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Abstract: Recently, the frequency of use of bone substitute materials for the purpose of bone augmen-
tation has increased in implant treatment, but bone formation with bone substitute materials alone is
limited. Calcification of bone in the body progresses as Ca2+, H2PO4-, and HPO4

2- in the body form
hydroxyapatite (HA) crystals. In this study, therefore, we prepared a biphasic bone substitute with
biological activity to promote bone formation by inducing precipitation and growth of HA crystals
on the surface of a bone substitute and evaluated it. Biphasic bone substitute granules were prepared
by immersing HA granules in a supersaturated calcium phosphate solution prepared by mixing five
medical infusion solutions, the precipitate was analyzed, and the biological activities of biphasic
HA granules were evaluated in vitro and in vivo. As a result, the precipitated calcium phosphate
crystals were identified as low crystalline HA. On the surface of the HA granules, low-crystalline
HA grew markedly as needle-shaped crystals and significantly promoted cell proliferation and
bone differentiation. In animal experiments, biphasic HA granules had a significantly higher bone
mineral density, new bone volume ratio, and new bone area ratio. Therefore, it suggests that biphasic
hydroxyapatite is a useful bone substitute for bone augmentation in dental implant treatment.

Keywords: biphasic hydroxyapatite; low crystalline hydroxyapatite; supersaturated calcium phos-
phate solution

1. Introduction

Dental implant therapy combined with bone augmentation is becoming prevalent [1–3].
Bone graft materials used for bone augmentation include autologous bone, allogeneic bone,
xenogeneic bone, and synthetic apatite, but autologous bone is considered to be the best
bone graft material because it has osteogenic, osteoinductive, and osteoconductive prop-
erties [4]. However, there are problems such as the necessity of new surgical invasion for
harvesting autologous bone with associated pain and complications including postopera-
tive infection as well as the limited availability of autologous bone and bone resorption
after grafting [5–8]. For these reasons, various bone substitutes have been developed and
marketed. In dental implant therapy, allogenic bone, calcined bovine bone, or various
synthetic materials such as hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have
been used clinically.

In the body, calcification occurs as HA crystals formed from Ca, P, and hydroxide
ions are deposited on collagen fibers. Moreover, crystallization of HA progresses as Ca2+,
H2PO4−, and HPO4

2− form the base of HA crystals due to the interaction of phospholipids
in matrix vesicles, are ionically bonded in matrix vesicles, and grow as mineralized nodules
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through repeated precipitation; this mechanism is involved in bone calcification [9]. HA
is a major inorganic component of human bones and teeth. A large number of studies of
synthetic HA have clarified its biological behavior in the body, and it has been shown to
have excellent biocompatibility, have biological activities and osteoconductivity to promote
bone growth, and directly bind to bone without mediation by fibrous tissue in bone [10].
For these reasons, synthetic HA has been used clinically as a bone substitute for repair of
bone defects for more than 25 years [11]. However, new bone formation has been limited
with HA alone because of the lack of osteogenicity and osteoinductivity.

To reproduce calcification in the body, i.e., apatite formation, in vitro, simulated
body fluid (SBF) with ion concentrations and pH equal to those in human plasma was
developed [12]. When bioactive glass (Na2O–CaO–SiO2–P2O5), which has been applied
to basic research and clinical practice as a ceramic bioactive material for a long time is
immersed in SBF, an apatite layer consisting of Ca and P contained in SBF is formed on
the surface of the material [13–16]. Therefore, SBF has been used for in vitro evaluation
of in vivo biological activities of bone and bone-bonding ability [17]. However, as the
amounts of Ca and P in SBF are fixed, the amount of apatite that precipitates is limited.
However, Oyane et al. [18]. developed a technique to form an apatite layer on the surface
of materials using a supersaturated calcium phosphate solution prepared using amorphous
calcium phosphate, which is an apatite precursor, by mixing common medical infusion
solutions, such as dipotassium phosphate and Ringer’s solutions, and adjusting the Ca/P
ratio close to 1.67. In addition, Mutsuzaki et al. reported that bone-fixation titanium
screws can be more firmly fixed to bone by immersing them in a supersaturated calcium
phosphate solution obtained by mixing five medical infusion solutions [19]. Furthermore,
in recent years, clinical studies have been conducted to show the safety and efficacy of
supersaturated calcium phosphate solutions [20].

Therefore, we considered that an apatite layer that promotes bone regeneration could
be efficiently precipitated in a short time, and focused on a supersaturated calcium phos-
phate solution. In this study, we prepared biphasic HA granules by having an apatite layer
deposited on the surface or in the pores of HA granules and evaluated their biological
activities to promote new bone formation in vitro and in vivo.

2. Materials and Methods
2.1. Preparation of Supersaturated Calcium Phosphate Solution

Supersaturated calcium phosphate solution was prepared according to the report of
Mutsuzaki et al. [19] by mixing five medical infusion solutions. Two calcium-containing
solutions (4.5 mM Ca2+), i.e., calcium chloride corrective injection (Otsuka Pharmaceu-
tical Co., Ltd., Tokyo, Japan) and Ringer’s solution (Otsuka Pharmaceutical Co., Ltd.,
Tokyo, Japan), were mixed, two phosphorus-containing solutions (20 mM PO4

3−), i.e.,
sodium phosphate corrective solution (Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan)
and Klinisalz® infusion solution (Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan), were
mixed, and Meylon® 7% injection solution, which is a sodium hydrogen carbonate injection
solution for alkalinization (Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan), was added.
Table 1 shows the composition of each medical infusion solution. The supersaturated
calcium phosphate solution was prepared by mixing these five medical infusion solutions
at a Ca/P ratio of 2.0 and a pH of 7.8 at 37 ◦C.
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Table 1. Compositions of medical infusion preparations used for the preparation of supersaturated calcium phosphate solution.

Solution
Composition

Calcium-Containing
Solution (mM)

Phosphorus-Containing
Solution (mM)

NaHCO3
Solution (mM)

Calcium-Phosphate
Solution (mM)

Ringer’s
Solution Concyte-Ca Klinisalz B Conclyte-P Meylon -

pH (37 ◦C) - - - - - 7.82
Volume (mL) 8.135 0.037 0.898 0.019 0.911 10.00

Na+ 147.00 - 45.0 - 833.00 -
K+ 4.00 - 25.0 1000.00 - 7.41

Mg2+ - - 5.00 - - -
Ca2+ 4.5 500.00 - - - 7.54
Cl− 156.00 1000.00 45.00 - - -

HP2O4
2− - - 10.00 - - -

HPO4
2− - - - 500.00 - -

HCO3
− - - - - 833.00 -

CH3COO− - - 20.00 - - -

2.2. Determination of Ca and P Concentrations in Supernatants of Supersaturated Calcium
Phosphate Solution by Absorbance Measurement

The Ca concentrations in the supernatants collected 15 min and 24, 48, and 72 h
after preparation of the supersaturated calcium phosphate solution were determined
by measuring the absorbance at 610 nm using a calcium kit (Calcium E-HA Test Wako:
FUJIFILM Wako Pure Chemical Co., Osaka, Japan), and the phosphate concentrations were
determined with a phosphate kit (Piblue Phosphsate Assay Kit: Funakoshi Co., Ltd., Tokyo,
Japan) using a microplate reader (Bio-Rad Model 680; Bio-Rad Laboratories, Inc., Hercules,
CA, USA) by measuring the absorbance at 620 nm (n = 4).

2.3. Morphological Observation of Precipitates

The surface properties of the precipitates that deposited after preparation of the super-
saturated calcium phosphate solution were observed serially under a scanning electron
microscope (SEM: S-900, Hitachi High-Tech Co., Tokyo, Japan).

2.4. X-ray Diffraction Analysis and Fourier Transform Infrared Spectrophotometry of HA Granules
and Precipitates

HA (APACERAM-AX®: HOYA Technosurgical, Tokyo, Japan) granules and precipi-
tates were collected 72 h after preparation of the supersaturated calcium phosphate solution,
allowed to dry, and the crystallinity was analyzed by X-ray diffraction analysis (X-ray
diffraction: XRD, XRD-6100, Shimadzu, Kyoto, Japan). In addition, the molecular struc-
ture was determined by Fourier transform infrared spectroscopy (FT–IR, IRAffinity-1S,
Shimadzu, Kyoto, Japan) for qualitative analysis and identification of the precipitates.

2.5. Preparation of Biphasic Bone Substitute Granules

The bone substitute granules used in this study were HA. Biphasic HA granules
were prepared by immersing HA granules (0.1 g) in 3.0 mL of the supersaturated calcium
phosphate solution for 24, 48, and 72 h and leaving them to stand in an incubator at 37 ◦C.

2.6. Observation of Biphasic Bone Substitute Granules

The morphology of biphasic HA granules was examined under a stereoscopic micro-
scope (Axio Zoom, Carl Zeiss Microscopy Ltd., Cambridge, England), and their surface
properties were observed under SEM.

2.7. Cell Culturing

The osteoblast-like cell strain MC3T3-E1 (Riken cell bank, Tsukuba, Japan) was cul-
tured in the culture media α-MEM (Nacalai tesque INC., Kyoto, Japan) supplemented with
10% Fetal bovine serum (FBS; Biowest, Nuaillé, France) and 1% penicillin-streptomycin (Life
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Technologies Japan Ltd., Tokyo, Japan) at 37 ◦C in a 5% CO2 atmosphere in a 75 cm2 flask
(Corning Inc., St Lawrense, NY, USA). The culture media were renewed every three days.

2.8. Cytotoxicity Testing

A total of 500 µL of α-MEM medium retained MC3T3-E1 cells (5.0 × 104 cell/well)
were seeded on a 24-well plate (Cosmo Bio Co., Ltd., Tokyo, Japan), and 2.0 mL of α-MEM
medium was added. Then, HA granules and biphasic HA granules (0.05 g each) were
placed in an Intercell (Cosmo Bio Co., Ltd., Tokyo, Japan), and cell culturing was initiated.
The culture medium was renewed every three days, and the cytotoxicity of biphasic HA
granules was evaluated according to cell proliferation after one, three, five, and seven days
with a MTT Cell Viability Assay Kit (Biotium Inc., Fremont, CA, USA) using a microplate
reader by measuring the absorbance at 590 nm (n = 4).

2.9. Cell Differentiation Testing

Three days after seeding of MC3T3-E1 (1.0 × 103 cells/mL) to a 24-well plate, the
cells were transferred from the culture medium to a bone differentiation medium, which
was changed to α-MEM with 10% FBS supplemented with 10 mM β-glycerophosphate
(FUJIFILM Wako Pure Chemical Co., Osaka, Japan), 2.0 mM L-ascorbic acid 2-phosphate
(FUJIFILM Wako Pure Chemical Co., Osaka, Japan), and 100 nM dexamethasone (FUJI-
FILM Wako Pure Chemical Co., Osaka, Japan). Similar to the cytotoxicity testing, HA
granules and biphasic HA granules (0.05 g each) were placed in an Intercell inside a 24-well
plate, incubated at 37 ◦C, and their bone differentiation abilities after seven days were
evaluated with an ALP Assay kit (FUJIFILM Wako Pure Chemical Co., Osaka, Japan) using
a microplate reader by measuring the absorbance at 470 nm (n = 4).

2.10. Animal Experiment

The animal experiment was performed at the Research Center for Odontology, Nip-
pon Dental University School of Life Dentistry, in compliance with the Rules for Animal
Experiments, Nippon Dental University School of Life Dentistry (approval number: 19-20-2).

Five 20-week-old male New Zealand white rabbits were used for the experiment.
General anesthesia was applied by intramuscular injection of a mixture of butorphanol
tartrate (Meiji Seika Pharma Co., Ltd., Tokyo, Japan), medetomidine hydrochloride (Nippon
Zenyaku Kogyo Co., Ltd., Fukushima Japan), and midazolam (Astellas Pharma Inc, Tokyo,
Japan). After confirming the effect of anesthesia, the parietal region was shaved and
disinfected with 70% ethanol, 1.0 mL of 2% xylocaine (Dentsply Sirona Inc, Tokyo, Japan)
containing epinephrine was applied for infiltration anesthesia, the scalp was incised with a
No.15 scalpel, and the cranium was exposed by detaching the periosteum. Ensuring no
damage to the dura mater of the brain, after forming a groove with a diameter of six mm
using a bone trephin bar (Technika co., Ltd., Tokyo, Japan), a full-thickness bone defect
was formed in four holes with an ultrasonic cutting tool (PIEZO SURGERY®; Mectron spa,
Carasco, Italy) (Figure 1a). The bone defects were filled with 0.3 g of biphasic HA granules
and HA granules as a control (Figure 1b). Two holes in one rabbit were left unfilled as a
negative control.

The periosteum was given buried suture using 5-0 VICRIL® (Ethicon Inc., Johnson &
Johnson, Somerville, NJ, USA), and the skin was closed by suturing with a 5-0 nylon suture.
Four weeks after surgery, the rabbits were euthanized by inhalation of high concentration
CO2 in an airtight container. After sacrifice, the cranium was collected, fixed with 70%
ethanol, trimmed, scanned by micro-CT (TRI/3D-BON; Ratoc System Engineering, Tokyo,
Japan), and the state of new bone formation was compared.
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Figure 1. Rabbit cranium before and after filling of bone substitute granules; (a) before filling, (b) after filling.

For the measurement in microCT images, the full thickness of the cranium in an area
5 mm in diameter around the center of the defect was defined as the region of interest (ROI)
(Figure 2). The volumes of newly formed bone and HA, volume of newly formed bone
alone, and volume ratio of newly formed bone in ROI were compared between the biphasic
HA and HA groups. The extraction threshold for newly formed bone was ≥2615 mg/cm3,
and that for HA granules was ≥3,539 mg/cm3. Furthermore, bone mineral density (BMD)
was compared in BMD images. Then, undecalcified, thickness of 30–40 µm decalcified
polished samples were prepared by resin embedding and polymerization, and the area
ratio of newly formed bone was compared in Villanueva bone stain images.
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2.11. Statistical Evaluation

Statistical evaluation was performed using IBM SPSS statics software (version 25.0;
IBM Japan, Tokyo, Japan). The results of the cell culture tests were analyzed by multiple
comparisons using the Games–Howell and Tukey tests after one-way ANOVA. Moreover,
microCT BMD images were analyzed using the Mann–Whitney U-test, the volume ratio of
newly formed bone was analyzed by the t-test, and area ratio of newly formed bone based
on histological examination was analyzed by Wilcoxon’s signed rank test because the data
of area ratio of newly formed bone were not homoscedastic.

3. Results
3.1. Absorbance Analysis of Ca and P Concentrations in Supernatants

The Ca concentration in supernatants 15 min to 48 h after the preparation of the
supersaturated calcium phosphate solution showed significant decreases with time but no
significant difference between 48 and 72 h after the preparation (Figure 3a). Moreover, the
P concentration decreased significantly with time from 15 min to 48 h after the preparation
but showed no change after 48 h (Figure 3b).
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3.2. Morphological Observation of Precipitates

The precipitates collected 24, 48, and 72 h after the preparation of supersaturated
calcium phosphate became powdery when they were allowed to dry, and SEM images of
the powder obtained 24 h after preparation of the solution showed clusters of spherically
chained crystals (Figure 4a). However, no marked difference was observed in the size of
the clusters after 48 or 72 h (Figure 4b,c).
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3.3. XRD and FT-IR Analysis of Precipitates

XRD analysis showed peaks at 26◦, 31◦ and 45◦, and the intensity was generally low
(Figure 5a). The peaks of the precipitate showed a similar peak peculiar to HA when
compared with the HA granules (Figure 5b). In the IR spectrum of FT–IR, the peaks µ1, µ2,
and µ3 were phosphates, µ4 at 1300 was carbonate radial, and µ5 at 1600 was hydrogen
phosphate radical, and µ6 showed stretching vibration of OH that definitively identified
HA (Figure 6).
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3.4. Observation of the Surface of Biphasic HA Granules

Figure 7 shows stereo microscopic and SEM images of biphasic HA granules prepared
by immersing HA granules in the supersaturated calcium phosphate solution for 72 h.
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In the stereo microscopic images, no difference was observed in the appearance
between HA and biphasic HA granules (Figure 7a,b), but, in the SEM images, the surface
of the HA granules was smooth but that of the biphasic HA granules was delicately coarse,
and needle-shaped crystals varying in thickness grew and filled the spaces among the
granules (Figure 7d).

3.5. Cytotoxicity Testing

Since significant cell proliferation with time was observed in biphasic HA granules
compared with the controls, low crystalline HA was confirmed to have no cytotoxicity
(Figure 8).
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3.6. Cell Differentiation Testing

The ALP activity seven days after the induction of bone differentiation was significantly
higher in biphasic HA granules compared with the control and HA granules (Figure 9).
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3.7. Animal Experiment

No significant difference was observed in the volumes of HA and newly formed bone
or the volume of newly formed bone alone in ROI set in microCT images between the HA
granule and biphasic HA granule groups (Figure 10). However, a significant difference
was observed in the volume ratio of newly formed bone between the biphasic HA and HA
groups (Figure 11).
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Figure 11. Volume ratio of newly formed bone in ROI (n = 7, * p < 0.05).

Figure 12 shows the BMD images. In the unfilled negative control defects, only slight
new bone formation was observed along the rim of existing bone, and the bone defects
remained nearly unrepaired. In the defects filled with HA or biphasic HA, BMD similar to
that of existing bone was restored in the entire bone defects. However, the area with high
BMD was larger in the biphasic HA group and showed a significant difference compared
with the HA group (Figure 13). Figure 14 shows ROI extraction 3DCT images of the area
filled with biphasic HA. The white parts are HA, and the red parts are newly formed bone,
and newly formed bone was found to be formed not only in the spaces among HA granules
but also inside the pores. Moreover, in the selective 3DCT images of newly formed bone,
new bone was formed evenly also in the spaces among HA granules.
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Figure 13. BMD in ROI in BMD images (n = 7, * p < 0.01).

Figures 15 and 16 show Villanueva bone stain images of HA and biphasic HA granules
four weeks after filling. New bone was formed from the margins of existing bone in
both groups, thick trabeculae of newly formed bone were observed around biphasic HA
granules, and the area ratio of newly formed bone was significantly higher compared with
the HA granule group (Figure 17).
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4. Discussion

Recently, the number of older patients who wish to have dental implant therapy is
increasing. However, bone metabolism decreases with age, and implant therapy is often
made difficult by resorption and atrophy of alveolar bone, so cases that require bone
augmentation are increasing [1–3]. Bone substitutes are also used for bone augmentation
in implant therapy, but as they have only osteoconductive property, they are inferior in the
speed and amount of new bone formation compared with osteogenic and osteoinductive
autologous bone grafts [4]. Therefore, there have been reports of promotion of osteogenesis
by having bone substitutes support growth factors such as fibroblast growth factor-2
(FGF-2) and platelet-derived growth factor (PDGF) [21–23].

There have also been studies to promote new bone formation by having an apatite
layer form on the surface of Bioactive glass or titanium using SBF [13], but no study of
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promoting new bone formation with an apatite layer precipitated on the surface of a bone
substitute such as calcined bovine bone and synthetic apatite has been reported. Moreover,
since the contents of Ca and P in SBF are nearly the same as those in human plasma, there
was a limitation in new bone formation. Therefore, we directed our attention to the super-
saturated calcium phosphate solution prepared by mixing medical infusion solutions [19]
for more efficient precipitation of the apatite layer than bone substitute granules.

In this study, we first measured the Ca and P concentrations in the supernatants of
the prepared supersaturated calcium phosphate solution. As a result, both the Ca and
P concentrations decreased progressively until 48 h after the preparation but showed no
change thereafter (Figure 4). This is considered to be explained by precipitation of Ca and
P in the solution as crystals of calcium phosphate. When this precipitate was observed by
SEM, clusters of spherically chained crystals were observed after 24 h (Figure 3). Therefore,
this precipitate was suggested to be clusters of crystals of calcium phosphate. Moreover,
since no change was observed in the concentrations of Ca and P or the size of clusters
more than 48 h after preparation of the supersaturated calcium phosphate solution, the
precipitation of calcium phosphate crystals is considered to have nearly ended within 24 h
after the preparation of supersaturated calcium phosphate solution.

Moreover, when this precipitate was analyzed by XRD analysis to identify it, peaks
characteristic of HA were observed at 26◦, 31◦ and 45◦, and the intensity of diffraction
was generally low (Figure 5). In addition, FT–IR spectroscopy showed an absorption
spectrum with phosphate ion, hydrogen phosphate ion, carbonate ion, and a stretching
vibration of OH, which definitively identify HA (Figure 6). Therefore, the precipitate from
the supersaturated calcium phosphate solution prepared by mixing five medical infusion
solutions was shown to be low crystalline HA [24,25]. HA is classified as nonbioabsorbable
high-temperature HA prepared by adjusting the Ca/P ratio at 1.67 and sintering it at a
high temperature of ≥1200 ◦C and cooling it rapidly, and low-temperature HA generated
spontaneously in a natural environment at ambient temperature, room temperature, or
body temperature or in the body [26,27]. Since low crystalline HA is bioabsorbable, has
high biological activities, and has excellent osteoconductivity, it is expected to promote
new bone formation more than high-temperature HA [28].

Next, we prepared biphasic HA granules with low crystalline HA precipitated on the
surface of HA granules by immersing them for 72 h in a supersaturated calcium phosphate
solution. When they were examined under the stereo microscopy and SEM, marked growth
of thick needle-shaped low crystalline HA was observed (Figure 7d). Ca and P ions in SBF
or supersaturated calcium phosphate solution are considered to form Ca/P clusters, which
become amorphous calcium phosphate (ACP) on the surface of HA granules, precipitate
as low crystalline HA as ACP bind together, and grow to form needle-shaped crystals [28].
We evaluated how this low crystalline HA affects cells with osteogenic properties in vitro.

It has been reported that MC3T3-E1 cells derived from the mouse cranium used in
an in vitro study differentiate into osteoblasts and play a role in osteogenesis [29]. In a
proliferation test of these MC3T3-E1 cells, biphasic HA granules showed a significantly
higher cell proliferation ability than HA granules. This indicated that low crystalline HA
has no cytotoxicity (Figure 8). Next, we evaluated the effects of low crystalline HA on
bone differentiation. As a result, biphasic HA granules showed a significantly higher bone
differentiation ability compared with the control and HA granules (Figure 9). Ca and P ions
promote bone regeneration by regulating the activities of osteoblasts and osteoclasts. In
addition, the surface properties and porosity of calcium phosphate affect cell growth [30].
Moreover, since ACP, among calcium phosphate ceramics, is more soluble than HA, it has
more rapid osteoinductivity and promotes osteogenesis. Ca ion released from the surface
of ACP is reported to activate cell signal transmission via ion channels of MC3T3E-1 cells
and promote osteoblast differentiation [31]. Therefore, low crystalline HA that showed
needle-like growth on the surface of HA granules by precipitation of Ca and P in the
supersaturated calcium phosphate solution was considered to have biological activity to
promote osteogenesis. Moreover, as the smooth surface of HA granules changed to a coarse
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surface with needle-like crystals, the surface area was considered to have increased to
facilitate the adhesion and proliferation of cells. For these reasons, we decided to evaluate
the promotion of new bone formation in vivo using biphasic HA granules.

In this animal experiment, full-thickness bone defects 6.0 mm in diameter, which are
considered to be critical bone defects, were created in the rabbit cranium and were filled
with biphasic HA granules and HA granules as the control. As a result, marked new bone
formation from existing bone was observed around both biphasic HA and HA granules
four weeks after filling, but BMD was significantly higher in the biphasic HA group, and
extracted 3DCT of ROI showed new bone formation even inside pores. Moreover, when
the amount of new bone formation was compared in microCT images, no significant
difference was observed between the two groups, but the volume ratio of new bone was
significantly higher in the biphasic HA group. Moreover, histological examination showed
thick trabeculae of new bone formed around biphasic HA granules and a significant
difference in the area ratio of newly formed bone. Low crystalline HA is dissolved by H+

ion supplied by the proton pump of osteoclasts and is involved in new bone formation by
transmitting the signal to osteoblasts [30] Therefore, HA collagen compounded sponge
prepared by binding nanosized low crystalline HA to type I collagen fibers has been
reported to have induced significantly higher new bone formation in the rabbit femur
compared with HA granules or βTCP granules after four weeks due to resorption by
osteoclasts two weeks after its grafting and subsequent new bone formation [32]. Moreover,
the needle-like crystals on the surface of biphasic HA granules were considered to have
served as a scaffold appropriate for adhesion, proliferation, and differentiation of cells
related to osteogenesis, and thus, enhanced osteoconductivity and promoted new bone
formation.

In this study, biphasic HA granules prepared by precipitating low crystalline HA
obtained by mixing five medical infusion solutions on the surface of HA granules were
shown to have biological activities to enhance osteoconductivity.

5. Conclusions

Biphasic HA granules prepared by compounding HA granules with low crystalline
HA precipitated by mixing five medical infusion solutions were shown to promote new
bone formation. Therefore, biphasic HA granules are suggested as a bone substitute useful
for bone augmentation in implant therapy.
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