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Abstract: Crystalline admixtures embedded in concrete may react in the presence of water and
generate thin crystals able to fill pores, capillaries and micro-cracks. Once the concrete has dried, the
crystalline chemicals sit dormant until another dose of water starts the crystallization again. The
research aims to analyses the early age self-sealing effect of a crystalline admixture at a dosage rate of
1–3% of the cement mass. Specimens made with two types of gravel were pre-loaded with three-point
bending to up to 90% of the ultimate capacity, and conditioned through wet–dry cycles. Micro-crack
closure was measured with a microscope after pre-loading, and after 1 day, 4 days, 8 days, 14 days
and 20 days of wet–dry exposure. The results show that an admixture content of 3% achieves the
best early self-sealing performance. These results are also confirmed by probabilistic analyses, which
also emphasize the self-sealing potential of lower ICW contents.

Keywords: mortar; self-sealing; micro-cracks; crystalline admixtures; early age; grain size; proba-
bilistic analysis

1. Introduction

Cementitious composites have been widely used all over the world since the spectacu-
lar development of Portland Cement in the 19th century. Even in traditional/initial forms
(e.g., ordinary concrete), cementitious composites have proven their remarkable autoge-
nous self-healing ability, as became well known in the same period [1,2], attributed at that
time to the ongoing hydration reaction. However, the phenomenon was neglected for many
decades, and it was not until the end of the 19th century when researchers’ interest was
piqued by this self-sealing potential and its ability to reduce early age cracking [3–5]. More
recently, the contribution of tensile creep was also considered for restrained shrinkage, and
significant research has been initiated on the topic to quantify the creep tensile strain [6–8].

Self-healing can potentially have a great impact upon the durability of concrete struc-
tures, especially on those exposed to severe conditions. Within the last few decades,
significant research has been done to improve the knowledge of the relevant mechanisms,
and to develop new concepts and techniques [9–16]. We can now identify three major
self-healing processes/techniques: autogenous self-healing, encapsulated autonomous
self-healing and self-healing bio-concrete. Given the nature of the present work, only
autogenous self-healing will be discussed in this paper.

Cementitious materials possess a natural autogenous healing capacity by filling micro-
cracks through four mechanisms: the continued hydration of unhydrated cement, calcium
carbonate precipitation, the expansion/swelling of calcium-silicate hydrate gel, and the
deposition of impurities such as water (e.g., debris and spall crack) [17–20]. The first two
mechanisms are the most important. At an early age, continued hydration seems to make
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the greatest contribution, while for mature concrete the second mechanism becomes essen-
tial [21]. Crack widths of up to 300–400 µm have been reported to be cured by autogenous
healing in the presence of water [12,22]. The major factors that influence the process are
mix composition, concrete age, water presence and crack shape and width [23,24]. Besides
the natural/intrinsic ability, autogenous healing potential can also be stimulated. Mineral
additives, such as blast-furnace slag and fly ash, significantly improve autogenous healing
when used to partially replace Portland cement [18,25–30] through ongoing hydration.
Limestone powder, marble slurry and hydrated lime increase the calcium content and act
as a site for the nucleation of cement hydration [31–34], being sustainable replacements
for cement [35]. Superabsorbent polymers induce self-healing by providing an ongoing
reservoir of water for hydration. By encouraging multiple cracking, more narrow cracks
occur [36]. These also stimulate further hydration [37,38].

Integral crystalline waterproofing (ICW) admixtures embedded in concrete contain
crystalline chemicals that react in the presence of water and generate thin crystals able to
fill pores, capillaries and micro-cracks [39]. As long as moisture remains present, crystals
continue to grow inside concrete. Once the concrete has dried, the crystalline chemicals
sit dormant until another dose of water, e.g., supplied through a new crack, causes the
chemical reaction, known as crystallization, to start again [40–45]. Mortars with crystalline
and expansive additives have also been proven to have higher pH values, which favor
calcium carbonate precipitation [22].

The research provides experimental evidence of the early self-sealing potential of ICW
admixtures. A powder ICW admixture was added in percentages of 1–3% of the mass of
the Portland cement, based on the producer’s recommendations.

The ICW’s self-sealing potential was assessed on two types of mortar mixes. The first
used typical quartz sand with a maximum grain size of 2 mm, in accordance with EN
933-1:2012. The second considered a quartz gravel of up to 4 mm, in an attempt to study
the self-sealing potential of the local available gravel in mixes with higher porosity and
diversified fracture behavior [46–48].

In summary, the main objective of this research was to analyze the early self-sealing
potential of mortars with ICW admixtures with a content of 1–3% of the cement mass.
A secondary objective was to determine the changes caused by doubling the maximum
grain size of the quartz gravel, from 2 mm to 4 mm, giving rise to fracture processes with
diverse parameters. The analyses were performed based on tests, wet–dry conditioning,
and analyses of self-sealing parameters from a probabilistic perspective.

2. Materials and Methods
2.1. Ingredients and Mix Proportions

The ingredients and proportions were chosen, starting with the reference mix T0r
shown in Table 1, which demonstrated a significant self-healing ability in a previous
work [49]. For comparison, the same T0c mix was made with quartz gravel instead of
standard quartz sand. Both aggregates had a similar chemical composition, with quartz
crystals (i.e., SiO2) present at more than 96%. Comparative particle size distributions are
shown in Figure 1.

Table 1. Reference mix contents T0r and T0c.

Mixture Cement
(kg)

Fly Ash
(kg)

Sand/Gravel
(kg)

MS
(kg)

HRWRA
(kg)

Water
(kg)

PVA
(kg)

T0r 580 650 476 141 12.75 327 26
T0c 580 650 476 141 12.75 327 26

Note: Cement (density: 1.07 g/cm3), fly ash (density: 0.89 g/cm3), standard sand (density: 1.65 g/cm3), fine gravel
(density: 1.55 g/cm3), MS (density: 1.19 g/cm3), HRWRA (density: 0.77 g/cm3), water (density: 0.99 g/cm3),
PVA (density: 1.30 g/cm3). Values were determined with a standard deviation of ±1%.
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Figure 1. Particle size distribution of the sand and gravel employed in the tested specimens. 

A type-C fly ash was added to the Portland cement type CEM I 42.5R, referenced by 
EN 197-1, in a mass proportion of 1.12. Marble slurry (MS), an important by-product of 
marble manufacturing, was introduced as a fine aggregate with a size ranging from 75 
μm to 4.75 mm. A polycarboxylate-based high-range water-reducing admixture 
(HRWRA) and synthetic polyvinyl alcohol (PVA) fibers were added to promote the pre-
cipitation of crystallization products on the crack’s surface [50,51]. The PVA fibers, with a 
density of 1300 kg/m3, were 8 mm in length and 39 µm in diameter, with a tensile 
strength of 1.2 GPa and a 1.2% mineral oil coating to reduce the interfacial chemical bond 
with the matrix. A constant volume fraction of 2% was introduced.  

The addition of the ICW powder, with a density of 1.0 g/cm3, into the studied mixes 
was carried out by reducing the C fly ash mass proportion by the same quantity. Figure 2 
presents the diffraction pattern of the ICW white powder used. This reveals the high 
content of hatrurite, trona, calcite, coesite and albite crystals, all with direct impacts upon 
the self-sealing ability. 

 
Figure 2. X-ray diffraction result of the ICW powder. 

The mix proportions are shown in Table 2 in relative mass proportions. 

Figure 1. Particle size distribution of the sand and gravel employed in the tested specimens.

A type-C fly ash was added to the Portland cement type CEM I 42.5R, referenced by
EN 197-1, in a mass proportion of 1.12. Marble slurry (MS), an important by-product of
marble manufacturing, was introduced as a fine aggregate with a size ranging from 75 µm
to 4.75 mm. A polycarboxylate-based high-range water-reducing admixture (HRWRA)
and synthetic polyvinyl alcohol (PVA) fibers were added to promote the precipitation of
crystallization products on the crack’s surface [50,51]. The PVA fibers, with a density of
1300 kg/m3, were 8 mm in length and 39 µm in diameter, with a tensile strength of 1.2 GPa
and a 1.2% mineral oil coating to reduce the interfacial chemical bond with the matrix. A
constant volume fraction of 2% was introduced.

The addition of the ICW powder, with a density of 1.0 g/cm3, into the studied mixes was
carried out by reducing the C fly ash mass proportion by the same quantity. Figure 2 presents
the diffraction pattern of the ICW white powder used. This reveals the high content of hatrurite,
trona, calcite, coesite and albite crystals, all with direct impacts upon the self-sealing ability.
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The mix proportions are shown in Table 2 in relative mass proportions.

Table 2. Relative mass mix proportions.

Mixture Cement Fly Ash Sand/GravelMS HRWRA Water PVA ICW

T0r 1, T0c 2

1

1.12

0.82 0.24 0.02 0.56 0.04

-
T1r 1, T1c 2 1.11 0.01
T2r 1, T2c 2 1.10 0.02
T3tr 1, T3c 2 1.09 0.03

1 Specimens made with standard quartz sand; 2 Comparative specimens made with quartz gravel.

2.2. Specimen Preparation, Preloading and Conditioning

After mixing, the fresh mortar mixtures were cast into 40 × 40 × 160 mm molds,
covered in plastic foil, and stored in a climatic chamber at 20 ± 2 ◦C and 90% relative
humidity (RH). After 24 h, the specimens were removed from the molds and water-cured
for 28 days under room conditions (i.e., 20 ± 2 ◦C and RH = 50%). After that, three
specimens of each mixture were subjected to preliminary three-point bending tests (see
Figure 3), and another three specimens were cracked by pre-loading up to 90% of the
mean flexural strength (i.e., modulus of rupture) previously determined. The results of the
preliminary three-point bending tests are given in Table 3. The densities of the hardened
mortar samples, determined with the same standard deviation of ±1%, are also shown in
Table 3.
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Table 3. Modulus of rupture for the tested specimens and mixtures.

Mixture Density
(kg/m3)

Effective Flexural
Strength

(MPa)

Mean Flexural
Strength

(MPa)

T0r 1921 17.2/16.7/16.3 16.7
T1r 1923 16.9/15.1/15.2 15.7
T2r 1927 18.2/20.1/18.5 18.9
T3r 1931 19.3/21.5/19.8 20.2
T0c 1918 15.9/16.4/15.0 15.8
T1c 1922 15.3/16.2/17.2 16.2
T2c 1923 16.7/17.3/14.9 16.3
T2c 1925 16.7/16.1/16.7 16.5

In the end, daily wet–dry cycles were applied for 20 days. Every day, 16 h of water
immersion was followed by 8 h of dry exposure under the above room conditions (i.e.,
20 ± 2 ◦C and RH = 50%).
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2.3. Self-Sealing Parameters and Evaluation

The micro-crack widths were measured with a Leica DMC2900 microscope just after
preloading, and after 1 day, 4 days, 8 days, 14 days and 20 days of wet–dry exposure in
daily cycles. Readings were made on segments framed in small areas of 1.6 × 1.3 mm with
a magnification factor of 8×. The following time-dependent self-sealing parameters are
discussed with regard to both the raw segment data and individual cracks:

• Crack closure, considering the relative decrease in the average crack width wav at day
t of conditioning, related to the initial moment after preloading

Crack closure [%] =
wav(0)−wav(t)

wav(0)
× 100 (1)

• Closure rate of the crack, considering the decrease in the average crack width related
to the corresponding interval t in days

Closure rate [µm/day] =
wav(0)−wav(t)

t
. (2)

The choice of the above parameters is justified by the fact that they offer a global
characterization of the phenomena. Similar to in [41,52], the average crack width was
determined on crack segments wi

av, and full cracks wav were determined by:

wi
aw =

Ai
cr

licr
(3)

wav =

∑
i

Ai
cr

∑
i

licr
(4)

where Ai
cr is the area of the crack segment i and licr is the midline crack segment.

The parameters were then analyzed and discussed in the context of the Gaussian
distribution, implementing the general form of the probability density function—

f(x) =
1

σ
√

2π
exp

[
−1

2
(x− µ)2

σ2

]
(5)

with the variable x (i.e., crack closure and closure rate), µ as the mean value of the variable
x, and σ as its standard deviation.

3. Results and Discussion
3.1. Self-Sealing Crack Closure

Table 4 presents the regression of the individual crack widths registered on all speci-
mens, while Figures 4 and 5 summarize graphically the width progress of the mean cracks
in all mixtures.

Table 4. Crack progress in the specimens and mean crack widths for mixtures.

Mixture
Crack Widths (mm) in the Conditioning Period

0 Days 1 Day 4 Days 8 Days 14 Days 20 Days

T0r
53.9/65.5/60.4 50.2/60.7/56.1 23.2/37.6/31.1 14.2/25.0/20.1 6.8/12.4/9.9 4.4/9.0/7.0

59.9 ± 5.8 55.7 ± 5.3 30.6 ± 7.2 19.8 ± 5.4 9.7 ± 2.8 6.8 ± 2.3

T1r
37.2/46.3/34.5 32.5/42.6/31.2 29.4/37.8/27.8 9.3/29.2/17.4 4.7/23.0/12.9 3.2/13.4/7.7

39.3 ± 6.2 35.4 ± 6.2 31.6 ± 5.3 18.6 ± 10.0 13.5 ± 9.2 8.1 ± 5.1

T2r
53.2/59.1/42.0 50.5/58.1/40.9 36.4/50.8/34.2 21.4/38.9/24.9 13.1/33.0/20.1 8.9/28.6/16.9

51.4 ± 8.7 49.8 ± 8.6 40.5 ± 9.0 28.4 ± 9.3 22.1 ± 10.1 18.1 ± 9.9
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Table 4. Cont.

Mixture
Crack Widths (mm) in the Conditioning Period

0 Days 1 Day 4 Days 8 Days 14 Days 20 Days

T3r
32.6/39.0/33.5 13.6/32.3/22.0 4.3/18.3/11.0 1.3/5.6/3.3 0.5/1.4/0.9 0.2/0.3/0.2

35.0 ± 3.5 22.6 ± 9.4 11.2 ± 7.0 3.4 ± 2.1 0.9 ± 0.4 0.3 ± 0.1

T0c
49.3/61.5/61.7 41.9/53.6/ 53.2 13.2/34.4/27.0 8.0/29.6/21.4 5.7/25.4/17.7 4.6/17.8/10.8

57.5 ± 7.1 49.6 ± 6.6 24.9 ± 10.8 19.7 ± 10.9 16.3 ± 9.9 11.0 ± 6.6

T1c
73.5/88.2/76.9 72.6/87.2/75.7 27.2/46.1/31.9 10.2/28.4/12.9 8.0/14.6/3.3 7.8/14.0/3.0

79.5 ± 7.7 78.5 ± 7.7 35.1 ± 9.8 17.3 ± 10.0 8.6 ± 5.7 8.3 ± 5.5

T2c
48.2/54.5/49.3 41.7/48.2/43.3 14.9/25.9/18.9 2.3/8.1/5.7 1.3/6.3/4.2 0.9/2.4/1.8

50.7 ± 3.4 44.4 ± 3.4 19.9 ± 5.6 5.3 ± 2.9 3.9 ± 2.5 1.7 ± 0.7

T3c
33.2/39.0/42.6 10.0/29.4/24.6 2.8/17.0/12.8 0.5/3.5/2.6 0.2/0.6/0.5 0.2/0.1/0.2

38.3 ± 4.8 21.3 ± 10.1 10.9 ± 7.3 2.2 ± 1.5 0.4 ± 0.2 0.2 ± 0.0
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Despite the initial predictions, the maximum aggregate size was not found to influence
the initial cracking behavior. While mixture T0r registered a crack width similar to T0c (i.e.,
just 2.4 µm larger), the same tendency was also found in the rest of the mixes, except mixes
T1r and T1c, where the results are significantly different.

Mixtures T3r and T3c entirely or almost entirely filled the cracks within 14 days, at which
point the registered closure rates were 98.9% and 97.3%, respectively. However, at 20 days,
T3r reached 99.6% and T3c reached 99.3%, while the reference mixes T0r and T0c presented
closure rates of 88.6% and 80.8%, respectively (see Figure 6 compared to Figure 7).
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Mixture T2c achieved a similar performance, with a crack closure of 96.7% at 20 days.
Mixtures T1c and T1r had similar tendencies (i.e., crack closures of 79.5% and 89.2%,
respectively, at 20 days), while the results for T2r were divergent (i.e., just 64.7% at 20 days).

Figure 8 presents the raw segmented data for the crack closure and Figure 9 shows
the Gaussian distribution registered for the raw segmented data. Considering the physical
significance of the crack closure is described as a value between 0% and 100%, Table 5
presents the mean crack closure and standard deviation at 20 days, and the probabilities
of reaching several different intervals of crack closure. In probabilistic terms, the 3% ICW
powder showed the best sealing capacity for both mixture types. At 20 days, T3r showed a
probability of 0.36 of full closure, and a probability of 0.98 of at least 75% closure, while
T3c had a full closure probability of 0.35, and a probability of 0.98 for a closure of more
than 75%. A mention should be made of the reduction in the standard deviation, which
dropped spectacularly at 20 days with the ICW content of 3%. T2c, with an ICW content of
2%, presented a similar closure trend.
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Table 5. Probabilistic parameters and probabilities of crack closure at 20 days.

Mixture
µ/σ
(%)

Probabilities for Significant Crack Closure Intervals of

≥50% and <75% ≥75% and <100% 100%

T0r 91.3/10.7 0.07 0.59 0.21
T1r 82.7/21.2 0.20 0.43 0.21
T2r 75.7/27.2 0.33 0.32 0.19
T3r 99.5/1.0 0.00 0.62 0.36
T0c 83.4/14.6 0.17 0.69 0.13
T1c 93.2/13.7 0.15 0.53 0.31
T2c 96.7/8.6 0.02 0.64 0.35
T3c 96.7/10.7 0.00 0.63 0.35

The results clearly show that, in structural mortars made with Portland cement and fly
ash in similar proportions, ICW contributes to the sealing of crack widths of up to 100 µm
within 20 days. Sisomphon et al. [22] reported the sealing of cracks up to 400 µm at 28 days
in mortars made with Portland cement. Research performed by Roig-Flores et al. [41] and
Ferrara et. al [39] confirms these results. Jaroenratanapirom and Sahamitmongkol [53]
investigated mortars containing various additional cementitious materials, such as fly
ash. They concluded that all mortars show a self-healing capacity to some extent. For
crack widths up to 50 µm, ICW showed the best self-healing capacity. Chandra et. al. [54]
found that a 30% fly ash content and a 1.5% ICW content achieve 102% mechanical strength
recovery under water immersion conditions. After water immersion, wet–dry cycles ensure
the best self-healing performance. Wang et al. [55] concluded recently that the excessive
use of fly ash has a negative impact upon the mortar’s self-healing potential if the content
is over 10 wt. %. However, the contributions of both fly ash and ICW are considerably
increased by the presence of water. When ICW is added to cementitious materials, the
main healing product is CaCO3. The sealing closure is related to the concentration of Ca2+,
CO2, and water at the crack entrance. The chemical reactions are:

CO2 + H2O↔ H+ + HCO3− ↔ H+ + CO2−
3 (6)

CO2−
3 + CO2+ → CaCO3 (7)

Even if the fly ash content does not affect the crystallization reaction of ICW, it
generates C–S–H gel and helps with crack self-sealing via the reaction:
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(0 .8 ∼ 1.5)Ca(OH2) + SiOH2 + |n− (0 .8 ∼ 1.5)|H2O→ (0 .8 ∼ 1.5)CaO · SiO2 · nH2O (8)

3.2. Self-Sealing Closure Rate

Figures 10 and 11 summarize the crack closure rate of the individual cracks, Figure 12
presents the raw segmented data for the crack closure, and Figure 13 shows the Gaussian
distributions of the closure rate.
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Mixtures T3r and T3c achieved a high initial closure rate of 12.4µm/day and 17.0µm/day,
all other mixtures having closure rates below 8.0 µm/day, with the exception of mixture T1c,
which reached 11.1 µm/day on the fourth day. All mixtures presented a gradual reduction in
the mean closure rate up to 20 days. However, due to the delayed hydration of fly ash, further
increases may occur.

Because the results of the probabilistic analysis are strongly influenced by the closure
of many crack segments, the analysis will be made on mortar at 8 days of age. Table 6
shows the probabilistic parameters and the probabilities of various significant closure rates
at 8 days.

Table 6. Probabilistic parameters and probabilities of closure rates at 8 days.

Mixture
µ/σ
[%]

Probability of Closure Rates

≥1 µm/day ≥3 µm/day ≥6.0 µm/day

T0r 5.02/2.22 0.97 0.78 0.35
T1r 1.56/0.63 0.87 0.38 0.01
T2r 2.88/1.22 0.94 0.45 0.01
T3r 3.95/0.50 0.99 0.87 0.01
T0c 4.73/1.74 1.00 0.78 0.26
T1c 7.78/3.94 0.96 0.89 0.68
T2c 5.67/2.02 1.00 0.91 0.42
T3c 1.91/0.71 1.00 0.81 0.19

At 8 days, despite the fact that mixtures T1c and T2c display the highest likelihood of
achieving closure rates above 6 µm/day (i.e., at least 120 µm crack closure in 20 days), for
closure rates above 3 µm/day (i.e., at least 60 µm crack closure in 20 days), mixes T0r and
T0c–T3c achieve similar probabilities, which vary between 0.78 and 0.91. It must be noted
that, within 1 day, T3r and T3c developed the highest closure rates.

4. Conclusions

Here, the influence of ICW content (i.e., 1–3% of Portland cement mass) upon early-age
crack sealing in structural mortar has been investigated. The experimental evidence clearly
shows that an ICW content of 3% achieves the best crack closure ability. However, these
values are also influenced by the mechanical properties that govern the initial crack’s width,
the fracturing mode, and most importantly, the exposure conditions. In probabilistic terms,
all the analyzed mixtures showed a significant ability to fill cracks with widths of up to
90–180 µm at early ages of up to a month.

The autogenous early-age self-sealing potential displayed by mortar mixtures with
a maximum grain size below 4 mm is clear, and opens the way for larger well-graded
aggregates with adequate self-sealing/self-healing abilities, which can also achieve superior
time-dependent mechanical performances.
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