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Abstract: Recyclable, cheap, eco-friendly, and efficient adsorbent materials are very important for
the removal of pollution. In this work, we report the design and implementation of ferrimagnetic-
humic acid nanocomposites as superior magnetic adsorbent for heavy metals. Ferrimagnetic and
ferrimagnetic-humic acid nanocomposite particles with different morphologies were prepared using
the coprecipitation method and hydrothermal synthesis method, respectively. The results show that
the morphology of the nanoparticles prepared by the coprecipitation method is more uniform and the
size is smaller than that by the hydrothermal synthesis method. Adsorption experiments show that
the ferrimagnetic-humic acid nanoparticles prepared by the coprecipitation method has high sorption
capacity for cadmium, and the maximum adsorption capacity is about 763 µg/g. At the same time,
magnetic technology can be used to realize the recycling of ferrimagnetic-humic acid adsorbents.
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1. Introduction

Heavy metal pollution in water is related to the health and safety of human beings and
other organisms. The heavy metal can destroy photosynthesis, respiration, and enzyme
activities of plants. It also affects the development of embryos, organs, and tissues of
animals [1,2]. Therefore, how to efficiently remove heavy metals in water is particularly
important. In many removal technologies, adsorbent has become the research focus since it
has high removal efficiency and does not bring secondary pollution [3,4]. Ferrimagnetic
nanoparticles exhibit magnetism and good biocompatibility, which has been widely used in
the biomedical, environmental, and material sciences [5,6]. One can use external magnetic
fields to separate the nanoparticles rapidly, conveniently, and environmentally, especially
as an adsorbent material for the removal of heavy metal pollution. At the same time,
nanoparticles have a large specific surface area and high adsorption capacity. However,
nanoparticles tend to agglomerate, which will affect their adsorption effect [7,8]. To this end,
various methods have been used to introduce kinds of inorganic and organic substances
into nanoparticles [9,10].

Humic acid (HA) is a natural organic matter extracted from low-rank coal or plant
straw. Humic acid exhibits a macromolecular network structure with a large number
of functional groups on the surface, which are dominated by carboxyl and hydroxyl
groups [11]. The functional groups on HA can form a relatively stable complex with heavy
metal ions, and achieve the goal of removing heavy metals. Moreover, humic acid is
environmentally friendly and does not cause secondary pollution during the removal pro-
cess [12,13]. Therefore, HA is a promising material to modify ferrimagnetic nanoparticles.
In addition, ferrimagnetic-HA complexes are also important for the stabilization of HA in
the soil, as they inhibit the degradation of HA and extend the turnover time. Recent re-
search indicated that HA has a high affinity to ferrimagnetic nanoparticles, which enhances
the stability of nanoparticles dispersion by preventing their aggregation [14]. In addition,
the bonding of the nanoparticles to HA can change the surface properties and adsorption
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properties of the nanoparticles because the adsorption of HA results in polyanionic or-
ganic coating on ferrimagnetic nanoparticles. The adsorption capacity for metal cations
with complex HA and ferrimagnetic nanoparticles was reported to be larger than that
with the respective HA or ferrimagnetic nanoparticles alone [15]. Shitong Yang et al. [16]
prepared the core-shell structure of ferrimagnetic-humic acid nanoparticles by chemical
co-precipitation method, which can effectively remove the radioactive pollutant Eu (III)
with a removal efficiency of 99%. C. J. Zhou et al. [17] synthesized humic acid-coated iron
oxide nanoparticles used to rapidly and efficiently remove methylene blue and rhodamine
organic dyes. Therefore, the ferrimagnetic nanoparticles which are combined with HA may
be able to synergistically remove heavy metal pollution.

To prepare ferrimagnetic-humic acid nanocomposite particles, the chemical coprecipi-
tation method is widely used at present. For nanomaterials, we know that their properties
are largely dependent on the morphology and size of the nanostructures. In this paper,
ferrimagnetic-humic acid nanocomposite particles with different morphologies were pre-
pared using different preparation methods. To obtain the optimal adsorption conditions
of ferrimagnetic-humic acid nanocomposite particles on heavy metals, the relationship
between the morphology of nanoparticles and the adsorption effect was discussed.

2. Materials and Methods
2.1. Preparation

The ferrimagnetic nanoparticles were fabricated using coprecipitation method and
hydrothermal synthesis method, respectively. For the coprecipitation method, 6.0 g
FeCl3·6H2O and 4.2 g FeSO4·7H2O was dissolved in 100 mL deionized water, and heated
to 90 ◦C. Then, 10 mL 25% ammonium hydroxide was added into the solution and humic
acid sodium salt, dissolved in water, were added rapidly and sequentially. The above
mixture was continually stirred at 90 ◦C for 30 min and then cooled to room temperature.
Finally, the mixture was filtrated, and washed with distilled water and ethanol three times,
respectively. The black powder was collected and dried in an oven (BPG-9140A, Shanghai
Yiheng Scientific Instrument Co., LTD, Shanghai, China) at 50 ◦C. For the hydrothermal
synthesis method, 0.67 g FeCl3·6H2O was dissolved in 20 mL ethylene glycol completely,
and 1.8 g sodium acetate and 0.07 g sodium polyacrylate were added into the solution.
Then, the mixture solution was stirred for 30 min, and transferred into a 25 mL Teflon-
lined stainless-steel autoclave (Binhai County zhengxin instrument Factory, Yancheng,
Jiangsu Province, China). The reaction was processed under 200 ◦C for 12 h. Next, the ob-
tained black powder was washed with distilled water and ethanol three times, respectively,
as before. The ferrimagnetic-HA composite nanoparticle was prepared using the same
method as ferrimagnetic nanoparticles, and just HA was added. All the reagents used
were purchased from Aladdin Ltd., shanghai, China, and were used as received without
further purification.

The HA used were from the Humic Acid Quality Testing Center of the China Humic
Acid Industry Association, Jinzhong, China.

2.2. Characterization

The Fourier transform infrared spectroscopy (FTIR) of nanoparticles was detected
by an infrared spectrometer (Nicolet Is5, Thermo Electron Corporation, Waltham, MA,
USA) in the range of 400–4000 cm −1. Thermal gravimetric analysis (TG) and differential
thermal analysis (DTA) were recorded using a thermal heavy analyzer (STA 2500 Regulus,
Netzsch, Bavaria, Germany) in the range of 0–800 ◦C. X-ray diffraction (XRD) patterns were
estimated using a PANalytical X′ Pert Pro X-ray diffractometer (PANalytical B.V., Almelo,
the Netherlands) in the θ–2θ configuration with the Cu ka X-ray radiation. The morphology
and lattice structure of ferrimagnetic and ferrimagnetic-humic acid nanoparticles fabricated
using different method were carried out by a JEOL JSM-7500F cold field scanning electron
microscopy (SEM, JEOL, Tokyo, Japan) and a FEI Tecnai G2 F20 S-TWIN transmission
electron microscope (TEM, FEI, Hillsborough, OR, USA). The magnetic properties were
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measured using the quantum design physical property measurement system with a vibrat-
ing sample magnetometer (VSM) accessory (squid-VSM, Quantum Design INC, San Diego,
CA, USA). The removal efficiency was characterized by inductively coupled plasma atomic
emission spectrometry (ICP, ICAP RQ, Thermo Fisher Scientific, Waltham, MA, USA). We
choose Cd as the representative element of heavy metal pollution in water to carry out the
adsorption experiment.

2.3. Heavy Metal Adsorption Experiment

A total of 20 mL of Cd2+ standard solutions with different concentrations (0.05 mg/L,
0.10 mg/L, 0.15 mg/L, 0.20 mg/L and 0.25 mg/L) was accurately measured, and 10 mg
of the adsorbent samples prepared in the above steps were added. The pH value of
the solution was adjusted accurately with the help of a pH meter (FE28, Mettler Toledo
Instruments (Shanghai) Co., LTD, Shanghai, China). Then, at the same oscillation speed, the
solution was placed in a thermostatic oscillator (SHY-2A, Changzhou Guoyu Instrument
Manufacturing Co., LTD, Changzhou, Jiangsu, China) for adsorption experiment at room
temperature lasting 30 min. After the reaction, the adsorbent in the mixture was separated
by a permanent magnet. The supernatant was taken and the concentration of the remaining
Cd2+ ions in the solution was determined by ICP.

3. Results
3.1. Characterization of Ferrimagnetic and Ferrimagnetic-HA

Figure 1 presents the powder X-ray diffraction patterns of the ferrimagnetic and
ferrimagnetic-HA nanoparticles prepared using (a) the coprecipitation method and (b) the
hydrothermal synthesis method. The characteristic XRD peaks of all as-synthesized sam-
ples have nearly identical peak positions. Ferrimagnetic phase with inverse spinel structure
(JCPDS 19-0629) was obtained by the coprecipitation method and hydrothermal synthesis
method. The obtained ferrimagnetic-HA nanoparticles show only the similar peaks with
ferrimagnetic nanoparticles, without any other peaks, indicating that the structure of the
ferrimagnetic nanoparticles was not changed after modification with HA. Figure 1 shows
that no other peaks related to impurities were detected, which confirms that the synthe-
sized products are of high purity and with good crystallinity. We calculated the size of the
particles by the Sherrer equation. The average diameter of the ferrimagnetic nanoparti-
cle prepared by the coprecipitation and hydrothermal synthesis method is about 16 nm
and 19 nm, respectively. For both samples, the HA modified ferrimagnetic nanoparticles
showed a smaller particle size with about 15 nm and 14 nm, respectively, which indicated
that HA efficiently reduces their aggregation.
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The morphologies of the as-synthesized nanoparticles were detected by SEM and
TEM. Figure 2 shows the surface morphologies of the prepared (Figure 2a,b) ferrimagnetic
and (Figure 2c,d) ferrimagnetic-HA nanoparticles using the coprecipitation method. It
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can be seen that the nanoparticles showed a homogenously spherical-shape. The average
diameter of the ferrimagnetic nanoparticles is about 35 nm with a smooth surface. The
size of the nanoparticles was reduced to about 10 nm under TEM observation, which is in
agreement with the result of XRD analysis. Moreover, the morphologies of the nanoparticles
do not show significant change after coating HA. This suggests that the addition of HA
does not alter the microscopic morphology of the nanoparticles. Figure 2 shows the
surface morphologies of the prepared ferrimagnetic (Figure 2e,f) and ferrimagnetic-HA
nanoparticles (Figure 2g,h) using the hydrothermal synthesis method. Compared with the
nanoparticles obtained by the coprecipitation method, the homogeneity of the nanoparticles
was improved, and the morphology of the nanoparticles does not alter after HA addition.
The size of the nanoparticles become larger with a diameter of about 400 nm fabricated
by the hydrothermal method, which is quite different from the XRD results. This may be
due to that the size of the nanoparticles prepared by the hydrothermal synthesis method
is relatively large, which is not accurate to calculate the particle size by using the Sherrer
formula. The ferrimagnetic-HA nanoparticles with different sizes, were obtained using the
two mostly common preparation methods. The HA modified ferrimagnetic nanoparticles
have smaller particle size and show good dispersion, which indicated HA efficiently
reduces their aggregation.
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FTIR is an established tool to identify functional groups of molecules and can analyze
the surface groups of the samples. Figure 3a exhibits FTIR spectra of HA, ferrimagnetic
and ferrimagnetic-HA nanoparticles prepared using the coprecipitation method. The
absorption peak at 584 cm−1 was attributed to the characteristic absorption of the stretch-
ing vibration of Fe-O bond. The absorption peak of 1114 cm−1 came from the hydroxyl
group. All samples showed the absorption peaks of 1617 cm−1 and 3414 cm−1, which
may be due to the vibration of adsorbed water molecules. Compared with ferrimag-
netic nanoparticles, the composite nanoparticle appeared the absorption peak of C=O
stretches at 1401 cm−1, indicating that the humic acid has been successfully bonded onto
the ferrimagnetic nanoparticles [18]. Figure 3b shows FTIR spectra of ferrimagnetic and
ferrimagnetic-HA nanoparticles prepared using the hydrothermal synthesis method. It can
be seen that the nanoparticles exhibit the same absorption peaks as the one prepared using
the coprecipitation method. Furthermore, the ferrimagnetic-HA nanoparticles showed
an absorption peak of C=O that stretches at 1401 cm−1. The above results indicate that
HA has been successfully bonded onto the ferrimagnetic nanoparticles prepared by the
two methods.
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To obtain the thermal stability of the nanoparticles, thermogravimetric analysis was
performed under a nitrogen atmosphere, and the heating rate was 10 ◦C/min. Figure 4
presents the TG and DTA curves of ferrimagnetic and ferrimagnetic-HA nanoparticles
prepared using the coprecipitation method and hydrothermal synthesis method. It can
be seen that the mass of all samples decreases with the increase of temperature, which
mainly comes from the adsorbed water and solvents during the preparation process. The
weight loss at temperatures ranging from 30 ◦C to 100 ◦C is mainly due to moisture and
adsorbed gases. The mass loss near 400 ◦C is mainly caused by the phase transformation
of ferrimagnetic nanoparticles, that is, Fe3O4 is transformed into α-Fe2O3. Compared with
ferrimagnetic nanoparticles, the hybrid nanocomposites exhibit greater weightlessness
between 400 and 500 ◦C. This may be attributed to the contribution of decarboxylation and
pyrolysis of aromatic nucleus of the condensed ring in HA.
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The magnetic hysteresis loops were measured at room temperature for ferrimagnetic
and ferrimagnetic-HA nanoparticles prepared using the coprecipitation method and hy-
drothermal synthesis method, as shown in Figure 5. It can be seen that all samples exhibit
hysteresis at room temperature. The coercivity (Hc) for ferrimagnetic nanoparticle pre-
pared using the coprecipitation method is about 1018 Oe, and the Hc for ferrimagnetic
nanoparticle prepared using the hydrothermal synthesis method is about 834 Oe. The
size of the nanoparticles obtained by the coprecipitation method is smaller than that ob-
tained by the hydrothermal synthesis method. Moreover, the magnetic moment of the
ferrimagnetic nanoparticles prepared using the hydrothermal synthesis method is also
smaller than that of the coprecipitation method. The nanoparticles with small sizes exhibit
strong magnetization and coercivity. With the size of grain particles reducing, the magnetic
properties of the materials are strongly affected by the size. This is due to the influence of
the thermal energy over the magnetic moment ordering, which originates from the param-
agnetic relaxation phenomenon. For both samples, the magnetization gets smaller due to
the addition of nonmagnetic substances, and the coercivity is essentially unchanged when
the HA is coated onto the nanoparticles. Although magnetization strength decreased after
HA addition, it could be inferred that the separation of ferrimagnetic-HA nanoparticles in
aqua media could be controlled by magnetic fields with its magnetization strength. From
the observed behavior, the prepared nanoparticles have large magnetization and coercivity,
which can exhibit a high stability and strong response to the external magnetic field. This
is very important in the application of magnetic separation technology to eliminate heavy
metal pollutants.
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prepared using the hydrothermal synthesis method measured at room temperature.

3.2. Adsorption Effect of Nanocomposites on Pollutant

To obtain the adsorption effect of nanoparticles on heavy metals, the concentration
of Cd2+ in water was analyzed by ICP. The main parameters that affect the binding of
heavy metal ions to ferrimagnetic-HA nanoparticles are the concentration of metal ions, pH
and other parameters. Therefore, the effects of the initial heavy metal concentration and
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solution pH on the removal of heavy metal ions by ferrimagnetic-HA nanoparticles and HA
were investigated, respectively. As shown in Figure 6a, the concentration of the remaining
Cd2+ in the solution is increased with the increase of the initial concentration of Cd2+. The
reason is that when the number of ferrimagnetic-HA nanoparticles remains the same, the
number of active sites on the surface of ferrimagnetic-HA nanoparticles is also constant.
With the increase of the amount of Cd2+, the active sites on the surface are gradually
occupied by Cd2+, which leads to the decrease of the adsorption effect. In addition, the pH
of the solution is also an important factor affecting the adsorption effect, which can be seen
in Figure 6b. The initial concentration of Cd2+ was 0.10 mg/L. With the increase of pH,
the concentration of residual Cd2+ in the solution gradually decreases and tends to remain
constant. Moreover, the adsorption effect of the adsorbents prepared by the coprecipitation
method is better than that prepared by the hydrothermal synthesis method. This result is
consistent with the previous morphological analysis results. As can be seen from Figure 2,
the size of nanoparticles prepared by the coprecipitation method is smaller than that
prepared by the hydrothermal synthesis method. At this time, the number of active sites
on the surface increased, and thus, the nanocomposite prepared by the coprecipitation
method has a high adsorption effect. Figure 6c exhibits the effect of the initial heavy metal
concentration on the adsorption efficiency for HA only. It can be seen that HA also has
a certain adsorption capacity for heavy metal. When ferrimagnetic nanoparticles and
HA were combined, the adsorption effect of nanocomposites was stronger than that of
HA and ferrimagnetic nanoparticles separately. As a result, the combination of HA and
ferrimagnetic nanoparticles can significantly enhance the adsorption effect of the adsorbent,
and achieve the purpose of synergistic removal of heavy metals. This can be attributed to
the fact that HA has a large number of active functional groups on the surface, so it can be
further complexed with heavy metals to improve the adsorption effect.
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Figure 6. The effects of (a) initial heavy metal concentration (pH = 6; adsorbent quality 10 mg; contact time 30 min; 25 ◦C),
(b) solution pH (Cd2+ initial concentration 0.1 mg/L; adsorbent quality 10 mg; contact time 40 min; 25 ◦C) on the adsorption
efficiency for ferrimagnetic and ferrimagnetic-HA nanocomposites, and (c) the effect of initial heavy metal concentration on
the adsorption efficiency for HA only.

Regeneration and reuse of adsorbent are essential for economic use. For ferrimagnetic-
HA nanocomposite particles, magnetic technology can be used to realize the recycling of
adsorbents. In this study, desorption behavior was studied using 0.03 M of EDTA solution,
as shown in Figure 7. The adsorption capacity of Cd2+ decreased gradually with the
increase of regeneration cycle. After the fifth cycle, the loaded amount of Cd2+ was 70.6%
of the amount by the fresh adsorbent, demonstrating that ferrimagnetic-HA nanoparticles
could be regenerated and reused using EDTA.
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4. Discussion

According to the above discussion, the nanoparticles have similar crystal structure
and properties prepared by the coprecipitation and hydrothermal synthesis method, re-
spectively. However, the size of the nanoparticles is different. In this regard, the size effect
of nanoparticle on the adsorption performance can be compared well. In comparison, the
size of the nanoparticles prepared by the coprecipitation method is smaller. At the same
time, the adsorption experiments show that the nanocomposite particles prepared by the
coprecipitation method have greater adsorption capacity (Figure 6).

To further gain insight into the adsorption mechanism of the nanocomposite particles,
the adsorption isotherms of Cd2+ on magnetic ferrimagnetic-HA nanocomposites obtained
by the coprecipitation method were fitted according to Langmuir and Freundlich equations,
respectively [9]. First, the adsorption of Cd2+ ions onto the ferrimagnetic-HA nanocom-
posites with pH = 6 was investigated as a function of the initial heavy metal concentration
for 30 min at 25 ◦C, which can be seen from Figure 6a. Then, the adsorption results were
analyzed as follows:

Equilibrium absorption capacity : qe =
(c0 − ce)·V

w

where qe is the equilibrium adsorption capacity (µg/g) of ferrimagnetic-HA nanocomposite
at a contact time of 30 min; c0 and ce are the initial mass concentration and equilibrium
mass concentration (ng/mL) of Cd2+, respectively; V is the volume of solution (20 mL); w
is the mass of the magnetic composite (10 mg).

Langmuir equation :
1
qe

=
1

kLqm
× 1

ce
+

1
qm

where qe is the equilibrium adsorption capacity (µg/g); ce is the equilibrium mass concen-
tration (ng/mL) of Cd2+; KL is Langmuir adsorption constant (mL/ng); qm is the maximum
adsorption capacity (µg/g).

1/qe was plotted against 1/ce (Figure 8a), and the maximum sorption capacity qm can
be obtained from the linear fitting result:

Freundlich equation : lnqe = lnKF +
1
n

lnce
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where KF is the adsorption constant of Freundlich equation; n is the Freundlich equation
index. lnqe was plotted against lnce, which can be seen in Figure 8b.
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According to the fitting results, the Langmuir isotherm model with a correlation
coefficient as high as 0.9974 better represents the equilibrium adsorption of Cd2+ on
ferrimagnetic-HA nanocomposite as compared with the Freundlich equation. In this
regard, the adsorption process belongs to the monolayer coverage of Cd2+ on the surface
of ferrimagnetic-HA nanocomposite with uniform adsorption site energy. The maximum
sorption capacity qm of ferrimagnetic-HA nanocomposite prepared by the coprecipitation
method is about 763 µg/g, which is not large compared with other reported magnetic
adsorbents [19]. However, the initial concentration of Cd2+ ion reported in other papers is
relatively large, such as ferrimagnetic chitosan-phenylthiourea resin, for which the initial
concentration of Cd2+ ion is 100 mg/L [20], magnetic graphene oxide nanocomposite, for
which the initial concentration of Cd2+ ion is 200 mg/L [21], and Fe3O4/SiO2-GO, for
which the initial concentration of Cd2+ ion is 100 mg/L [22]. The initial concentration of
Cd2+ we used was 0.05–0.25 mg/L, and generally 0.1 mg/L. This result indicates that the
ferrimagnetic-HA nanocomposite prepared by the coprecipitation method possess strong
adsorption capability towards Cd2+ with a small initial concentration, which is closer to
the actual situation.

The Ms of the ferrimagnetic-HA nanocomposite prepared by the coprecipitation
method is about 52 emu/g, which is comparable to the data reported in the literature [23,24].
For ferrimagnetic-HA nanocomposite particles, magnetic technology can be used to realize
the recycling of adsorbents. At the same time, both ferrimagnetic nanoparticles and humic
acid are environmentally friendly. Thus, ferrimagnetic-humic acid nanocomposites can be
utilized as a superior adsorbent for practical adsorption. In addition, the nanocomposites
may also exhibit adsorption properties for other heavy metals and organic dyes.

5. Conclusions

Ferrimagnetic and ferrimagnetic-HA nanoadsorbents with different sizes were pre-
pared by the coprecipitation method and hydrothermal synthesis method, respectively.
In comparison, the nanoparticles prepared by the coprecipitation method have uniform
morphology, and the size is only about 35 nm with smooth surface. The FTIR results
show that HA has been successfully compounded onto ferrimagnetic nanoparticles by
using both methods. Moreover, for the composite nanoparticles, HA does not change
the morphology and structure of ferrimagnetic nanoparticles. Adsorption experiments
show that the adsorption effect of ferrimagnetic-HA nanocomposite particles prepared by
the coprecipitation method is good, and the maximum adsorption capacity is as high as
763 µg/g. At the same time, magnetic technology can be used to realize the recovery of
composite adsorbents. The adsorbent can also be used to remove other heavy metals and
organic pollutants.
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