FSE SEM images (a, b) display a clear porous
structure that is spherical, and the content of the powder presents large agglomerate parti-
cles that are less uniform with large and small compact grains. Furthermore, the formation
of nano-crystal grains is observed; the fine nature of the BZO particles is responsible for
the agglomeration. The nanocrystals are nearly connected and produce large surface areas
that predict enhanced photocatalytic activity [49]. The TSE-AM SEM images (c, d) can
support the fact that we obtained nanoparticles since we cannot see unique particles (not
agglomeration) larger than 1 µm in the SEM images.



Materials 2021, 14, 5409 8 of 17

Materials 2021, 14, x FOR PEER REVIEW 7 of 17 
 

 

= cos ( ) (3) 

where D is the crystal size,  is the peak width of half maximum intensity,  is the dif-
fraction angle, and  represents the wavelength of the X-ray. 

The photocatalytic process takes place on the photocatalyst’s surface, suggesting that 
surface area is a crucial parameter that can affect catalyst photocatalytic activity [43]. The 
greater the photocatalyst’s surface area, the greater the number of convenient reaction 
sites, which heightens the catalyst activity. Crystallite size is another significant parameter 
that can influence photocatalytic activity because it correlates well with surface area, 
where surface area is inversely proportional to crystallite size [44]. Accordingly, the 
smaller the crystallite size, the greater the surface area available to the catalyst, which also 
enhances catalyst activity [45]. Therefore, it is very important to determine the surface 
area of a catalyst. This surface can be determined from crystallite size values by assuming 
nanocrystalline spheres and using the Brunauer-Emmett-Teller (BET) relation [46]. = 6 ×  10×  (4) 

where  = 8.91 g/cm3 is the density and obtained from the equation, =   [10], where 
Z = 2 [35] is the number of model units in a single cell. According to these calculations, the 
surface area for the sillenite nano-powder is 11.22 m2/g. Compared to a previous study 
with a sample that was synthesized using the co-precipitation method, the special surface 
area of the sol-gel method (11.22 m2/g) was lower than that of the co-precipitation method 
(12.31 m2/g), due mainly to the crystallite size and also to the purity of the phase, as ZnO 
as an impurity can increase the surface area in the co-precipitation method. Sillenites are 
high in scatter yield and Raman spectra is a reliable technique that can characterize these 
sillenite materials [38]. The Raman spectra of BZO crystals are given in Figure 3. As can 
be seen, there are 12 peaks, from 50 to 700 cm−1, these peaks are lattice modes and match 
pretty well with the form of sillenite [38,47]. Modes detected in 80, 92, 123, and 137 cm−1 

are due to the vibration and respiration of the Bi and O bands at various positions, wherein 
modes 162 between 207 cm−1 are attributed to the variations of the bands Bi–O–Bi [48]. All 
of these bismuth modes correspond to the polyhedral BiO7 shape. The tiny Raman modes 
at 251, 305, 372 and 527 cm−1 probably correspond to vibrations and breathing of oxygen 
atoms (O). The two weakest modes at 444 and 666 cm−1 are related to the stretching and 
vibrations of the bonds in the ZnO4 tetrahedra. 

100 200 300 400 500 600 700

0.00

2.50x103

5.00x103

7.50x103

1.00x104

1.25x104

1.50x104

1.75x104

2.00x104

66
6

52
7

44
437

2

30
5

25
1

20
7

18
1

16
213

7
12

3
92

80

In
te

ns
ity

Raman shift (cm−1)  

Figure 3. Raman spectra of Bi12ZnO20. 
Figure 3. Raman spectra of Bi12ZnO20.

Materials 2021, 14, x FOR PEER REVIEW 8 of 17 
 

 

3.1.3. Morphology Investigation 
The surface morphology of the sillenite Bi12ZnO20 was examined using scanning elec-

tron microscopy and is illustrated in Figure 4. The SEM analysis was performed using two 
different modes, FSE and TSE-AM. The FSE SEM images (a,b) display a clear porous struc-
ture that is spherical, and the content of the powder presents large agglomerate particles 
that are less uniform with large and small compact grains. Furthermore, the formation of 
nano-crystal grains is observed; the fine nature of the BZO particles is responsible for the 
agglomeration. The nanocrystals are nearly connected and produce large surface areas 
that predict enhanced photocatalytic activity [49]. The TSE-AM SEM images (c,d) can sup-
port the fact that we obtained nanoparticles since we cannot see unique particles (not ag-
glomeration) larger than 1 µm in the SEM images. 

(a) (b) 

  
(c) (d) 

Figure 4. (a,b) FSE (c,d) TSE-AM SEM images for the Bi12ZnO20 crystals. 

3.1.4. Optical Property Investigation 
Information about the efficient charge transfer and the electron-richness in the sys-

tem of photocatalyst nanoparticles could be extracted from the photoluminescence char-
acteristics [50]. The Bi12ZnO20 nanocrystal photoluminescence was determined to explore 
the optical properties obtained after milling and subsequent annealing at 800 °C. The 
emission spectra were measured using λ = 342 nm as the excitation wavelength. 

As shown in Figure 5, at this wavelength, the emission peak for Bi12ZnO20 nanoparti-
cles has a comparatively weaker intensity than that of pure Bi2O3, which has been studied 
before [51]. The peak magnitude at 530 nm was more potent due to photosensitization of 

Figure 4. (a,b) FSE (c,d) TSE-AM SEM images for the Bi12ZnO20 crystals.

3.1.4. Optical Property Investigation

Information about the efficient charge transfer and the electron-richness in the system
of photocatalyst nanoparticles could be extracted from the photoluminescence character-
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istics [50]. The Bi12ZnO20 nanocrystal photoluminescence was determined to explore the
optical properties obtained after milling and subsequent annealing at 800 ◦C. The emission
spectra were measured using λ = 342 nm as the excitation wavelength.

As shown in Figure 5, at this wavelength, the emission peak for Bi12ZnO20 nanoparti-
cles has a comparatively weaker intensity than that of pure Bi2O3, which has been studied
before [51]. The peak magnitude at 530 nm was more potent due to photosensitization of
the sample and this means a longer electronic life. This also shows that the crystals have a
low recombination rate for the photogenerated electron–hole pairs (e−/h+), confirming
that the sillenite phase structure has a slow separation of the photo-excited electron–hole
pairs with a low capability of transfer and longer hole diffusion distance [52]. Hence, this
helps to greatly enhance photocatalytic activity.
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Figure 5. Room temperature PL spectrum for Bi12ZnO20 nanoparticles.

UV-visible diffuse reflectance spectroscopy (DRS) studies play an essential role in the
estimation of the optical band gap energy (Eg) and electronic structures of the metal oxide
semiconductor materials [53,54]. To assess the light absorption of our sillenite Bi12ZnO20
nanopowder, diffuse reflectance spectra were investigated in the range of 200–800 nm
at room temperature, as are shown in Figure 6 (inset). From this figure, we see that the
sharpness and significant value of the absorption edge at ~475 nm correspond to the
band-to-band transition of the sillenite [55]. The diffuse reflectance is transferred to the
equivalent absorption coefficient by the Kubelka–Munk function to determine the bandgap
energy (Eg) using the Tauc relation [56].

(αhν)
2
n = K

(
hν− Eg

)
(5)

Figure 6 represents (αhν)2 versus hν plots of absorption spectra, where α is the ab-
sorption and the exponent n is related to the type of optical transmission caused by the
absorption of photons, where it is equal to 1 or 4 for direct or indirect transmission, respec-
tively, for the semiconductor. The sillenite Bi12ZnO20 optical bandgap was determined
by fitting a straight line to the linear portion of the curve where the Eg energy is the
intercept of the line with the hν axis. The obtained band gap value with a direct optical
transition is 2.9 eV. This result shows that the optical properties of our semiconductors, for
the photocatalytic reaction, are in the UV light region. For this, a UVA lamp was used in
the experiments with the catalyst.
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3.2. Photocatalytic Performance Applications

Two types of pollutants, cefixime as an organic and hexavalent chromium Cr(VI) as
an inorganic pollutant, were proposed to test the photocatalytic activity of BZO crystals.
Before starting the experiments, the effect of photolysis was neglected by exposing both
pollutants to light without the BZO catalyst, where there was no significant change in their
concentrations. Then, in the first part of the experiment, BZO was added to the solution
and stirred for 120 min under dark conditions to eliminate the adsorption effect. The BZO
crystals adsorbed only a small amount of both pollutants.

3.2.1. Degradation of Organic Pollutant

The BZO catalyst degradation efficiency was first tested for the degradation of cefixime.
The degradation was conducted by applying light to the solution after the elimination of the
adsorption effect. The degradation efficiency as a function of time is presented in Figure 7,
where the inset figure shows the evolution of the UV-Visible spectra for CFX degradation.
As can be seen, the achieved rate of CFX degradation was 94.34% within 3 h, which
demonstrated that CFX was successfully removed using BZO crystals as a photocatalyst.
This degradation rate was higher than that obtained using others catalysts during our
previous studies [13,14]. As BZO crystals have shown great degradation for CFX, it can be
concluded that they can be effective catalysts for the removal of organic pollutants.
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3.2.2. Reduction of Inorganic Pollutant

Following this promising result concerning removing organic pollutants, the catalyst
was tested to reduce an inorganic pollutant, Cr(VI). The experiment was conducted using a
BZO catalyst, maintaining all conditions similar to those of the degradation experiment.
The experiment was performed by adding 0.1 g of BZO catalyst in 100 mL of K2Cr2O7
solution (15 mg/L) at pH ~6. The photoreduction of Cr(VI) as a function of time is shown
in Figure 8, where the inset figure presents the evolution of the UV-visible spectra for Cr(VI)
reduction. The results show that the photocatalytic efficiency in Cr(VI) reduction achieved
77.19% removal within 180 min of irradiation time. This removal was accomplished by
reducing Cr2O7

2− to Cr3+, as indicated by the equation below [1].

Cr2O7
−2 + 14 H+ + 6 e− → 2 Cr+3 + 7 H2O (6)
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As observed, the catalyst has an efficient performance in the removal of both types
of pollutants of 94.34% CFX degradation and 77.19% Cr(VI) reduction within only 3 h.
This finding allows it to be used as an efficient catalyst to treat organic and inorganic
compounds in industrial wastewater.

3.3. Kinetic Study of the Photodegradation and Photoreduction

The kinetics of the photodegradation of organic and the photoreduction of inorganic
molecules is described as a 1st order reaction in most photocatalysis investigations using
the following equation [57]:

v = −dC
dt

= kapp.C (7)

v—the reaction rate (mg/L min); C—concentration of pollutant (mg/L); kapp:—the apparent
rate constant (min−1).

The following equation is obtained by integrating Equation (7) [58]:

ln
Co

C
= kapp.t (8)

where Co is the initial concentration of the pollutants. kapp can be determined from the
slope of the curve drawn between in Co

C and light irradiation time.
To check the order of the reaction, we plotted Co

C as a function of time for both
pollutants (Figure 9). The obtaining of a straight line indicates that the kinetics is of the
first order. Additionally, the first-order pseudo-model validation is confirmed by R2 values
of the removal kinetics.
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Figure 9. Pseudo-first-order kinetic plot (a) of the CFX degradation (b) of Cr(VI) reduction.

The apparent rate constant was calculated to be 0.084 min−1 and 0.022 min−1, respec-
tively, for CFX, and Cr(VI). The rate constant for the organic pollutant degradation was
found to be higher than that of inorganic compounds. This means that the degradation of
organic pollutants was faster than the reduction of inorganic pollutants.

Table 2 summarizes a list of bibliographical references with the use of sillenites for
photocatalytic application to remove both organic and inorganic pollutants. Our catalyst
has exhibited unusual photocatalytic activity in both degradation and reduction compared
to other sillenites used in earlier studies.

Table 2. Sillenites used for photocatalytic applications.

Sillenite Organic Pollutants Operating Conditions Degradation Efficiency Ref

Bi12ZnO20 Cefixime
Catalyst dosage: 1 g/L

pH: 6, Reaction time: 3 h
Initial concentration: 10 mg/L

94.34% Present study

Bi12CoO20 Basic red 46
Catalyst dosage: 1 g/L

pH: 6.4, Reaction time: 3 h
Initial concentration: 15 mg/L

86% [35]

Bi12ZnO20 Cefuroxime
Catalyst dosage: 1 g/L

pH: 6, Reaction time: 4 h
Initial concentration: 5 mg/L

80% [36]

Bi12TiO20 Rhodamine B (RhB)
Catalyst dosage: 60 mg

pH: 6, Reaction time: 210 min
Initial concentration: 10 mg/L

81% [32]

Bi24AlO39 Methyl Orange
Catalyst dosage: 6 g/L

pH: 2, Reaction time: 2 h
Initial concentration: 20 mg/l

100% [59]

Bi25GaO39 Methylen blue
Catalyst dosage: 2 g/L,
Reaction time: 60 min

Initial concentration: 10 mg/L
89% [30]

Bi12FeO20 Methylene blue and Congo red Reaction time: 3.5 h
Initial concentration: 3.5 mg/L and 10 mg/L 91.8% and 32.10% [60]

Sillenite Inorganic pollutants Operating conditions Reduction efficiency Ref

Bi12ZnO20 Hexavalent chromium
Catalyst dosage: 1 g/L

pH: 6, Reaction time: 3 h
Initial concentration: 30 mg/L

77.19% Present study

Bi12CoO20 Hexavalent chromium
Catalyst dosage: 1 g/L

pH: 6.4, Reaction time: 3 h
Initial concentration: 15 mg/L

67% [35]

Bi12MnO20 Hexavalent chromium
Catalyst dosage: 2 g/L

pH: 6, Reaction time: 4 h
Initial concentration: 10 mg/L

80% [29]
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3.4. Proposed Mechanism of the Photocatalytic Removal

According to previous studies dealing with photocatalytic elimination of organic
or/and inorganic pollutants [35,61,62], the possible mechanism of the photocatalytic pro-
cess can be summarized by the schematic in Figure 10.
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When a light source (energy more than the bandgap) is exposed and exceeds the
photocatalyst, electrons (e−) and holes (h+) occur in the conduction band (CB) and valance
band (VB), respectively [1]. These pairs are responsible for eliminating organic or inorganic
pollutants through reduction and oxidation reactions [26].

Starting with the oxidation reaction, which is responsible for the degradation of
organic pollutants, in our case CFX, the holes (h+) in the valance band react and oxidize
H2O molecules to produce hydroxyl radicals, •OH, which are the most numerous and
primary active species among the ROS in the oxidation of organic pollutants [1,13,63].

We used scavengers in our previous studies to focus on the contribution of reactive
oxygenated species, and we validated that the radical most involved in the degradation
process of organic compounds are OH◦ radicals [13].

On the other hand, the reduction reaction is responsible for eliminating the inorganic
pollutant, in our case Cr(IV). The electrons (e−) in the conduction band reacted directly
with Cr(VI) and reduced it to a lower valence state, Cr (III) [25,63,64]. This reduction
reaction can minimize the risk of Cr(IV) by turning it into Cr (III) [1]. The e− can also
react and reduce oxygen molecules present in the solution, leading to the formation of
superoxide radical O2

•. These O2
• species can also participate in the degradation of organic

pollutants through direct reaction with the pollutant but it is not an efficient [64] or indirect
reaction as it undergoes a reaction that generates OH [1].

3.5. Catalyst Regeneration Study

The reuse and stability of a photocatalyst are critical proprieties for practical applica-
tions. BZO was tested in two successive series of photocatalytic reduction and degradation,
for both Cr(VI) and CFX. After the first test, which was within 180 min of light irradiation,
the catalyst was separated from the aqueous suspension by centrifugation, washed with
HNO3 (1 M), ethanol, and then water, and then finally dried at 120 ◦C for 8 h. Then,
the obtained catalyst was subjected to a second test with the same conditions. Figure 11
displays the performance of BZO over two successive photocatalytic applications. As can
be observed, a decrease from the first to the second test for both degradation and reduction
efficiency was recorded. This result can be explained by the effect of the catalyst’s longer
electronic life (photosensitization), as it remains in the excitation state for a long time, which
means a low recombination rate of the photogenerated electron–hole pairs (e−/h+) [65].
This finding is in line with the photoluminescence results. This decrease can be rectified by
doping the catalyst with an ion, such as Ag, in order to speed up the electronic life [66].
This will be one of our outlooks for upcoming studies.
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4. Conclusions

The sillenite crystals of Bi12ZnO20 were synthesized using the sol–gel method. XRD
analysis confirmed the formation of a BZO cubic phase with a space group I23 and crys-
talline size (~59.46 nm). Raman analysis was used to verify the obtained sillenite phase. The
morphology of this catalyst was investigated using SEM analysis. The optical properties
showed its potential for photocatalytic applications in the UV region, and its bandgap
of 2.9 eV allows UV radiation conversion. The photocatalytic performance of the BZO
sillenite crystals was examined for degradation of cefixime (CFX) and the reduction of
hexavalent chromium (Cr(VI)), as organic and inorganic compounds, respectively. The
findings revealed that the BZO photocatalyst could lead to a 94.34% degradation of CFX
and 77.19% reduction of Cr(VI) within 3 h of UV irradiation, which is very efficient com-
pared to literature. According to these results, sillenite Bi12ZnO20 could be a promising
catalyst for degradation and reduction applications, for treating both organic and inorganic
pollutants in wastewaters.
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