# Functional Importance of Surface Texture Parameters

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Height Parameters

_{d}and adhesion µ

_{a}of summits in contact (Figure 4). Under the lubrication regime, the adhesion effect is marginal; therefore, smooth surfaces frequently correspond to low friction, such as in disc-on-ball tests performed by Dzierwa et al. [49] and Sedlacek et al. [50,51]. Under dry friction, these effects can be different. The result depends on the type of contact. In the initial point contact, wear of the disc was typically higher for smaller roughness height. It is probably related to a higher maximum pressure for smoother surfaces in the initial contact point [52], which is related to the plastic deformation [53]. However, under lubricated fretting (oscillatory motion of extremely small amplitude), rough surfaces can result in smaller wear and friction compared with smooth surfaces [54,55,56]. This behaviour is caused by oil retention in surfaces of big roughness. The surfaces of marines’ shoes should be rough.

## 3. Spatial Parameters

## 4. Hybrid Parameters

## 5. Other Field Parameters

## 6. Feature Parameters

- -
- Density of peaks Spd;
- -
- Arithmetical average peak curvature Spc.
- -
- -
- There are also [11]:
- -
- Ten-point height S10z;
- -
- Five-point peak height S5p;
- -
- Five-point pit height S5v;
- -
- Average dale area Sda;
- -
- Average hill area Sha;
- -
- Average dale volume Sdv;
- -
- Average hill volume Shv.

## 7. Functional Importance of Parameters

## 8. Conclusions and Outlook

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Abbott, E.J.; Bousky, S.; Williamson, D.E. The Profilometer. Mech. Eng.
**1938**, 60, 205–216. [Google Scholar] - Abbott, E.J.; Firestone, F.A. Specifying Surface Quality—A Method Based on Accurate Measurement and Comparison. J. Mech. Eng.
**1933**, 55, 569–572. [Google Scholar] - Gadelmawla, E.S.; Koura, M.M.; Maksoud, T.M.A.; Elewa, I.M.; Soliman, H. Roughness parameters. J. Mater. Process. Tech.
**2002**, 123, 133–145. [Google Scholar] [CrossRef] - Whitehouse, D.J. The parameter rash—Is there a cure? Wear
**1982**, 83, 75–78. [Google Scholar] [CrossRef] - Nayak, P.R. Random Process Model of Rough Surfaces. J. Lubr. Technol.
**1971**, 93, 398–407. [Google Scholar] [CrossRef] - Longuet-Higgins, M.S. Statistical properties of an isotropic random surface. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci.
**1957**, 250, 157–174. [Google Scholar] - Longuet-Higgins, M.S. The statistical analysis of a random, moving surface. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci.
**1957**, 249, 321–387. [Google Scholar] - Pawlus, P.; Chetwynd, D.G. Efficient characterization of surface topography in cylinder bores. Precis. Eng.
**1996**, 19, 164–174. [Google Scholar] [CrossRef] - Stout, K.J.; Sullivan, P.J.; Dong, W.P.; Mainsah, E.; Luo, N.; Mathia, T.; Zahouani, H. The Development of Methods for the Characterisation of Roughness in Three Dimensions; Publication EUR 15178 EN Commission of the European Communities; Butterworth-Heinemann: Oxford, UK, 1993. [Google Scholar]
- Blunt, L.; Jiang, X. Advanced Techniques for Assessment Surface Topography; Kogan Page Science: London, UK, 2003; pp. 1–13. [Google Scholar]
- ISO 25178-2:2012 Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters; International Organization for Standarization: Geneva, Switzerland, 2012; Available online: https://www.iso.org/standard/42785.html (accessed on 5 September 2021).
- Leach, R. Characterisation of Areal Surface Texture; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Anderberg, C.; Pawlus, P.; Rosén, B.G.; Thomas, T.R. Alternative descriptions of roughness for cylinder liner production. J. Mater. Process. Tech.
**2009**, 209, 1936–1942. [Google Scholar] [CrossRef] - Deltombe, R.; Kubiak, K.J.; Bigerelle, M. How to Select the Most Relevant 3D Roughness Parameters of a Surface. Scanning
**2014**, 36, 150–160. [Google Scholar] [CrossRef] [Green Version] - Whitehouse, D.J. Handbook of Surface and Nanometrology; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Thomas, T.R. Rough Surfaces; Longman: New York, NY, USA, 1982. [Google Scholar]
- Willis, E. Surface finish in relation to cylinder liners. Wear
**1986**, 109, 351–366. [Google Scholar] [CrossRef] - Willn, J.E. Characterisation of cylinder bore surface finish–a review of profile analyiss. Wear
**1972**, 19, 143–162. [Google Scholar] [CrossRef] - Agrawal, C.; Wadhwa, J.; Pitroda, A.; Pruncu, C.I.; Sarikaya, M.; Khanna, N. Comprehensive analysis of tool wear, tool life, surface roughness, costing and carbon emissions in turning Ti–6Al–4V titanium alloy: Cryogenic versus wet machining. Tribol. Int.
**2021**, 153, 10659. [Google Scholar] [CrossRef] - Ohlsson, R.; Rosen, B.-G.; Westberg, J. The interrelationship of 3D surface characterisation techniques with standarised 2D techniques. In Advanced Techniques for Assessment Surface Topography; Blunt, L., Jiang, X., Eds.; Kogan Page Science: London, UK, 2003; pp. 198–220. [Google Scholar]
- Tsukada, T.; Kanada, T. Evaluation of two- and three dimensional surface roughness profile and their confidence. Wear
**1986**, 109, 69–78. [Google Scholar] [CrossRef] - Wieczorowski, M.; Cellary, A.; Chajda, J.; Kolasiński, W. Three dimensional analysis of random surfaces. In Proceedings of the 6th International DAAAM Symposium, Cracow, Poland, 26–28 October 1995; pp. 365–366. [Google Scholar]
- Leach, R.K. Fundamental Principles of Engineering Nanometrology, 2nd ed; Elsevier: Amsterdam, The Netherlands, 2014; pp. 115–120. [Google Scholar]
- Wu, J.-J. Simulation of rough surfaces with FFT. Tribol. Int.
**2000**, 33, 47–58. [Google Scholar] [CrossRef] - Hu, Y.Z.; Tonder, K. Simulation of 3-D random surface by 2-D digital filter and Fourier analysis. Int. J. Mach. Tools Manufact.
**1992**, 32, 82–90. [Google Scholar] [CrossRef] - Perez-Rafols, F.; Almqvist, A. Generating randomly rough surfaces with given height probability distribution and power spectrum. Tribol. Int.
**2019**, 131, 591–604. [Google Scholar] [CrossRef] - Pawlus, P.; Reizer, R.; Wieczorowski, M. A review of methods of random surface topography modeling. Tribol. Int.
**2020**, 152, 106530. [Google Scholar] [CrossRef] - You, S.J.; Ehmann, K.F. Computer synthesis of three- dimensional surfaces. Wear
**1991**, 145, 29–42. [Google Scholar] [CrossRef] - Jeng, Y. Impact of plateaued surfaces on tribological performance. Tribol. Trans.
**1996**, 39, 354–361. [Google Scholar] [CrossRef] - Graboń, W.; Pawlus, P.; Sęp, J. Tribological characteristics of one-process and two-process cylinder liner honed surfaces under reciprocating sliding conditions. Tribol. Int.
**2010**, 43, 1882–1892. [Google Scholar] [CrossRef] - Greenwood, I.; Tripp, J.H. The contact of nominally flat surfaces. Proc. Inst. Mech. Eng.
**1971**, 185, 625–633. [Google Scholar] [CrossRef] - Chang, W.R.; Etsion, I.; Bogy, D.B. An elastic-plastic model for the contact of rough surfaces. J. Tribol.
**1987**, 109, 257–263. [Google Scholar] [CrossRef] - Zhao, Y.; Maietta, D.M.; Chang, L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J. Tribol.
**2000**, 20, 86–93. [Google Scholar] [CrossRef] - Kogut, L.; Etsion, I. A finite element based elastic-plastic model for the contact of rough surfaces. Tribol. Trans.
**2003**, 46, 383–390. [Google Scholar] [CrossRef] - Jackson, R.L.; Green, I. A statistical model of elasto-plastic asperity contact between rough surfaces. Tribol. Int.
**2006**, 39, 906–914. [Google Scholar] [CrossRef] - Whitehouse, D.J.; Archard, J.F. The properties of random surface of significance in their contact. Proc. R. Soc. A 316
**1970**, 316, 97–121. [Google Scholar] - Yu, N.; Polycarpou, A.A. Combining and Contacting of Two Rough Surfaces with Asymmetric Distribution of Asperity Heights. J. Tribol.
**2004**, 126, 225–232. [Google Scholar] [CrossRef] - Rosen, B.G.; Ohlsson, R.; Thomas, T.R. Wear of cylinder bore microtopography. Wear
**1996**, 198, 271–279. [Google Scholar] [CrossRef] - Luo, B.; Zhang, J.; Bao, X.; Liu, H.; Li, L. The effect of granularity on surface roughness and contact angle in wood sanding process. Measurement
**2020**, 165, 108133. [Google Scholar] [CrossRef] - Liang, X.; Liu, Z.; Wanga, B. State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: A review. Measurement
**2019**, 132, 150–181. [Google Scholar] [CrossRef] - Ereifej, N.S.; Oweis, Y.G.; Eliades, G. The effect of polishing technique on 3-D surface roughness and gloss of dental restorative resin composites. Oper. Dent.
**2013**, 38, E9–E20. [Google Scholar] [CrossRef] [Green Version] - Damir, M.N.H.; El Hakim, A.F.; Koheil, A.M. Characterisation of the bearing length curve. Wear
**1980**, 63, 289–301. [Google Scholar] [CrossRef] - Grabon, W.; Pawlus, P.; Wos, S.; Koszela, W.; Wieczorowski, M. Evolutions of cylinder liner surface texture and tribological performance of piston ring-liner assembly. Tribol. Int.
**2018**, 127, 545–556. [Google Scholar] [CrossRef] - Peters, J.; Vanherck, P.; Sastrodimoto, M. Assessment of surface topology analysis techniques. CIRP Ann.
**1979**, 28, 539–554. [Google Scholar] - Brinkman, S.; Bodschwinna, H. Characterisation of automotive bore performance using 3D surface metrology. In Advanced Techniques for Assessment Surface Topography; Blunt, L., Jiang, X., Eds.; Kogan Page Science: London, UK, 2003; pp. 307–347. [Google Scholar]
- Grabon, W.; Pawlus, P.; Wos, S.; Koszela, W.; Wieczorowski, M. Effects of cylinder liner surface topography on friction and wear of liner-ring system at low temperature. Tribol. Int.
**2018**, 121, 148–160. [Google Scholar] [CrossRef] - Pawlus, P. Change of cylinder surface topography in the initial stage of engine life. Wear
**1997**, 209, 69–83. [Google Scholar] [CrossRef] - Krzyżak, Z.; Pawlus, P. Zero-wear’ of piston skirt surface topography. Wear
**2006**, 260, 554–561. [Google Scholar] [CrossRef] - Dzierwa, A.; Pawlus, P.; Zelasko, W.; Reizer, R. The study of the tribological properties of one-process and two-process textures after vapour blasting and lapping using pin-on-disc tests. Key Eng. Mater.
**2013**, 527, 217–222. [Google Scholar] [CrossRef] - Sedlacek, M.; Podgornik, B.; Vizintin, J. Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribol. Int.
**2012**, 48, 102–112. [Google Scholar] [CrossRef] - Sedlacek, M.; Podgornik, B.; Vizintin, J. Influence of surface preparation on roughness parameters, friction and wear. Wear
**2009**, 266, 482–487. [Google Scholar] [CrossRef] - Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Jamari, J.; Schipper, D.J. Deformation due to contact between a rough surface and a smooth ball. Wear
**2007**, 262, 138–145. [Google Scholar] [CrossRef] - Lenart, A.; Pawlus, P.; Dzierwa, A.; Wos, S.; Reizer, R. The effect of surface texture on lubricated fretting. Materials
**2020**, 13, 4886. [Google Scholar] [CrossRef] [PubMed] - Sato, J.; Shima, M.; Sugawara, T.; Tahara, A. Effect of lubricants on fretting wear of steel. Wear
**1988**, 125, 83–95. [Google Scholar] [CrossRef] - Imai, M.; Teramoto, H.; Shimauchi, Y.; Tonegawa, E. Effect of oil supply on fretting wear. Wear
**1986**, 110, 217–225. [Google Scholar] [CrossRef] - Butler, D.L.; Blunt, L.A.; O’Connor, R.F.; Stout, K.J. The characterisation of cylinder liner bore polishing with 3-dimensional functional indices. In Proceedings of the 7th International Conference on Metrology and Properties of Engineering Surfaces, Gothenburg, Sweden, 2–4 April 1997; pp. 517–529. [Google Scholar]
- Dong, P.; Davis, E.J.; Butler, D.L.; Stout, K.J. Topographic features of cylinder liners—an application of three-dimensional characterisation technique. Tribol. Int.
**1995**, 28, 453–463. [Google Scholar] [CrossRef] - Abe, Y.; Daodon, W.; Takahashi, N.; Mori, K. Improvement of seizure resistance by roughening surface of stainless steel drawn cup in ironing using die having lubricant pocket. Prod. Eng.
**2016**, 10, 551–562. [Google Scholar] [CrossRef] - Wycisk, E.; Solbach, A.; Siddique, S.; Herzog, D.; Walther, F. Emmelmann, C. Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties. Phys. Procedia
**2014**, 56, 371–378. [Google Scholar] [CrossRef] [Green Version] - Alang, N.A.; Razak, N.A.; Miskam, A.K. Effect of Surface Roughness on Fatigue Life of Notched Carbon Steel. Int. J. Eng. Technol. IJET-IJENS
**2011**, 11, 161–163. [Google Scholar] - Spierings, A.B.; Starr, T.L.; Wegener, K. Fatigue performance of additive manufactured metallic parts. Rapid Prototyp. J.
**2013**, 19, 88–94. [Google Scholar] [CrossRef] - Li, C.; Dai, W.; Duan, F.; Zhang, Y.; He, D. Fatigue Life Estimation of Medium-Carbon Steel with Different Surface Roughness. Appl. Sci.
**2017**, 7, 338. [Google Scholar] [CrossRef] [Green Version] - Krolczyk, G.M.; Krolczyk, J.B.; Maruda, R.W.; Legutko, S.; Tomaszewski, M. Metrological changes in surface morphology of high-strength steels in manufacturing processes. Measurement
**2016**, 88, 176–185. [Google Scholar] [CrossRef] - Świrad, S.; Wydrzynski, D.; Niesłony, P.; Krolczyk, G.M. Influence of hydrostatic burnishing strategy on the surface topography of martensitic steel. Measurement
**2019**, 138, 590–601. [Google Scholar] [CrossRef] - Mezari, R.A.; Pereira, R.S.F.; Sousa, F.J.P.; Weingaertner, W.L.; Fredel, M.C. Wear mechanism and morphologic space in ceramic honing process. Wear
**2016**, 362–363, 33–38. [Google Scholar] [CrossRef] - Whitehouse, D.J. Beta functions for surface typologie? Ann. CIRP
**1978**, 27, 491–495. [Google Scholar] - Pawlus, P.; Reizer, R.; Wieczorowski, M. Characterization of the shape of height distribution of two-process profile. Measurement
**2020**, 153, 107387. [Google Scholar] [CrossRef] - Pawlus, P.; Reizer, R.; Żelasko, W. Prediction of parameters of equivalent sum rough surfaces. Materials
**2020**, 13, 4898. [Google Scholar] [CrossRef] - Campbell, J.C. Cylinder bore surface roughness in internal combustion engines: Its appreciations and control. Wear
**1972**, 19, 163–168. [Google Scholar] [CrossRef] - Pawlus, P. A study on the functional properties of honed cylinders surface during running-in. Wear
**1994**, 176, 247–254. [Google Scholar] [CrossRef] - Belhadjamor, M.; Belghith, S.; Mezlini, S.; El Mansori, M. Numerical study of normal contact stiffness, non-Gaussian roughness and elastic contact behavior. Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol.
**2020**, 234, 1368–1380. [Google Scholar] [CrossRef] - Zhan, W.; Huang, P. Modeling tangential contact based on non-Gaussian rough surfaces. Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol.
**2019**, 233, 51–60. [Google Scholar] [CrossRef] - Jeng, Y.-R.; Peng, S.-R. Elastic-Plastic Contact Behavior Considering Asperity Interactions for Surfaces with Various Height Distributions. J. Tribol.
**2006**, 128, 245–251. [Google Scholar] [CrossRef] - Chang, L.; Jeng, Y.-R. Effects of negative skewness of surface roughness on the contact and lubrication of nominally flat metallic surfaces. Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol.
**2012**, 227, 559–569. [Google Scholar] [CrossRef] - Dzierwa, A. Influence of surface preparation on surface topography and tribological behaviours. Arch. Civ. Mech. Eng.
**2017**, 17, 502–510. [Google Scholar] [CrossRef] - Dzierwa, A.; Pawlus, P.; Zelasko, W. The influence of disc surface topography after vapour blasting on friction and wear of sliding pairs under dry friction conditions. Coatings
**2020**, 10, 102. [Google Scholar] [CrossRef] [Green Version] - Gu, H.; Jiao, L.; Yan, P.; Liang, J.; Qiu, T.; Liu, Z.; Wang, X. Effect of machined surface texture on fretting crack nucleation under radial loading in conformal contact. Tribol. Int.
**2021**, 153, 106575. [Google Scholar] [CrossRef] - Etsion, I. State of the art in laser surface texturing. J. Tribol. ASME
**2005**, 127, 248–253. [Google Scholar] [CrossRef] - Gachot, C.; Rosenkranz, A.; Hsu, S.M.; Costa, H.L. A critical assessment of surface texturing for friction and wear improvement. Wear
**2017**, 372–373, 21–41. [Google Scholar] [CrossRef] - Rosenkranz, A.; Grützmacher, P.G.; Gachot, C.; Costa, H.L. Surface Texturing in Machine Elements—A Critical Discussion for Rolling and Sliding Contacts. Adv. Eng. Mater.
**2019**, 21, 1900194. [Google Scholar] [CrossRef] - Wang, X.; Shi, L.; Dai, Q.; Huang, W.; Wang, X. Multi-objective optimization on dimple shapes for gas face seals. Tribol. Int.
**2018**, 123, 216–223. [Google Scholar] [CrossRef] - Adjemout, M.; Andrieux, A.; Bouyer, J.; Brunetière, N.; Marcos, G.; Czerwiec, T. Influence of the real dimple shape on the performance of a textured mechanical seal. Tribol. Int.
**2017**, 115, 409–416. [Google Scholar] [CrossRef] - Sharma, S.; Jamwal, G.; Awasthi, R.K. Enhancement of steady state performance of hydrodynamic journal bearing using chevron-shaped surface texture. Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol.
**2019**, 233, 1833–1843. [Google Scholar] [CrossRef] - Jamwal, G.; Sharma, S.; Awasthi, R.K. The dynamic performance analysis of chevron shape textured hydrodynamic bearings. Ind. Lubr. Tribol.
**2019**, 72, 1–8. [Google Scholar] [CrossRef] - Morris, N.; Rahmani, R.; Rahnejat, H.; King, P.D.; Howell-Smith, S. A Numerical Model to Study the Role of Surface Textures at Top Dead Center Reversal in the Piston Ring to Cylinder Liner Contact. J. Tribol.
**2016**, 138, 021703. [Google Scholar] [CrossRef] [Green Version] - Galda, L.; Dzierwa, A.; Sep, J.; Pawlus, P. The effect of oil pockets shape and distribution on seizure resistance in lubricated sliding. Tribol. Lett.
**2010**, 37, 301–311. [Google Scholar] [CrossRef] - Wos, S.; Koszela, W.; Pawlus, P. Tribological behaviours of textured surfaces under conformal and non-conformal starved lubricated contact conditions. Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol.
**2015**, 229, 398–409. [Google Scholar] [CrossRef] - Grabon, W.; Pawlus, P.; Koszela, W.; Reizer, R. Proposals of methods of oil capacity calculation. Tribol. Int.
**2014**, 75, 117–122. [Google Scholar] [CrossRef] - Fecske, S.K.; Gkagkas, K.; Gachot, C.; Vernes, A. Interdependence of Amplitude Roughness Parameters on Rough Gaussian Surfaces. Tribol. Lett.
**2020**, 68, 43. [Google Scholar] [CrossRef] - Bendat, J.S.; Piersol, A.G. Measurement and Analysis of Random Data; John Wiley and Sons: Hoboken, NJ, USA, 1967. [Google Scholar]
- Agarwal, R.A.; Patki, G.S.; Basu, S. An analysis of surface profiles for stationarity and ergodicity. Precis. Eng.
**1979**, 1, 159–165. [Google Scholar] [CrossRef] - Dong, W.P.; Sullivan, P.J.; Stout, K.J. Comprehensive study of parameters for characterizing three-dimensional surface topography II: Statistical properties of parameters variations. Wear
**1993**, 167, 9–21. [Google Scholar] [CrossRef] - Dong, W.P.; Sullivan, P.J.; Stout, K.J. Comprehensive study of parameters for characterizing three-dimensional surface topography IV: Parameters for characterising spatial and hybrid properties. Wear
**1994**, 178, 45–60. [Google Scholar] [CrossRef] - Peklenik, J.; Kubo, M. A Basic Study of a Three-Dimensional Assessment of the Surface Generated in a Manufacturing Process. Ann. CIRP
**1968**, 16, 257–265. [Google Scholar] - Boudreau, B.D.; Raja, J. Analysis of lay characteristics of three-dimensional surface maps. Int. J. Mach Tools Manufact.
**1992**, 32, 171–177. [Google Scholar] [CrossRef] - Kubo, M.; Peklenik, J. An Analysis of Micro-Geometrical Isotropy for Random Surfaces. Ann. CIRP
**1968**, 16, 235–242. [Google Scholar] - Tanimura, Y.; Teague, E.C.; Scire, F.E.; Young, R.D.; Vorburger, T.V. Graphical Signatures for Manufactured Surfaces. J. Lubr. Technol.
**1982**, 104, 533–537. [Google Scholar] [CrossRef] - Pawlus, P.; Reizer, R.; Wieczorowski, M. The analysis of directionality of honed cylinder liners surfaces. Scanning
**2014**, 36, 95–104. [Google Scholar] [CrossRef] [PubMed] - Biboulet, N.; Bouassida, H.; Lubrecht, A.A. Cross hatched texture influence on the load carrying capacity of oil control rings. Tribol. Int.
**2015**, 82, 12–19. [Google Scholar] [CrossRef] - Ma, W.; Biboulet, N.; Lubrecht, A.A. Cross-hatched groove influence on the load carrying capacity of parallel surfaces with random roughness. Tribol. Int.
**2021**, 153, 106610. [Google Scholar] [CrossRef] - Pawlus, P. Effects of honed cylinder surface topography on the wear of piston-piston ring-cylinder assemblies under artificially increased dustiness conditions. Tribol. Int.
**1993**, 26, 49–55. [Google Scholar] [CrossRef] - Putignano, C.; Parente, G.; Profito, F.J.; Gaudiuso, C.; Ancona, A.; Carbone, G. Laser Microtextured Surfaces for Friction Reduction: Does the Pattern Matter? Materials
**2020**, 13, 4915. [Google Scholar] [CrossRef] - Blunt, L.; Xiao, S. The use of surface segmentation methods to characterize laser zone surface structure on hard disc drives. Wear
**2011**, 271, 604–609. [Google Scholar] [CrossRef] - Whitehouse, D.J.; Philips, M.J. Discrete properties of random surfaces. Philos. Trans. R. Soc. A
**1978**, 290, 267–298. [Google Scholar] - Watson, W.; Spedding, T.A. The time series modelling of non-Gaussian engineering processes. Wear
**1992**, 83, 215–231. [Google Scholar] [CrossRef] - Bakolas, V. Numerical generation of arbitrary oriented non-Gaussian three-dimensional rough surfaces. Wear
**2003**, 254, 546–554. [Google Scholar] [CrossRef] - Reizer, R.; Pawlus, P. Modelling of plateau honed cylinder surface topography. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf.
**2012**, 226, 1564–1578. [Google Scholar] [CrossRef] - Wu, J.-J. Simulation of non-Gaussian surfaces with FFT. Tribol. Int.
**2004**, 37, 339–346. [Google Scholar] [CrossRef] - Wang, Y.; Liu, Y.; Zhang, G.; Wang, Y. A Simulation Method for Non-Gaussian Rough Surfaces Using Fast Fourier Transform and Translation Process Theory. J. Tribol.
**2018**, 140, 021403. [Google Scholar] [CrossRef] - Wang, T.; Wang, L.; Zheng, D.; Zhao, X.; Gu, L. Numerical Simulation Method of Rough Surfaces Based on Random Switching System. J. Tribol.
**2015**, 137, 021403. [Google Scholar] [CrossRef] - Hu, S.; Brunetiere, N.; Huang, W.; Liu, X.; Wang, Y. Bi-Gaussian surface identification and reconstruction with revised autocorrelation functions. Tribol. Int.
**2017**, 110, 185–194. [Google Scholar] [CrossRef] - Hirst, W.; Hollander, A.E. Surface finish and damage in sliding. Proc. R. Soc. Lond. A
**1974**, 337, 379–394. [Google Scholar] - Wu, C.; Zheng, L. Effect of waviness and roughness on lubricated wear related to running-in. Wear
**1991**, 147, 323–334. [Google Scholar] - Prajapati, D.K.; Tiwari, M. Assessment of topography parameters during running-in and subsequent rolling contact fatigue tests. J. Tribol.
**2019**, 141, 051401. [Google Scholar] [CrossRef] - Ardi, D.T.; Li, Y.G.; Chan, K.H.K.; Blunt, L.; Bache, M.R. Surface topography and the impact on fatigue performance. Surf. Topogr. Metrol. Prop.
**2015**, 3, 015007. [Google Scholar] [CrossRef] - Bush, A.W.; Gibson, R.D.; Keogh, G.P. Strongly anisotropic rough surfaces. ASME J. Lubr. Technol.
**1979**, 101, 15–20. [Google Scholar] [CrossRef] - Wu, C.; Zheng, L. A general expression for plasticity index. Wear
**1988**, 121, 161–172. [Google Scholar] [CrossRef] - Kang, C.; Pelow, C.; Witham, L. Analysis of changes in 3D surface texture anisotropy ratio parameter and friction during sheet rolling campaigns. In Proceedings of the 10th International Conference on Metrology and Properties of Engineering Surfaces, Saint-Etienne, France, 4–7 July 2005; pp. 245–254. [Google Scholar]
- Patir, N.; Cheng, H.S. An average flow model for determining effects of threedimensional roughness on partial hydrodynamic lubrication. Trans. ASME
**1978**, 100, 12–17. [Google Scholar] - Patir, N.; Cheng, H.S. Application of average flow model to lubrication between rough sliding surfaces. ASME J. Lubr. Technol.
**1979**, 101, 220–230. [Google Scholar] [CrossRef] - Kumar, R.; Azam, M.S. Effect of directionally oriented random roughness on performance of a Rayleigh step bearing operating under Mixed-Elastohydrodynamic Lubrication. Tribol. Int.
**2021**, 153, 106572. [Google Scholar] [CrossRef] - Rasheed, H.E. Effect of surface waviness on the hydrodynamic lubrication of a plain cylindrical sliding element bearing. Wear
**1998**, 223, 1–6. [Google Scholar] [CrossRef] - Moronuki, N.; Furukawa, Y. Frictional properties of the micro-textured surface of anisotropically etched silicon. CIRP Ann. Manuf. Technol.
**2003**, 52, 471–474. [Google Scholar] [CrossRef] - Pettersson, U.; Jacobson, S. Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding. Tribol. Lett.
**2004**, 17, 553–559. [Google Scholar] [CrossRef] - Yuan, S.; Huang, W.; Wang, X. Orientation effects of micro-grooves on sliding surfaces. Tribol. Int.
**2011**, 44, 1047–1054. [Google Scholar] [CrossRef] - Zum Gahr, K.H.; Wahl, R.; Wauthier, K. Experimental study of the effect of microtexturing on oil lubricated ceramic/steel friction pairs. Wear
**2009**, 267, 1241–1251. [Google Scholar] [CrossRef] - Qiu, M.; Deli, A.; Raeymaekers, B. The Effect of Texture Shape on the Load-Carrying Capacity of Gas-Lubricated Parallel Slider Bearings. Tribol. Lett.
**2012**, 48, 315–327. [Google Scholar] [CrossRef] - Vladescu, S.; Olver, A.; Pegg, G.; Reddyhoff, T. The effects of surface texture in reciprocating contacts—An experimental study. Tribol. Int.
**2015**, 82, 28–42. [Google Scholar] [CrossRef] [Green Version] - Lu, X.; Khonsari, M. An experimental investigation of dimple effect on the stribeck curve of journal bearings. Tribol. Lett.
**2007**, 27, 169–176. [Google Scholar] [CrossRef] - Xu, Y.; Zheng, Q.; Abuflaha, R.; Olson, D.; Furlong, O.; You, T.; Zhang, Q.; Hu, X.; Tysoe, W. Influence of dimple shape on tribofilm formation and tribological properties of textured surfaces under full and starved lubrication. Tribol. Int.
**2019**, 136, 267–275. [Google Scholar] [CrossRef] - Yu, H.; Deng, H.; Huang, W.; Wang, X. The effect of dimple shapes on friction of parallel surfaces. Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol.
**2011**, 225, 693–703. [Google Scholar] [CrossRef] - Bolander, N.W.; Sadeghi, H. Deterministic modeling of honed cylinder liner friction. Tribol. Trans.
**2007**, 50, 248–256. [Google Scholar] [CrossRef] - Michail, S.K.; Barber, G.C. The effects of roughness on piston ring lubrication—Part II: The relationship between cylinder wall surface topography and oil film thickness. Tribol. Trans.
**1995**, 38, 173–177. [Google Scholar] [CrossRef] - Jocsak, J.; Li, Y.; Tian, T.; Wong, V.W. Analyzing the effects of three-dimensional cylinder liner surface texture on ring-pack performance with a focus on honing groove cross-hatch angle. In Proceedings of the ASME 2005 Internal Combustion Engine Division Fall Technical Conference: American Society of Mechanical Engineers, Ottawa, Canada, 11–14 September 2005; pp. 621–632. [Google Scholar]
- Spencer, A.; Almqvist, A.; Larsson, R. A numerical model to investigate the effect of honing angle on the hydrodynamic lubrication between a combustion engine piston ring and cylinder liner. Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol.
**2011**, 225, 683–689. [Google Scholar] [CrossRef] [Green Version] - Grabon, W.; Pawlus, P.; Wos, S.; Koszela, W.; Wieczorowski, W. Effects of honed cylinder liner surface texture on tribological properties of piston ring-liner assembly in short time tests. Tribol. Int.
**2017**, 113, 137–148. [Google Scholar] [CrossRef] - Greenwood, J.A. A unified theory of surface roughness. Proc. Roy. Soc. Lond. A
**1984**, 393, 133–157. [Google Scholar] - Sayles, R.S.; Thomas, T.R. Measurements of the statistical properties of engineering surfaces. Trans. ASME J. Lubr. Technol.
**1979**, 101, 409–417. [Google Scholar] [CrossRef] - Scott, P.J. An algorithm to extract critical points from lattice height data. Int. J. Mach. Tool. Manu.
**2001**, 41, 1889–1897. [Google Scholar] [CrossRef] - Hariri, A.; Zu, J.W.; Ben Mrad, R. Modeling of elastic/plastic contact between nominally flat rough surfaces using an n-point asperity model. ASME J. Tribol.
**2006**, 128, 876–885. [Google Scholar] [CrossRef] - Senin, N.; Blunt, L.; Leach, R.; Pini, S. Morphologic segmentation algorithms for extracting individual surface features from areal surface topography maps orphologic segmentation algorithms for extracting individual surface features from areal surface topography maps. Surf. Topogr. Metrol. Prop.
**2013**, 1, 015005. [Google Scholar] [CrossRef] - Czifra, A.; Barányi, I. Sdq-Sdr Topological Map of Surface Topographies. Front. Mech. Eng.
**2020**, 6, 50. [Google Scholar] [CrossRef] - Li, C.-G.; Dong, S.; Zhang, G.-X. Evaluation of the anisotropy of machined 3D surface topography. Wear
**2000**, 237, 211–216. [Google Scholar] [CrossRef] - Chetwynd, D.G. Slope measurement in surface texture analysis. J. Mech. Eng. Sci.
**1978**, 20, 115–119. [Google Scholar] [CrossRef] - Pawlus, P. An analysis of slope of surface topography. Metrol. Meas. Syst.
**2005**, 12, 295–313. [Google Scholar] - Lu, S.; Gao, Y.; Xie, T.; Xie, F.; Jiang, X.Q.; Li, Z.; Wang, F. Novel contact/non contact hybrid measurement system for surface topography characterisation. Int. J. Mach. Tool. Manu.
**2001**, 41, 2001–2009. [Google Scholar] [CrossRef] - Mainsah, E.; Greenwood, J.A.; Chetwynd, D.G. Metrology and Properties of Engineering Surfaces; Springer Science+Business Media B.V.: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Ohlsson, R.; Wihlborg, A.; Westberg, H. The accuracy of fast 3D topography measurement. Int. J. Mach. Tool. Manu.
**2001**, 41, 1899–1907. [Google Scholar] [CrossRef] - Thomas, T.R. Characterisation of surface roughness. Precis. Eng.
**1981**, 3, 87–96. [Google Scholar] [CrossRef] - Torrance, A.A. Using profilometry for the quantitative assessment of surface function: PC based software for friction and wear prediction. Wear
**1995**, 181–183, 397–404. [Google Scholar] [CrossRef] - Elwasli, F.; Mzali, S.; Zemzemi, F.; Mkaddem, A.; Mezlini, S. Effects of initial surface topography and contact regimes on tribological behavior of AISI-52100/AA5083 materials’ pair when reciprocating sliding. Int. J. Mech. Sci.
**2018**, 137, 271–283. [Google Scholar] [CrossRef] - Berglund, J.; Brown, C.A.; Rosen, B.-G.; Bay, N. Milled die steel surface roughness correlation with steel sheet friction. CIRP Ann.
**2010**, 59, 577–580. [Google Scholar] [CrossRef] - Childs, T.H. Dry and boundary lubricated sliding friction and wear for engine component materials. In Engine Tribology; Taylor, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 1993; pp. 51–74. [Google Scholar]
- Mikić, B. Thermal contact conductance; theoretical considerations. Int. J. Heat Mass Transf.
**1974**, 17, 205–214. [Google Scholar] [CrossRef] - Greenwood, J.A. Contact Pressure Fluctuations. Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol.
**1996**, 210, 281–284. [Google Scholar] [CrossRef] - Blateyron, F. The areal field parameters. Chapter 2. In Characterisation of Areal Surface Texture; Leach, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Pagani, L.; Qi, Q.; Jiang, X.; Scott, P.J. Towards a new defnition of areal surface texture parameters on freeform surface. Measurement
**2017**, 109, 281–291. [Google Scholar] [CrossRef] - Townsend, A.; Pagani, L.; Scott, P.J.; Blunt, L. Introduction of a Surface Characterization Parameter Sdr prime for Analysis of Re-entrant Features. J. Nondestruct. Eval.
**2019**, 38, 58. [Google Scholar] [CrossRef] [Green Version] - Zielecki, W.; Pawlus, P.; Perłowski, R.; Dzierwa, A. Surface topography effect on strength of lap adhesive joints after mechanical pre-treatment. Arch. Civ. Mech. Eng.
**2013**, 13, 175–185. [Google Scholar] [CrossRef] - Van Dam, J.P.B.; Abrahami, S.T.; Yilmaz, A.; Gonzalez-Garcia, Y.; Terryn, H.; Mol, J.M.C. Effect of surface roughness and chemistry on the adhesion and durability of a steel-epoxy adhesive interface. Int. J. Adhes. Adhes.
**2019**, 96, 102450. [Google Scholar] [CrossRef] - Zheng, R.; Lin, J.; Wang, P.-C.; Wu, Y. Correlation between surface characteristics and static strength of adhesive-bonded magnesium AZ31B. Int. J. Adv. Manuf. Tech.
**2015**, 84, 1661–1670. [Google Scholar] [CrossRef] - Croll, S.G. Surface roughness profile and its effect on coating adhesion and corrosion protection: A review. Prog. Org. Coat.
**2020**, 148, 105847. [Google Scholar] [CrossRef] - Blunt, L.; Jiang, X. Numerical Parameters for Characterisation of Topography. In Advanced Techniques for Assessment Surface Topography: Development of a Basis for 3D Surface Texture Standards; Blunt, L., Jiang, X., Eds.; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Greenwood, J.A.; Tripp, J.H. The Contact of Two Nominally Flat Rough Surfaces. Proc. Inst. Mech. Eng.
**1970**, 185, 625–633. [Google Scholar] [CrossRef] - Greenwood, J.A.; Williamson, J.B.P. Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.
**1966**, 295, 300–319. [Google Scholar] - Franco, L.A.; Sinatora, A. 3D surface parameters (ISO 25178-2): Actual meaning of Spk and its relationship to Vmp. Precis. Eng.
**2015**, 40, 106–111. [Google Scholar] [CrossRef] - Nielsen, H.S. New approaches to surface roughness evaluation of special surfaces. Precis. Eng.
**1988**, 10, 209–213. [Google Scholar] [CrossRef] - Zipin, R.B. Analysis of the Rk surface roughness parameter proposals. Precis. Eng.
**1990**, 12, 106–108. [Google Scholar] [CrossRef] - Malburg, M.C.; Raja, J. Characterization of surface texture generated by plateau–honing process. CIRP Ann.
**1993**, 42, 637–640. [Google Scholar] [CrossRef] - Sannareddy, H.; Raja, J.; Chen, K. Characterization of surface texture generated by multi–process manufacture. Int. J. Mach. Tool. Manu.
**1998**, 38, 529–536. [Google Scholar] [CrossRef] - Pawlus, P.; Reizer, R.; Wieczorowski, M.; Królczyk, G. Material ratio curve as information on the state of surface topography—A review. Precis. Eng.
**2020**, 65, 240–258. [Google Scholar] [CrossRef] - Johansson, S.; Nilsson, P.H.; Ohlsson, R.; Anderberg, C.; Rosén, B.G. New cylinder liner surfaces for low oil consumption. Tribol. Int.
**2008**, 41, 854–859. [Google Scholar] [CrossRef] - Pawlus, P.; Cieslak, T.; Mathia, T. The study of cylinder liner plateau honing process. J. Mater. Proc. Tech.
**2009**, 209, 6078–6086. [Google Scholar] [CrossRef] - Hu, S.; Reddyhoff, T.; Wen, J.; Huang, W.; Shi, X.; Dini, D.; Peng, Z. Characterization and simulation of bi-Gaussian surfaces induced by material transfer and additive processes. Tribol. Int.
**2019**, 136, 31–44. [Google Scholar] [CrossRef] - Brown, C.A.; Charles, P.D.; Johnsen, W.A.; Chesters, S. Fractal analysis of topographic data by the patchwork method. Wear
**1993**, 161, 61–67. [Google Scholar] [CrossRef] - Brown, C.A.; Johnsen, W.A.; Butland, R.M.; Bryan, J. Scale-Sensitive Fractal Analysis of Turned Surfaces. CIRP Ann. Manu. Tech.
**1996**, 45, 515–518. [Google Scholar] [CrossRef] - Brown, C.A.; Siegmann, S. Fundamental scales of adhesion and area-scale fractal analysis. Int. J. Mach. Tool. Manu.
**2001**, 41, 1927–1933. [Google Scholar] [CrossRef] - Russ, J.C. Fractal Surfaces; Plenum Press: New York, NY, USA, 1994. [Google Scholar]
- Sayles, R.; Thomas, T.R. Surface topography as a non-stationary random process. Nature
**1978**, 271, 431–434. [Google Scholar] [CrossRef] - Majumdar, A.; Bhushan, B. Role of fractal geometry in roughness characterisation and contact mechanics of surfaces. J. Trib.
**1990**, 112, 205–216. [Google Scholar] [CrossRef] - Whitehouse, D.J. Fractals or fiction. Wear
**2001**, 249, 345–353. [Google Scholar] [CrossRef] - Zhang, X.; Xu, Y.; Jackson, R.L. An analysis of generated fractal and measured rough surfaces in regards to their multi-scale structure and fractal dimension. Tribol. Int.
**2017**, 105, 94–101. [Google Scholar] [CrossRef] - Müser, M.H.; Dapp, W.B.; Bugnicourt, R.; Robbins, M.O.; Greenwood, J.A. Meeting the Contact-Mechanics Challenge. Tribol. Lett.
**2017**, 65, 118. [Google Scholar] [CrossRef] [Green Version] - Hanaor, D.A.H.; Gan, Y.; Einav, I. Contact mechanics of fractal surfaces by spline assisted discretization. Int. J. Solids Struct.
**2015**, 59, 121–131. [Google Scholar] [CrossRef] - Hanaor, D.A.; Gan, Y.; Einav, I. Static friction at fractal interfaces. Tribol. Int.
**2016**, 93, 229–238. [Google Scholar] [CrossRef] - Goedecke, A.; Jackson, R.L.; Mock, R. A fractal expansion of a three dimensional elastic–plastic multi-scale rough surface contact model. Tribol. Int.
**2013**, 59, 230–239. [Google Scholar] [CrossRef] - Zhou, G.; Leu, M.C.; Blackmore, D. Fractal geometry model for wear prediction. Wear
**1993**, 170, 1–14. [Google Scholar] [CrossRef] - Zhou, G.; Leu, M.C.; Blackmore, D. Fractal geometry modelling with application in surface characterisation and wear prediction. Int. J. Mach. Tool. Manu.
**1995**, 35, 203–209. [Google Scholar] [CrossRef] - Rosen, B.-G.; Ohlsson, R.; Thomas, T.R. Nano metrology of cylinder bore wear. In Proceedings of the 7th International Conference on Metrology and Properties of Engineering Surfaces, Gothenburg, Sweden, 2–4 April 1997; pp. 102–110. [Google Scholar]
- Shirong, G.; Gouan, C. Fractal prediction models of sliding wear during the running-in process. Wear
**1999**, 231, 249–255. [Google Scholar] [CrossRef] - Dzierwa, A.; Reizer, R.; Pawlus, P.; Grabon, W. Variability of areal surface topography parameters due to the change in surface orientation to measurement direction. Scanning
**2014**, 36, 170–183. [Google Scholar] [CrossRef] [PubMed] - Blateyron, F. The areal feature parameters. Chapter 3 In Characterisation of Areal Surface Texture; Leach, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Hao, Q.; Bianchi, D.; Kaestner, M.; Reithmeier, E. Feature based characterization of worn surfaces for a sliding test. Tribol. Int.
**2010**, 43, 1186–1192. [Google Scholar] [CrossRef] - Tian, Y.; Wang, J.; Peng, Z.; Jiang, X. A new approach to numerical characterisation of wear particle surfaces in three-dimensions for wear study. Wear
**2012**, 282–283, 59–68. [Google Scholar] [CrossRef] [Green Version] - Ye, R.; Jiang, X.; Blunt, L.; Cui, C.; Yu, Q. The application of 3D-motif analysis to characterize diamond grinding wheel topography. Measurement
**2016**, 77, 73–79. [Google Scholar] [CrossRef] - Ismail, M.F.; Yanagi, K.; Isobe, H. Characterization of geometrical properties of electroplated diamond tools and estimation of its grinding performance. Wear
**2011**, 271, 559–564. [Google Scholar] [CrossRef] - Wang, J.; Jiang, X.; Gurdak, E.; Scott, P.; Leach, R.; Tomlins, P.; Blunt, L. Numerical characterisation of biomedical titanium surface texture using novel feature parameters. Wear
**2011**, 271, 1059–1065. [Google Scholar] [CrossRef] [Green Version] - Lou, S.; Pagani, L.; Zeng, W.; Jiang, X.; Scott, P.J. Watershed segmentation of topographical features on freeform surfaces and its application to additively manufactured surfaces. Precis. Eng.
**2020**, 63, 177–186. [Google Scholar] [CrossRef] - Wolf, G.W. Surfaces -Topography and topology. Surf. Topogr. Metrol. Prop.
**2020**, 8, 014003. [Google Scholar] [CrossRef] [Green Version] - Wolf, G.W. Scale independent surface characterisation: Geography meets precision surface metrology. Precis. Eng.
**2017**, 49, 456–480. [Google Scholar] [CrossRef] - Jiang, X.; Senin, N.; Scott, P.; Blateyron, F. Feature-based characterisation of surface topography and its application. CIRP Ann. Manuf. Technol.
**2021**, 70, 681–702. [Google Scholar] [CrossRef] - Zabala, A.; Blunt, L.; Aginagalde, A.; Llavori, I.; Tato, W. Development of a novel method to characterize mean surface peak curvature as a signature of tribological performance of dental implant surfaces. Surf. Topogr. Metrol. Prop.
**2020**, 8, 024001. [Google Scholar] [CrossRef]

**Figure 5.**Effects of the smooth surface (

**a**) and of the rough surface (

**b**) on tribological performance during lubrication.

**Figure 8.**Colour-coded plots of the surface after vapour blasting (

**a**), grinding (

**b**), and honing (

**c**).

**Figure 9.**Autocorrelation functions of the surface shown in Figure 8.

**Figure 10.**Angular spectra of the surface shown in Figure 8.

**Figure 11.**Isometric views of textures modeled by authors described by the Sq parameter of 1 µm and correlation length of 50 (

**a**) and 100 µm (

**b**).

**Figure 12.**Orientations of rough surface to the movement directions, after [120]. (

**a**) surfaces oriented longitudinally, (

**b**) isotropic surfaces, (

**c**) surfaces oriented transversely.

**Figure 13.**Various methods of identification of summits, on the basis of four (

**a**) and eight neighbouring points (

**b**).

**Figure 14.**Modeled by authors Gaussian random surfaces with the parameters charactering them (description in text).

**Figure 15.**Colour-coded plot of plateau-honed surface (

**a**), material ratio curve with parameters from Sk group (

**b**), V group (

**c**), and Sq group (

**d**).

**Figure 18.**Contour map with critical points and lines (

**a**), change tree with peaks (P), pits (V), and saddle points (S) (

**b**), after [11].

Type of Parameters | Examples | Functional Importance |
---|---|---|

Amplitude | Sa, Sq, Sz, Sp, Sv | Surface contact, lubrication, friction, wear, fatigue, technical control of manufacturing |

Characterising the shape of the height distribution | Ssk, Sku, Sp/Sz, Sq/Sa | Surface contact, friction, wear |

Spatial | Sal, Str | Lubrication, friction |

Hybrid | Sdq, Sdr | Surface contact, friction, wear, ability to adhesive junctions, sealing, and cosmetic appearance |

Related to material ratio curve | Sk, Spk, Svk, Sr1, Sr2, Spq, Svk, Smq, Vvv, Vmp, Vmc, Vvc, Smc, Smr, Sxp | Wear, friction, oil capacity, low wear assessment, technical control of manufacturing |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pawlus, P.; Reizer, R.; Wieczorowski, M.
Functional Importance of Surface Texture Parameters. *Materials* **2021**, *14*, 5326.
https://doi.org/10.3390/ma14185326

**AMA Style**

Pawlus P, Reizer R, Wieczorowski M.
Functional Importance of Surface Texture Parameters. *Materials*. 2021; 14(18):5326.
https://doi.org/10.3390/ma14185326

**Chicago/Turabian Style**

Pawlus, Pawel, Rafal Reizer, and Michal Wieczorowski.
2021. "Functional Importance of Surface Texture Parameters" *Materials* 14, no. 18: 5326.
https://doi.org/10.3390/ma14185326