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Abstract: A series of dyes based on the acenaphthoquinoxaline skeleton was synthesized. Their
structure was modified by introducing electron-withdrawing and electron-donating groups, increas-
ing the number of conjugated double bonds and the number and position of nitrogen atoms, as
well as the arrangement of aromatic rings (linear or angular). The dyes were investigated as a
component in the photoinitiating systems of radical polymerization for a potential application in
dentistry. They acted as the primary absorber of visible light and the acceptor of an electron, which
was generated from a second component being an electron donor. Thus, the radicals were generated
by the photoinduced intermolecular electron transfer (PET) process. Electron donors used differed
in the type of heteroatom, i.e., O, S and N and the number and position of methoxy substituents.
To test the ability to initiate the polymerization reaction by photoinduced hydrogen atom transfer,
we used 2-mercaptobenzoxazole as a co-initiator. The effectiveness of the photoinitiating systems
clearly depends on both the modified acenaphthoquinocaline structure and the type of co-initiator.
The lower amount of heat released during the chain reaction and the polymerization rate comparable
to this achieved for the photoinitiator traditionally used in dentistry (camphorquinone) indicates that
the studied dyes may be valuable in this field.

Keywords: acenaphthoquinoxaline derivatives; photoinitiators; photoinduced electron transfer
process; radical polymerization

1. Introduction

The most versatile and easily implemented polymerization method is radical poly-
merization. Free radicals are formed by a number of different mechanisms. They can be
generated directly from an initiator that undergoes thermal or photolytic dissociation or
may be formed in bimolecular processes following a photoinduced intermolecular electron
(or proton) transfer [1–3].

A large number of organic compounds are used as polymerization photoinitiators [4–6].
Generally, they can be classified into Norish type I and II initiators [7]. The former one is
typically aromatic carbonyl compounds with suitable substituents that facilitate homolytic
photodissociation. Depending on the type and position of the functional groups, the uni-
molecular fragmentation of the precursor occurs within the bond located at position α

(α-photodissociating initiators) [8–11] or β (β-photodissociating initiators) in relation to
the carbonyl group [12]. This group of photoinitiators also includes organic compounds
with weak O–O, S–S, N–S and C–N bonds in the molecule [13–16].

The type II photoinitiators are typically two-component photoinitiating systems con-
sisting of a light absorber (photosensitizer, PS) and a co-initiator (an electron donor or
a hydrogen atom donor) that generate radicals in bimolecular processes. They usually
contain ketones, aldehydes, quinones and selected dyes in combination with a tertiary
amine, carboxylic acids, borate salts and others electron donors that form photoredox
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pairs. Radicals, which start a chain reaction, are generated from a co-initiator according to
photoinduced hydrogen atom transfer [17–19] or electron transfer [6,20–31] mechanism.

Scheme 1 summarizes possible processes which may occur during the radical pho-
toinitiated polymerization via the photoinduced intermolecular electron transfer process
(PET) in the presence of electron donors such as aromatic amines or sulfides [2,6,20,21,32].
The initial step of the process involves one-electron transfer from the electron donor to the
singlet (or triplet) state of the photosensitizer (PS). As a result, reactive intermediates, e.g.,
a PS radical anion and an electron donor radical cation, are formed. Subsequent hydrogen
abstraction leads to radicals that are capable of initiating polymerization.
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Scheme 1. The processes that may occur during radical photoinduced polymerization initiated by
the photoinduced intermolecular electron transfer (PET) mechanism; PS denotes photosensitizer,
RXCH2R is an electron donor such as amine, sulfide, cyclosulfide-trithian.

Another important mechanism of polymerization initiation involves a photoinduced
intermolecular electron transfer (PET) process followed by proton abstraction and decar-
boxylation (Scheme 2). The commonly used co-initiators in this case are phenoxyacetic acid,
thiophenoxyacetic acid, N-phenylglycine, and N-phenyliminodiacetic acid. The electron
transfer from the acid to the singlet (or triplet) state of the sensitizer is followed by:

1. diffusion of the radical-ion pair.
2. intramolecular proton transfer of the radical-ion pair that is retained in the sol-

vent cage.

Materials 2021, 14, x FOR PEER REVIEW 2 of 23 
 

 

pairs. Radicals, which start a chain reaction, are generated from a co-initiator according 

to photoinduced hydrogen atom transfer [17–19] or electron transfer [6,20–31] mecha-

nism. 

Scheme 1 summarizes possible processes which may occur during the radical pho-

toinitiated polymerization via the photoinduced intermolecular electron transfer process 

(PET) in the presence of electron donors such as aromatic amines or sulfides 

[2,6,20,21,32]. The initial step of the process involves one-electron transfer from the elec-

tron donor to the singlet (or triplet) state of the photosensitizer (PS). As a result, reactive 

intermediates, e.g., a PS radical anion and an electron donor radical cation, are formed. 

Subsequent hydrogen abstraction leads to radicals that are capable of initiating 

polymerization. 

 

Scheme 1. The processes that may occur during radical photoinduced polymerization initiated by 

the photoinduced intermolecular electron transfer (PET) mechanism; PS denotes photosensitizer, 

RXCH2R is an electron donor such as amine, sulfide, cyclosulfide-trithian. 

Another important mechanism of polymerization initiation involves a photoinduced 

intermolecular electron transfer (PET) process followed by proton abstraction and de-

carboxylation (Scheme 2). The commonly used co-initiators in this case are phenoxyacetic 

acid, thiophenoxyacetic acid, N-phenylglycine, and N-phenyliminodiacetic acid. The 

electron transfer from the acid to the singlet (or triplet) state of the sensitizer is followed 

by: 

1. diffusion of the radical-ion pair. 

2. intramolecular proton transfer of the radical-ion pair that is retained in the solvent 

cage. 

In polar solvents, the first process is more efficient and leads to the decarboxylation 

of a carboxylate radical and formation of an alkyl radical. In less polar and viscous sol-

vents, there is no separation of the radical ions and a proton transfer to produce a radical 

centered on -carbon with respect to the carboxylate group that takes place. Thus, two 

different radicals produced from the co-initiator in the secondary reaction can react with 

the monomer to initiate polymerization [21]. 

 

Scheme 2. The processes that may occur during radical photoinduced polymerization initiated by 

the photoinduced intermolecular electron transfer (PET) mechanism followed by proton abstrac-

tion or decarboxylation; PS denotes photosensitizer, RXCH2COOH is an electron donor such as 

phenoxyacetic acid, thiophenoxyacetic acid, N-phenylglycine, N-phenyliminodiacetic acid. 

The mechanism of initiation of the polymerization reaction may also be based on the 

hydrogen atom transfer process. The photosensitizer abstracts a hydrogen atom from a 

co-initiator, forming two radicals. These radicals can then react with monomer molecules 

to start a chain reaction. Most commonly used hydrogen donors are amines (Scheme 3). 

PS PS*h
RXCH2R+ PS RXCH2R+

.- .+
RXCHR

. monomer
Polymer       H+-

      
PET

RXCH2COOH PS RXCH2COOH+
.- .+

RXCH2

.

monomer

Polymer       

H+- H+,   CO2
-

RXCHCOOH
.

-

PET
+

h *PSPS

Scheme 2. The processes that may occur during radical photoinduced polymerization initiated by
the photoinduced intermolecular electron transfer (PET) mechanism followed by proton abstrac-
tion or decarboxylation; PS denotes photosensitizer, RXCH2COOH is an electron donor such as
phenoxyacetic acid, thiophenoxyacetic acid, N-phenylglycine, N-phenyliminodiacetic acid.

In polar solvents, the first process is more efficient and leads to the decarboxylation
of a carboxylate radical and formation of an alkyl radical. In less polar and viscous
solvents, there is no separation of the radical ions and a proton transfer to produce a radical
centered on α-carbon with respect to the carboxylate group that takes place. Thus, two
different radicals produced from the co-initiator in the secondary reaction can react with
the monomer to initiate polymerization [21].

The mechanism of initiation of the polymerization reaction may also be based on the
hydrogen atom transfer process. The photosensitizer abstracts a hydrogen atom from a
co-initiator, forming two radicals. These radicals can then react with monomer molecules
to start a chain reaction. Most commonly used hydrogen donors are amines (Scheme 3).
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Photoinduced radical polymerization of various monomers has been gaining more
and more interest in various industries in recent decades [6,32]. Many of the developed
photoinitiating systems meet the requirements for specific applications in the technology
of protective coatings [33–35], graphics industry [36], microelectronics [37], optical disc
production [38], holography [39–41], stereolithography [42–44] and medicine [45–51]. Pho-
topolymerization has also become an integral part of dental practice [52]. It is especially
used in in-vivo production of dental composites [53].

Applying photochemically initiated polymerization for obtaining dental polymer
composites is connected with its unique properties, such as a short time of monomer/filler
compositions curing (high polymerization rates in fractions of seconds, resulting from
the rapid formation of radicals), low energy consumption, conducting the polyreaction at
ambient temperature, and spatial resolution (polymerization only in irradiated areas). The
main limitation of the method is the thickness of the cured layer due to the absorption of
light when passing through the irradiated layer.

The polymer composite filling materials typically consist of:

• monomers and polyfunctional monomers, e.g., trimethylolpropane triacrylate (TMPTA),
pentaerythritol triacrylate (PETA), 1,6-hexanediol diacrylate (HDDA), bisphenol A
diacrylate (bis DMA);

• a photoinitiator, e.g., camphorquinone;
• a co-initiator, usually aromatic amines, e.g., N,N-dimethyl-p-toluidine;
• reinforcing fillers, e.g., quartz, silicate glass, silicon nitrides, etc., coated with 3-

(trimethoxysilanyl)propan-1-ol acrylate. This additive is used to improve the adhesion
of the filler to the polymer matrix;

• inhibitors that prevent premature polymerization during storage;
• light stabilizers that prevent the filling from changing color;
• compounds that allow to match the color of the filling to the natural color of the

patient’s teeth.

A typical photocuring dental composition comprises about 10%–30 wt.%. of organic
components and ca. 70 wt.% of inorganic fillers. The most popular materials for obtaining
dental composites by photopolymerization are (meth)acrylate monomers characterized by
high reactivity. In addition, the composition contains photoinitiators that absorb blue light
emitted by dental lamps and a co-initiator that accelerates the polymerization process [53].
The use of UV radiation for in-vivo photocuring of dental composites is not recommended
due to the safety of dental treatments. It can interact with tissues, contributing to the
development of cancer or cause tissue burns. Moreover, (meth)acrylate monomers can
cause allergic reactions while aromatic amines used as co-initiators can be carcinogenic
and mutagenic, except that dental composites based on cross-linking monomers show the
problem of 2–14% volumetric shrinkage during the photopolymerization process [54,55].

The polymerization shrinkage causes mechanical stresses in the filling, which sig-
nificantly reduces the mechanical strength. As a consequence, defects may arise in the
composite-tooth bond, which lead to bond failure, microleakage, postoperative sensitivity,
and recurrent caries. Therefore, various types of fillers are added to the dental composite,
which are able to reduce the polymerization shrinkage to 1–3% and at the same time
increase the mechanical strength of the filling (to abrasion, crushing and washing out).
However, a large amount of filler (up to 70%) limits the depth of light penetration into
the polymerization layer and the monomer does not react completely. Therefore, in-vivo
photopolymerization must be carried out in thin layers, the thickness of which should not
exceed 1 mm.
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Despite significant progress in development of new photoinitiating systems for dental
composites, they still have several significant disadvantages mentioned above. There-
fore, research conducted around the world is aimed at developing dental compositions
that would provide durable fillings and would be completely safe for humans. This can
be achieved by eliminating from the dental composition’s cytotoxic amines and acrylate
monomers as well as camphorquinone which causes the yellow staining of the fillings. In
addition, the mechanical properties of the fillings should be improved, and the polymeriza-
tion shrinkage reduced. It should also be borne in mind that visible light must be used in
the curing process instead of harmful UV radiation.

The above-mentioned aspects and the progress in the applied technologies mean that
new photoinitiating systems based on different photosensitizers and co-initiators with
improved properties are still being sought.

Therefore, in this work we focused on modifying the structure of dyes based on
acenaphthoquinoxaline skeleton to obtain new colorless sensitizers operating in the visible
light region for an application in dentistry. To eliminate the mutagenic aromatic amines
from the photocurable composition, we used organic acids as co-initiators. The studies on
the effectiveness of the acid sensitization by acenaphthoquinoxaline derivatives were con-
ducted upon visible light irradiation using microcalorimetric method. The photoinitiating
ability of the tested photoredox pairs were compared with a camphorquinone, a typical
photoinitiator used in dentistry. Finally, the photopolymrization experiments were repeated
in the presence of dental filler, i.e., glass ionomer in order to check the photoinitiating
ability of the tested systems to obtain dental composites by radical photopolymerization.
The glass ionomers in dentistry are used as: underlay material, temporary filling material,
final filling material or sealing material [56,57].

2. Materials and Methods
2.1. Reagents

Reagents for the synthesis of the acenaphthoquinoxaline derivatives were purchased
from Alfa Aesar Co., Ward Hill, MA, USA (acenaphthoquinone, 1,2-diaminobenzene),
Sigma-Aldrich Co., Saint Louis, MI, USA (2,3-diaminopyridine, 2,3-diaminonaphthalene,
4-methoxy-1,2-diaminobenzene, 9,10-diaminophenanthrene), Acros Organics Co., Pitts-
burgh, PA, USA (3,4-diaminobenzoic acid, 1,2-diammonocyclohexane) and Fluorochem
Co., Hadfield, UK (2,3-diaminophenazine). Solvents for the synthesis and spectroscopic
measurements, i.e., acetic acid, ethyl acetate, 1-methyl-2-pyrrolidone (MP), chloroform
(CHCl3) and deuterate chloroform (CDCl3), dimethylsulfoxide (DMSO-d6) were supplied
by Sigma-Aldrich Co., Saint Louis, MI, USA.

Monomer, trimethylolpropane triacrylate (TMPTA), a commercial photoinitiator, cam-
phorquinone (CQ), and co-initiators, i.e., 2-mercaptobenzoxazole (MBX), (phenyltio)acetic
acid (PhTAA), phenoxyacetic acid (PhAA), 4-methoxyphenoxyacetic acid (MPhAA), (3,4-
dimethoxyphenylthio)acetic acid (diMPhTAA) were obtained from Sigma-Aldrich Co.,
Saint Louis, MI, USA, whereas N-phenyliminodiacetic acid (PhIDAA) was from Lancaster,
Spartanburg, United States. Dental material—glass ionomer Ketac Fil Plus powder was
purchased from the 3M-ESPE Co., Maplewood, NJ, USA.

Thin layer chromatography plates (DC-Plastikfolien Silica gel 60 F254, 0.2 mm) were
from Merck Co., Kenilworth, UK.

The structures of the co-initiators used are shown in Scheme 4. They are divided into
two groups, i.e., electron donors and a hydrogen atom donor.
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2.2. General Procedure for Synthesis of Acenaphthoquinoxaline Derivatives

The target molecules were synthesized by one-step reaction shown in Schemes 5 and 6.
The acenaphthoquinoxaline derivatives (AN1–AN8) were obtained by refluxing (ca. 3 h)
equimolar amounts of the corresponding diamines with acenaphthoquinone in glacial
acetic acid (40–60 mL) according to the method described in the literature [58–60]. The
progress of the reaction was monitored by thin layer chromatography on silica gel 60F
254 using chloroform as eluent. The precipitate formed after cooling down the reaction
mixture was filtered and then recrystallized from ethyl acetate to afford (about 70–80%)
the desired compound, usually pale (or light) yellow solid. The products were identified
spectroscopically. The 1H and 13C NMR spectra of all synthesized compounds are presented
in the ESI file. The structures of the synthesized chromophores (photosensitizers) are
presented in Schemes 5 and 6.

Materials 2021, 14, x FOR PEER REVIEW 5 of 23 
 

 

 

Scheme 4. The structure of the co-initiators used in the photopolymerizing composition. 

2.2. General Procedure for Synthesis of Acenaphthoquinoxaline Derivatives  

The target molecules were synthesized by one-step reaction shown in Schemes 5 and 

6. The acenaphthoquinoxaline derivatives (AN1–AN8) were obtained by refluxing (ca. 3 

h) equimolar amounts of the corresponding diamines with acenaphthoquinone in glacial 

acetic acid (40–60 mL) according to the method described in the literature [58–60]. The 

progress of the reaction was monitored by thin layer chromatography on silica gel 60F 

254 using chloroform as eluent. The precipitate formed after cooling down the reaction 

mixture was filtered and then recrystallized from ethyl acetate to afford (about 70–80%) 

the desired compound, usually pale (or light) yellow solid. The products were identified 

spectroscopically. The 1H and 13C NMR spectra of all synthesized compounds are pre-

sented in the ESI file. The structures of the synthesized chromophores (photosensitizers) 

are presented in Schemes 5 and 6. 

 

Scheme 5. Synthesis routes of acenaquinoxaline derivatives (AN1–AN4) differing in the number of 

conjugated double bonds and the type of the substituent. 
Scheme 5. Synthesis routes of acenaquinoxaline derivatives (AN1–AN4) differing in the number of
conjugated double bonds and the type of the substituent.



Materials 2021, 14, 4881 6 of 22
Materials 2021, 14, x FOR PEER REVIEW 6 of 23 
 

 

 

Scheme 6. Synthesis routes of acenaquinoxaline derivatives (AN5–AN8) differing in the arrange-

ment of aromatic rings (linear or angular) and the number and position of nitrogen atoms in the 

molecule. 

 8,9,10,11-Tetrahydroacenaphto[1,2-b]quinoxaline—AN1  

The compound was prepared using acenaphthequinone (1.0 g, 5.5 mmol) and 

1,2-diaminocyclohexane (0.626 g, 5.5 mmol) in 40 ml of glacial acetic acid; reflux 3 h. 

Obtained 0.5 g (71%) of light-yellow crystals, C18H14N2, 258.32 g/mol, m.p. 197–199 °C. 
1HNMR (CDCl3): 8.15–8.13 (d, 3JH,H = 8.0 Hz, 2H), 8.05–8.03 (d, 3JH,H = 8.0 Hz, 2H), 

7.78–7.75 (t, 2H), 7.61–7.59 (d, 3JH,H = 8.0 Hz, 2H), 7.16–7.12 (t, 2H), 6.84–6.82 (d, 3JH,H = 8.0 

Hz, 2H), 4.87 (s, 2H). 
13CNMR (CDCl3): 136.4, 135.0, 133.7, 131.8, 131.4, 130.7, 130.5, 128.2, 128.1, 128.0, 

124.6, 124.2, 40.4, 40.2, 40.0, 39.8, 39.6. 

 Acenaphto[1,2-b]quinoxaline—AN2  

The compound was prepared using acenaphthequinone (1.0 g, 5.5 mmol) and 

1,2-diaminobenzene (0.593 g, 5.5 mmol) in 80 ml of glacial acetic acid, reflux 3 h. Ob-

tained 1.1 g (79%) of cream crystals, C18H10N2, 254.29 g/mol, m.p. 238–240 °C. 
1HNMR (CDCl3): 8.71–8.69 (d, 3JH,H = 8.0 Hz, 2H), 8.43–8.40 (m, 2H), 8.24–8.22 (d, 3JH,H 

= 8.0 Hz, 2H), 7.96–7.92 (t, 2H), 7.90–7.87 (m, 2H). 
13CNMR (CDCl3): 153.5, 140.5, 136.6, 131.1, 129.9, 129.9, 129.6, 129.1, 128.8, 122.7 

 9-Methoxyacenaphto[1,2-b]quinoxaline—AN3  

The compound was prepared using acenaphthequinone (1.0 g, 5.5 mmol) and 

4-methoxy-1,2-diaminobenzene (1.15 g, 5.5 mmol) in 50 ml of glacial acetic acid, reflux 3 

h. Obtained 1.4 g (89%) of yellow crystals, C19H12N2O, 284.31 g/mol, m.p.195–196 °C. 
1HNMR (CDCl3): 8.36–8.34 (d, 3JH,H = 8.0 Hz, 1H), 8.32–8.30 (d, 3JH,H = 8.0 Hz, 1H), 

8.05–8.00 (m, 3H), 7.79–7.75 (m, 2H), 7.49–7.47 (d, 3JH,H = 8.0 Hz, 1H), 7.36–7.33 (m, 1H), 

3.95 (s, 3H, OCH3). 
13CNMR (CDCl3): 161.3, 151.3, 136.4, 136.0, 130.9, 130.7, 130.0, 129.9, 129.8, 129.7, 

129.4, 128.9, 128.6, 128.6, 128.4, 124.1, 122.8, 122.7, 56.1. 

 Acenaphto[1,2-b]quinoxaline-9-carboxylic acid—AN4  

The compound was prepared using acenaphthequinone (1.0 g, 5.5 mmol) and 

3,4-diaminobenzoic acid (0.834 g, 5.5 mmol) in 80 ml of glacial acetic acid, reflux 0.5 h. 

Obtained 1.12 g (80%) of cream crystals, C19H10N2O2, 298.30 g/mol, m.p. 212–215 °C. 
1HNMR (CDCl3): 13.46 (COOH, 1H), 8.72 (s, 1H), 8.50–8.48 (d, 3JH,H = 8.0 Hz, 2H), 

8.38–8.35 (m, 2H), 8.30 (s, 2H), 8.01–7.97 (t, 2H). 

Scheme 6. Synthesis routes of acenaquinoxaline derivatives (AN5–AN8) differing in the arrangement
of aromatic rings (linear or angular) and the number and position of nitrogen atoms in the molecule.

• 8,9,10,11-Tetrahydroacenaphto[1,2-b]quinoxaline—AN1

The compound was prepared using acenaphthequinone (1.0 g, 5.5 mmol) and 1,2-
diaminocyclohexane (0.626 g, 5.5 mmol) in 40 ml of glacial acetic acid; reflux 3 h. Obtained
0.5 g (71%) of light-yellow crystals, C18H14N2, 258.32 g/mol, m.p. 197–199 ◦C.

1HNMR (CDCl3): 8.15–8.13 (d, 3JH,H = 8.0 Hz, 2H), 8.05–8.03 (d, 3JH,H = 8.0 Hz, 2H),
7.78–7.75 (t, 2H), 7.61–7.59 (d, 3JH,H = 8.0 Hz, 2H), 7.16–7.12 (t, 2H), 6.84–6.82 (d, 3JH,H = 8.0 Hz,
2H), 4.87 (s, 2H).

13CNMR (CDCl3): 136.4, 135.0, 133.7, 131.8, 131.4, 130.7, 130.5, 128.2, 128.1, 128.0,
124.6, 124.2, 40.4, 40.2, 40.0, 39.8, 39.6.

• Acenaphto[1,2-b]quinoxaline—AN2

The compound was prepared using acenaphthequinone (1.0 g, 5.5 mmol) and 1,2-
diaminobenzene (0.593 g, 5.5 mmol) in 80 ml of glacial acetic acid, reflux 3 h. Obtained
1.1 g (79%) of cream crystals, C18H10N2, 254.29 g/mol, m.p. 238–240 ◦C.

1HNMR (CDCl3): 8.71–8.69 (d, 3JH,H = 8.0 Hz, 2H), 8.43–8.40 (m, 2H), 8.24–8.22 (d,
3JH,H = 8.0 Hz, 2H), 7.96–7.92 (t, 2H), 7.90–7.87 (m, 2H).

13CNMR (CDCl3): 153.5, 140.5, 136.6, 131.1, 129.9, 129.9, 129.6, 129.1, 128.8, 122.7

• 9-Methoxyacenaphto[1,2-b]quinoxaline—AN3

The compound was prepared using acenaphthequinone (1.0 g, 5.5 mmol) and 4-
methoxy-1,2-diaminobenzene (1.15 g, 5.5 mmol) in 50 ml of glacial acetic acid, reflux 3 h.
Obtained 1.4 g (89%) of yellow crystals, C19H12N2O, 284.31 g/mol, m.p.195–196 ◦C.

1HNMR (CDCl3): 8.36–8.34 (d, 3JH,H = 8.0 Hz, 1H), 8.32–8.30 (d, 3JH,H = 8.0 Hz, 1H),
8.05–8.00 (m, 3H), 7.79–7.75 (m, 2H), 7.49–7.47 (d, 3JH,H = 8.0 Hz, 1H), 7.36–7.33 (m, 1H),
3.95 (s, 3H, OCH3).

13CNMR (CDCl3): 161.3, 151.3, 136.4, 136.0, 130.9, 130.7, 130.0, 129.9, 129.8, 129.7,
129.4, 128.9, 128.6, 128.6, 128.4, 124.1, 122.8, 122.7, 56.1.

• Acenaphto[1,2-b]quinoxaline-9-carboxylic acid—AN4

The compound was prepared using acenaphthequinone (1.0 g, 5.5 mmol) and 3,4-
diaminobenzoic acid (0.834 g, 5.5 mmol) in 80 ml of glacial acetic acid, reflux 0.5 h. Obtained
1.12 g (80%) of cream crystals, C19H10N2O2, 298.30 g/mol, m.p. 212–215 ◦C.

1HNMR (CDCl3): 13.46 (COOH, 1H), 8.72 (s, 1H), 8.50–8.48 (d, 3JH,H = 8.0 Hz, 2H),
8.38–8.35 (m, 2H), 8.30 (s, 2H), 8.01–7.97 (t, 2H).
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13CNMR (CDCl3):167.1, 155.3, 154.7, 143.3, 140.4, 136.6, 131.9, 131.5, 131.1, 131.1, 131.0,
130.7, 130.2, 130.2, 129.6, 129.4, 123.1, 123.0.

• Acenaphto[1,2-b]pirydo[2,3-e]pyrazine—AN5

The compound was prepared using acenaphthequinone (1.0 g, 5.5 mmol) and 2,3-
diaminopyridine (0.599 g, 5.5 mmol) in 40 ml of glacial acetic acid, reflux 2 hours. Obtained
1.22 g (75%) of yellow crystals, C17H9N3, 255.27 g/mol, m.p. 223–225 ◦C.

1HNMR (CDCl3): 9.20 (d, 1H), 8.75–8.73 (d, 3JH,H = 8.0 Hz, 1H), 8.64–8.62 (d, 3JH,H =
8.0 Hz, 1H), 9.51–8.49 (d, 3JH,H = 8.0 Hz, 1H), 8.25–8.22 (m, 2H), 7.97–7.91 (m, 2H), 7.86–7.83
(m, 1H).

13CNMR (CDCl3): 157.1, 154.9, 152.3, 150.5, 138.4, 137.2, 136.4, 131.1, 130.8, 130.2,
130.0, 129.9, 128.9, 128.6, 124.2, 123.3, 122.3.

• Acenaphto[1,2-b]benzo[g]quinoxaline—AN6

The compound was prepared using acenaphthequinone (1.0 g, 5.5 mmol) and 2-
aminonaphthalene (0.87 g, 5.5 mmol) in 60 ml of glacial acetic acid, reflux 2 hours. Obtained
1.18 g (70%) of yellow crystals, C22H12N2, 304.35 g/mol, m.p. 353–354 ◦C.

1HNMR (CDCl3): 8.72 (s, 2H), 8.44–8.42 (d, 3JH,H = 8.0 Hz, 2H), 8.09–8.07 (m, 4H),
7.84–7.80 (m, 2H), 7.56–7.52 (m, 2H).

13CNMR (CDCl3): 138.3, 135.2, 134.2, 133.7, 130.9, 130.7, 130.3, 130.2, 130.1, 129.9,
129.7, 129.4, 129.0, 128.8, 128.8, 128.6, 128.5, 127.8, 127.4, 127.1, 127.1, 127.0.

• Acenaphto[1′,2′:5,6]pyrazine[2,3-b]phenazine—AN7

The compound was prepared using acenaphthequinone (1.0 g, 5.5 mmol) and 2,3-
diaminophenzine (1.16 g, 5.5 mmol) in 60 ml of glacial acetic acid, reflux 2 hours. Obtained
1.23 g (87%) of yellow crystals, C24H12N4, 256.38 g/mol, m.p. 265–268 ◦C.

1HNMR (CDCl3): 8.69–8.67 (d, 3JH,H = 8.0 Hz, 2H), 8.50–8.48 (d, 3JH,H = 8.0 Hz, 2H),
8.28–8.25 (d, 3JH,H = 12Hz, 2H), 8.00–7.96 (m, 4H), 7.40 (s, 1H), 7.0 (s, 1H).

• Dibenzoacenaphto[1,2-b]quinoxaline—AN8

The compound was prepared using acenaphthequinone (1.0 g, 5.5 mmol) and 9,10-
diaminophenanthene (1.14 g, 5.5 mmol) in 60 ml of glacial acetic acid, reflux 0.5 h. Obtained
1.60 g (82%) of yellow crystals, C26H14N2, 354.41 g/mol, m.p. 284–285 ◦C.

1HNMR (CDCl3): 9.46–9.43 (t, 1H), 8.95-8.93 (t,1H), 8.61–8.59 (d, 3JH,H = 8.0 Hz, 1H),
8.46–8.44 (d, 3JH,H = 8.0 Hz, 1H), 8.38–8.36 (d, 3JH,H = 8.0 Hz, 1H), 8.1 (m, 3H), 8.1–8.01 (m,
2H), 7.94–7.91 (m, 4H).

2.3. Methods

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Ascend™
400 NMR spectrophotometer, Billerica, United States in deuterated dimethylsulfoxide
(DMSO-d6) or deuterated chloroform (CDCl3).

Electronic absorption spectra were recorded on a Shimadzu UV-1280 spectropho-
tometer, Kioto, Japan. Steady-state fluorescence and phosphorescence spectra were per-
formed on a Hitachi F-7100 spectrometer, Tokio, Japan. The fluorescence measurements
were carried out at room temperature whereas the phosphorescence spectra were ob-
tained at a liquid nitrogen temperature. All experiments were performed in an anhydrous
ethanol (EtOH).

The measurements of both the oxidation and reduction potentials of the synthesized
dyes and electron donors were made in a 0.1 M tetrabutylammonium perchlorate in
anhydrous acetonitrile using an Electroanalytical MTM System (Krakow) Model EA9C-
4z, EA, Krakow, Poland. A platinum 1 mm disk electrode was used as the working
electrode, a Pt wire constituted the counter electrode, and Ag-AgCl electrode served as a
reference electrode.

The kinetics of photoinitiated polymerization were investigated by a microcalorimetric
method [29] recording changes in the heat evolution at constant time intervals (every 1 s)
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during polymerization. The thermo-sensitive diode was used as a temperature sensor.
A Cromalux 75 dental lamp, Mega Physik, Rastatt, Germany with a beam intensity of
30 mW was applied as the light source. Its intensity was checked using a Field Master
meter by Coherent. The distance of the sample from the light source was the same for all
measurements. Each measurement was repeated at least three times.

The photopolymerization compositions consisted of 0.9 g of TMPTA, 0.1 mL of MP,
photosensitizer and co-initiator. The concentration of the synthesized compounds (photo-
sensitizers) varies from 8.0 × 10−2 mol dm−3 to 2.3 × 10−4 mol dm−3 depending on their
molar absorption coefficient. The concentration of the co-initiators was 0.1 mol dm−3.

In order to compare the initiating efficiency of the polymerization reaction by the
tested systems, a commercial photoinitiator, camphorquinone (CQ), was also used. Its
concentration was 0.675 mol dm−3.

The polymerization process with the addition of glass ionomer was carried out in
a Teflon ring with a diameter of 10 mm and a thickness of 3 mm. The ratio of monomer
composite to fillers was 3:7. The photopolymerization time was 30 s. The incident light of
the dental lamp covered the entire surface of the ring. Its intensity was 30 mW/cm2.

3. Results
3.1. Molecular Design and Synthetic Procedures

The structures of acenaphthoquinoxaline derivatives have been modified to adjust
their spectroscopic properties, especially absorption properties, so as to obtain compounds
suitable to effectively initiate polymerization upon visible light irradiation. They differ in
the number of conjugated double bonds as well as the type of substituent, i.e., an electron
acceptor (–COOH) and electron donor (–OCH3) groups. The modification was also aimed
at obtaining dyes with a different arrangement of aromatic rings (linear or angular) and
the number and position of nitrogen atoms in the molecule.

The acenaphthoquinoxaline (AN1–AN8) derivatives were synthesized by the conden-
sation of the appropriate diamines with acenaphthoquinone in glacial acetic acid according
to the method described in literature [58–60] and shown in Schemes 5 and 6. The structure
and purity of the dyes were verified by NMR spectroscopy. The lack of an amino group
signal in the 1H NMR (at 3.0–5.0 ppm) spectra confirmed the formation of a condensation
product with a characteristic –C=N– bond (signal at 150.0–160.0 ppm in the 13C NMR
spectra). The presence of signals from all protons and carbons in the NMR spectra proves
that the dyes have the desired structure. All synthesized compounds (AN1–AN8) were
obtained as light yellow or cream crystals, which also showed a pale-yellow color upon
dissolution. This is very important considering their potential use in dentistry, as it allows
you to obtain natural shades of fillings.

3.2. Spectroscopic Properties

The electronic absorption spectra of the synthesized dyes were recorded in anhydrous
ethanol and are shown in Figure 1. Based on them, the wavelength at the maximum
absorption (λmax) and the molar absorption coefficients (ε) were determined (Table 1).
Despite the absorption maximum is in the range of 316–363 nm, the absorption bands
of the tested dyes are wide and overlap the visible area. Thanks to this, they are able to
absorb the light emitted by the dental lamp. Moreover, their molar absorption coefficients
at 400 nm range from about 675 dm3 mol−1 cm−1 to 2350 dm3 mol−1 cm−1 and are higher
than that of camphorquinone (8 dm3 mol−1 cm−1 and 40 dm3 mol−1 cm−1 at 400 nm and
472 nm in ethyl acetate, respectively), which is the standard photoinitiator in dentistry. The
molar absorption coefficients of the acenaphthoquinoxaline (AN1–AN8) derivatives range
from 27,200 to 189,900 dm3 mol−1 cm−1 depending on their structure.
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Figure 1. Normalized electron absorption spectra of selected dyes differing in structure, recorded in
anhydrous ethanol; inset: fragments of the electronic absorption spectra of the dyes in the area of
light emission of a dental lamp.

Table 1. Basic spectroscopic properties for the dyes tested in ethanol.

Compound λAb
max, nm εmax, dm3 mol−1 cm−1 λFl

max, nm λPh
max, nm ∆νSt, cm−1

AN1 316 27,200 385.4

530.6

5699
547.2
574.2
621.4

AN2
317 65,200

427.6
541.4

5432347 14,600 587.8

AN3 327 82,400 449
544.8

8309592.2

AN4 321 92,000 395.6
542.4

5875589.4

AN5 319 110,100 362.6
539.6

3769586.0

AN6 335 145,800 529.8
543.4

10976586.8

AN7
347 170,000

452.8
546.8

5076363 189,900 585.2

AN8 339 146,200 473.4
522.4

8375561.4

CQ 1 472 40 - - -
1 measured in ethyl acetate.

The data collected in Table 1 and shown in Figure 1 clearly indicate that the absorption
band position of the dyes depends on the number of conjugated double bonds (AN1, AN2,
AN6), the presence of electron donating (–OCH3) and electron withdrawing (–COOH)
substituents (AN2, AN3, AN4), the arrangement of aromatic rings (linear or angular)
(AN2, AN5, AN7), as well as the number and position of nitrogen atoms (AN2, AN6,
AN8). It was observed that the modification of acenaphthoquinoxaline skeleton in all
cases changed the shape of the absorption band and shifted its maximum towards longer
wavelengths by about 1–47 nm (bathochromic effect) compared to the AN1 compound.
The observed effect is in agreement with the electron theory of the color of dyes [61,62].
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According to this theory, organic compounds having single bonds, regardless of their
number, absorb light in the ultraviolet region (AN1). With the growth of closed, conjugated
double bonds, the π-electron excitation energy decreases, and thus the absorption shifts
to the longer wavelength region of the spectrum, which leads to the appearance of color.
The introduction of a heteroatom into the conjugated aromatic system does not have a
significant effect on the absorption of light, e.g., the π→π* absorption bands of AN2 and
AN5 do not differ in their position. There are, however, clear differences in the intensity of
the bands. The introduction of an electron donating substituent, e.g., a methoxy group, in
any position to aromatic molecules always causes a bathochromic effect (AN3 vs. AN2),
because this substituent is capable of donating non-binding electrons to the conjugated
system (partial charge transfer from the oxygen atom to the benzene ring takes place). The
red shift of the absorption band is also caused by electron acceptor substituents introduced
into the conjugated molecules, e.g., a carboxyl group due to the delocalization of the π

electrons even in the ground state (AN4 vs. AN2). However, the effect is not significant for
the tested dyes.

It is well known that a pre-requisite for photoluminescence is the ability of a molecule
to absorb light radiation leading to electronic excitation. A molecule with an enlarged stiffen
structure besides fluorescence can store the absorbed energy for some time and release light
later as phosphorescence [63]. Emission spectra provide valuable information about the
excited states of a molecule and about the mechanism of energy transfer between molecules
or different states of the same molecule [64]. Both fluorescence and phosphorescence were
observed for the tested dyes.

Figure 2 shows the fluorescence spectra of the selected dyes recorded in anhydrous
ethanol at room temperature (RT).
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Figure 2. Normalized fluorescence spectra of selected compounds recorded in anhydrous ethanol at
RT showing the influence of the dye structure on the position of the fluorescence band; Ex = 325 nm.

As in the case of electronic absorption spectra, the position of the fluorescence max-
imum of the acenaphthoquinoxaline derivatives depends on their structure. The data
presented in Figure 2 illustrate the bathochromic effect observed as a result of the dye
structure modification. The compound AN1 has double-like fluorescence with strong peak
at ca. 385 nm. The fluorescence maximum of AN2 and AN3 is at 428 nm and 449 nm,
respectively, showing a gradual red shift with an increase in the number of conjugated dou-
ble bonds (AN1 vs. AN2) and the introduction of electron donating (–OCH3) substituents
(AN2 vs. AN3) and reaches 530 nm for dye AN6 (Table 1). The fluorescence maximum of
the compound AN7 with a larger system of conjugated double bonds, i.e., two additional
aromatic rings, is at 445 nm. So, the dye reveals hypsochromic shift in fluorescence band
position compared to AN6 and bathochromic shift with respect to AN2. This means that the
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additional nitrogen atoms in the dye molecule is responsible for shifting the fluorescence
spectrum to the shorter wavelength (higher frequency) region. A similar blue shift is
observed for compound AN8 with an angular arrangement of aromatic rings compare
to AN6, and AN4 having an electron withdrawing (–COOH) substituent with respect to
AN2. For acenaphthoquinoxaline derivatives with increasing conjugated double bonds,
the fluorescence spectra become structureless and the bands broaden.

The large Stokes shifts (such as 10,976 cm−1 for AN5) and the broadening of the
emission bands indicate an intramolecular charge transfer (ICT) character for the excited
state [65]. A lack of symmetry between the absorption and emission spectra, as shown in
Figure 3 (the remaining spectra are given in Supporting Information, Figure S1), suggests a
structural relaxation of the Franck-Condon singlet excited state.
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Figure 3. Electronic absorption (Ab), fluorescence (Fl) and phosphorescence (Ph) spectra of 

acenaphto[1,2-b] quinoxaline (AN2) in anhydrous ethanol; the absorption and fluorescence spectra 
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Figure 3. Electronic absorption (Ab), fluorescence (Fl) and phosphorescence (Ph) spectra of
acenaphto[1,2-b] quinoxaline (AN2) in anhydrous ethanol; the absorption and fluorescence spectra
were recorded at RT whereas the phosphorescence spectra were recorded at 77 K; Ex = 325 nm.

Since the triplet state energy is lower than the corresponding singlet state energy, the
phosphorescence spectrum is expected to be a longer wavelength than the fluorescence
spectrum [64]. The spectra presented in Figure 3 illustrate the relationships between the
absorption and emission spectra for the studied dyes. The position of the phosphorescence
maxima of the acenaphthoquinoxaline derivatives are summarized in Table 1.

The formation of the triplet state is a desirable feature for the application of dyes as
sensitizers in visible light photoinitiating systems [21,66]. Since the energy of the visible
light is not enough to homolytic cleavage of the bond in the dye molecule, radicals, active in
the initiation of polymerization, are formed in bimolecular processes, i.e., the photoinduced
intermolecular electron transfer (PET) process [67–71], in which absorbed photons initiate
an electron transfer from an electron donor molecule to an electron acceptor molecule.
This process is effective if both molecules are at the appropriate distance from each other.
Thus, in two-component photoinitiating systems without electrostatic interactions in the
ground state, diffusion and the excited state lifetime of the molecule play an important
role. The main steps of the photoinitiation mechanism are the quenching of the excited
singlet or triplet state of the chromophore and subsequent post-reactions that produce
free radicals. Since the lifetime of the excited triplet state is much longer than that of the
singlet state [63], the PET process is more efficient. As illustrated in Figures 3 and S1,
the synthesized acenaphthoquinoxaline derivatives form a long-lived triplet state, which
makes them effective chromophores in two-component photoinitiating systems containing
a suitable co-initiator (electron donor or hydrogen atom donor).
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3.3. Kinetic Study of Multifunctional Acrylate Polymerization
3.3.1. Effect of Photoinitiator Structure

Figures 4 and 5 show the TMPTA radical polymerization curves initiated by syn-
thesized dyes in the presence of diMPhTAA as an electron donor. The analysis of the
curves and the rates of photoinitiated polymerization, Rp collected in Table 2 shows that
the efficiency of TMPTA photoinitiation significantly depends on the structure of the
acenaphthoquinoxaline derivatives.
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Figure 4. Family of kinetic curves recorded during the measurements of the heat flow emitted in 
the course of TMPTA polymerization photoinitiated by couples consisting of tested dyes and 
diMPhTAA co-initiator. The dyes used differ in: (a) the type of substituent; (b) the number of 
conjugated double bonds; (c) the arrangement of aromatic rings; (d) the number and position of the 
nitrogen atoms. The plots illustrate the effect of the sensitizer structure on the initiation efficiency 

Figure 4. Family of kinetic curves recorded during the measurements of the heat flow emitted in the course of TMPTA
polymerization photoinitiated by couples consisting of tested dyes and diMPhTAA co-initiator. The dyes used differ in: (a)
the type of substituent; (b) the number of conjugated double bonds; (c) the arrangement of aromatic rings; (d) the number
and position of the nitrogen atoms. The plots illustrate the effect of the sensitizer structure on the initiation efficiency
of TMPTA polymerization. The co-initiator concentration was 0.1 M, optical density of the dyes was 1.8 at an excitation
wavelength (400 nm), light intensity of dental lamp was 30 mW/cm2.
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Figure 5. Family of kinetic curves recorded during the measurements of the heat flow emitted in the course of TMPTA
polymerization photoinitiated by either (a) AN3 or (b) AN6 paired with different co-initiators (0.1 M); �—diMPhTAA,
H—PhIdiAA, •—PhTAA, J—MPhAA, �—PhAA. The plots illustrate the effect of the electron donor on the initiation
efficiency of TMPTA polymerization. The co-initiator concentration was 0.1 M, optical density of the dyes was 1.8 at an
excitation wavelength (400 nm), light intensity of dental lamp was 30 mW/cm2.

Table 2. Initial rate of photoinitiated polymerization (Rp) for the tested photoredox pairs.

Dye
Rp, µmol/s

PhAA MPhAA PhTAA diMPhTAA PhIdiAA MBX

AN1 1.4 9.2 6.5 14.0 12.5 12.8
AN2 3.9 22.6 17.9 35.9 29.9 33.1
AN3 9.0 44.4 39.7 68.1 55.7 57.1
AN4 5.3 42.5 21.9 52.3 40.8 46.1
AN5 3.2 21.3 13.2 29.2 25.3 28.7
AN6 10.2 80.2 61.5 116.1 90.4 91.2
AN7 1.3 10.0 7.2 14.0 13.8 13.1
AN8 7.3 47.1 38.1 72.8 65.1 65.4
CQ 15.8 82.3 71.4 129.7 107.8 93.6

As shown above, the presence of an electron donating (–OCH3) or an electron with-
drawing (–COOH) substituents, the increase in the number of conjugated double bonds,
the arrangement of aromatic rings, and the number and location of nitrogen atoms in dye
molecule causes a significant variation in the photoinitiating abilities of the two-component
systems. The acenaphthoquinoxaline derivative with an electron donating substituent
(AN3) in the quinoxaline ring reveals better photoinitiating abilities than AN2. Also, an
increase in the number of double bonds due to the presence of an additional aromatic
ring (AN6), increases the rate of TMPTA polymerization. In turn, acenaphthoquinoxaline
derivatives containing three and four nitrogen atoms in the molecule (AN5 and AN7)
sensitize the initiation of the chain reaction ineffectively.

A crucial effect on the rates of TMPTA radical polymerization also has the type of
co-initiator and its property. This is fully confirmed by the data shown in Figure 6 for
two sensitizers AN3 and AN6. The choice of electron donors was based on our previous
research on the photoinitiated polymerization process [19,23,29,72,73]. In order to evaluate
the effect of the different co-initiators on the photoinitiating abilities of the tested photore-
dox pairs, PhAA was used as a benchmark electron donor. Analysis of the results shown
that the presence of an oxygen atom in the co-initiator structure (PhAA) reduces the value
of the photopolymerization rate compared to the electron donors containing the sulfur
atom (PhTAA) and the nitrogen atom (PhIdiAA). This is connected with a more efficient
PET process due to different reactivity of the radicals obtained during secondary reactions
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that follow the electron transfer process. The following radicals are formed from the co-
initiators: C6H5O

.
CHCOOH and C6H5O

.
CH2 from phenoxyacetic acid, C6H5S

.
CHCOOH

and C6H5S
.
CH2 from thiophenoxyacetic acid and C6H5NH

.
C(COOH)2 and C6H5NH

.
CH2

from N-phenyiminodiacetic acid. This is confirmed by the analysis of products formed
from the electron donors under photoreduction conditions. For example, the thiophenoxy-
acetic acid used as an electron donor gives thioanisole, thiophenol, CO2 and diphenyl
disulfide [74]. Our studies [75] based on the 1H-NMR technique with the use of stan-
dards showed that the post-reaction mixture also contained bis(phenylthioethane) and
bis(phenylthiomethane).
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Figure 6. Comparison of the photoinitiation ability of the acenaphto[1,2-b]benzo[g]quinoxaline
(AN6) to the camphorquinone (CQ). The tested photoinitiating systems possess the same co-initiator,
(3,4-dimethoxyphenylthio)acetic acid (diMPhTAA), and different light absorber (sensitizer). The
kinetic curves were recorded during the measurements of the heat flow emitted in the course of
TMPTA polymerization photoinitiated by �—AN6–diMPhTAA and H—CQ–diMPhTAA couples.
The co-initiator concentration was 0.1 M, optical density of the sensitizers was 1.8 at an excitation
wavelength (400 nm), light intensity of dental lamp was 30 mW/cm2.

In the case of PhIdiAA, the heteroatom the presence of second carboxylic group
is responsible for the increase of the rate of TMPTA polymerization. According to the
literature data [76], it is known that initiation mechanism based on carboxylic acids obeys
proton transfer with the possibility of a decarboxylation process to form radicals, which
initiate polymerization (Scheme 2).

The results also revealed that the co-initiators containing a methoxy group (MPhAA,
MPhTAA) show good photoinitiating ability. The initial rates of photoinitiated polymeriza-
tion containing diMPhTAA as an electron donor paired with AN1–AN8 dyes were approxi-
mately 10 times faster than the polymerization rates obtained in the presence of PhAA and
ca. twice in respect to MPhTAA. The methoxy group in the electron donor molecule favors
the increase of the photopolymerization rate probably because they have lower oxidation
potential (1.170 V—MPhTAA and 0.779 V—diMPhTAA) than PhAA (1.450 V) (Table 3),
which facilitates the electron donation in the PET process.
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Table 3. The oxidation potentials of the electron donors used.

Electron Donor Eox [V]

PhAA 1.450
MPhAA 1.170
PhTAA 1.076

diMPhTAA 0.779
PhIdiAA 0.718

To verify the photoinitiating ability of the tested systems, the initial rates of rad-
ical polymerization photoinitiated by acenaphthoquinoxaline derivative (AN1–AN8)—
carboxylic acid couples were comparable to the rate obtained for a polymerization initiated
by CQ commercial photoinitiator used in dentistry (Figure 6). To keep the same experimen-
tal conditions (number of absorbed photons), the concentration of CQ in the composition
was 160 times higher than the tested sensitizers due to lower molar absorption coefficient
in the visible range (8 dm3 mol−1 cm−1 vs. 1300 dm3 mol−1 cm−1 at 400 nm). This made it
possible to obtain thick polymer layers (3 mm) that did not contain significant amounts
(approx. 0.675 M) of unreacted CQ and products resulting from its decomposition during
the photochemical reaction. The temperature of the photopolymerization process initiated
by the acenaphthoquinoxaline—acetic acid systems was lower than that of the commercial
photoinitiator, which allows the safe use of these systems in dentistry. In addition, the
initial rates of TMPTA polymerization are similar and the hard polymer glaze is obtained
after ca. 30 seconds of irradiation (Figure 6).

3.3.2. Influence of Thermodynamics Parameter

The radical polymerization initiated by the intermolecular electron transfer mech-
anism proceeds through many stages, the main of which is electron transfer from the
electron donor molecule to the electron acceptor molecule in the singlet (or triplet) excited
state. The photoinduced electron transfer process is limited, inter alia, by thermodynamic
factors, i.e., the thermodynamic potential of an activation of the electron transfer pro-
cess, ∆Gel. The value of ∆Gel can be determined experimentally using the Rehm–Weller
Equation (1): [69,77]

∆Gel = Eox − Ered −
Ze2

εa
− E00

T (1)

where: Eox is the oxidation potential of the co-initiator, Ered is the reduction potential of
the dyes, E00

T is the excited state energy (the energy of T1→S0 transition), and Ze2/εa is the
Coulombic energy, which is considered negligible with respect to the overall magnitude of
the ∆G in the present system.

To calculate ∆Gel, it is necessary to know the oxidation potential of the co-initiators
(Table 3), the reduction potential of the electron acceptors (Table 4) and the transition energy
T1→S0. The determined values of ∆Gel are summarized in Table 4. The ∆Gel values for the
tested photoredox pairs are in the range of −0.130 eV to −0.471eV (from −12 kJ mol−1 to
−45 kJ mol−1). The negative values of ∆Gel indicate the photoinduced electron transfer
process is thermodynamically allowed.
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Table 4. The reduction potential (Ered) of the dyes, transition energy T1→S0 (E00
T ) and the thermody-

namic potential of an activation of the electron transfer process (∆Gel).

Dye Ered, V E00
T , eV 1 ∆Gel, eV

AN1 −1.482 2.33 −0.130
AN2 −1.401 2.29 −0.171
AN3 −1.284 2.27 −0.268
AN4 −1.422 2.36 −0.220
AN5 −1.401 2.30 −0.181
AN6 −1.091 2.28 −0.471
AN7 −1.398 2.26 −0.144
AN8 −1.335 2.37 −0.317

1 ∆Gel calculated for PhIdiAA (Eox = 0.718 V) as the co-initiator.

Equation (2) indicates that if the process of intermolecular electron transfer between
the excited dye molecule and the electron donor molecule limits a polymerization rate, a
parabolic relationship between the polymerization rate and the thermodynamic potential
of an activation of the electron transfer process, ∆Gel should be observed [68,70,78].

ln Rp = A− (λ + ∆Gel)
2

8λRT
(2)

where: A for the initial time of polymerization is:

A = ln kp − 0.5 ln kt + 1.5 ln[M] + 0.5 ln IA (3)

where: kp and kt are the polymerization and termination rate constant, respectively, [M] is
the monomer concentration, IA is intensity of absorbed light, λ is the reorganization energy
necessary to reach the transition states of both excited molecule and solvent molecules.

The correlation resulting from Equation (2) is shown in Figure 7.
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Figure 7. The dependence of the initial polymerization rate on the thermodynamic potential of
an activation of the electron transfer process from the electron donor to the excited triplet state of
acenaphthoquinoxaline dyes.

According to the plot shown in Figure 7, the correlation between the initial polymer-
ization rate and the thermodynamic activation potential of the electron transfer process
is a fragment of the parabola, which indicates that the tested photoredox pairs behave in
accordance with the classical theory of photoinduced electron transfer process [70,71]. The
PET process is a polymerization rate-limiting process. Experimental points are located in
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the so-called normal Marcus region, i.e., the region where the rate of the process increases
as its driving force increases [67,68,70,71].

3.3.3. Photoinitiation by Hydrogen Atom Transfer Mechanism

In addition to the PET mechanism, other classical photochemical reactions can be
used to generate radicals initiating the polymerization reaction, i.e., the abstraction of a
hydrogen atom from the proton donor molecule by the dye in the excited state (Scheme 3).
The resulting radicals can recombine to give various products. The rate of the photoinduced
hydrogen transfer process depends on the energy needed to break the bond between
hydrogen atom and the rest of the hydrogen donor molecule. Typical hydrogen donors
are: alcohols, amines, thiols, phenols and others, while the most commonly used hydrogen
acceptors are: benzophenone, Michler’s ketone, thioxanthone derivatives, benzil and
anthraquinone [14].

The 2-mercaptobenzoxazole (MBX) was used as hydrogen atom donor in our studies.
Analysis of the polymerization curves shown in Figure 8 reveals that the synthesized
dyes are effective sensitizers for hydrogen atom donors and the photoinitiation of the
polymerization reaction can also take place through the mechanism of intermolecular
hydrogen atom transfer.
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Figure 8. Comparison of the acrylate monomer polymerization initiated by either an electron transfer
or hydrogen atom transfer mechanism. The tested photoinitiating systems possess the same light
absorber, acenaphto[1,2-b]benzo[g]quinoxaline (AN6) and different co-initiator, i.e., an electron donor
H—diMPhTAA and a hydrogen atom donor �—MBX. The kinetic curves were recorded during the
measurements of the heat flow emitted in the course of TMPTA polymerization. The co-initiator
concentration was 0.1 M, optical density of the sensitizers was 1.8 at an excitation wavelength
(400 nm), light intensity of dental lamp was 30 mW/cm2.

The data collected in Table 2 indicates that the photopolymerization rates obtained for
the photocurable compositions containing MBX as the hydrogen atom donor are compara-
ble with the compositions containing the diMPhTAA electron donor.

In summary, the obtained acenaphthoquinoxaline derivatives can be used as sensitiz-
ers in visible light photoinitiator systems containing as co-initiator both electron donors
and hydrogen atom donors. The radicals initiating the TMPTA polymerization in the tested
systems are formed by the intermolecular electron transfer mechanism, followed by a
proton transfer between the components of the radical ion pair or decarboxylation of the
radical cation depending on the polarity of the solvent or the abstraction of the hydrogen
atom from 2-mercaptobenzoxazole in the case of hydrogen atom transfer photoinitiators.
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3.3.4. Dental Test Composition

As stated above, the tested photoinitiator systems are very promising candidates for
practical application in dentistry; therefore we performed polymerization experiments in
the presence of a glass ionomer, the filler for dental fillings. The glass ionomer material
includes fluor-aluminum-silicon glass and organic acids. Figure 9 shows the prepared
photoinitiating compositions, the glazes obtained in the photopolymerization process and
the fillings resulting from the photopolymerization initiated by the tested systems.
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Figure 9. Comparison of the acrylate monomer polymerization photoinitiated by couples consisting
of tested dyes and diMPhTAA co-initiator in the presence and absence of a glass ionomer, a filler for
dental fillings. The co-initiator concentration was 0.1 M, optical density of the sensitizers was 1.8 at an
excitation wavelength (400 nm), light intensity of dental lamp was 30 mW/cm2. (a) Photoinitiating
compositions containing AN2 (left), AN3 (center) and AN8 (right) sensitizers, respectively, (b) glazes
obtained upon irradiation of the photoinitiating compositions without a dental filler and (c) dental
fillings resulting from polymerization of the photoinitiating compositions containing a filler.

It is clearly seen that the photoinitiating composition containing filler, i.e., the glass
ionomer, upon dental lamp irradiation, gave the natural color dental fillings (Figure 9c).
What is more, low concentration of the sensitizers in the photopolymerizing composition
ca. 10−4 mol dm−3 allows for obtaining thick polymer layers of about 3 mm. This suggests
that the two-component photoinitiating systems based on the synthesized dyes and acetic
acids tested may have potential applications in dentistry.

4. Conclusions

Modification of acenaphthoquinoxaline skeleton resulted in dyes that differed in the
type of substituents, the number of conjugated double bonds, the arrangement of aromatic
rings, as well as the number and location of nitrogen atoms in the molecule. The modi-
fication of the structure influences the spectral properties of the tested compounds. The
acenaphto[1′,2′:5,6]pyrazine[2,3-b]phenazine (AN7) reveals the most significant redshift
of the absorption band with maximum at 347 nm and 363 nm, caused by the extended
system of the conjugated double bonds in the linear arrengement of aromatic rings. This
means that the absorption maxima of the synthesized compounds are located in the near
ultraviolet region. However, since their absorption bands overlap the visible region, they
have been tested as photoinitiators of acrylate polymerization operating upon the dental
lamp irradiation.

The synthesized dyes in the photo-curable composition act as photosensitizers, which
paired with organic acids, initiate the TMPTA radical polymerization. The radicals initi-
ating TMPTA polymerization are formed by the intermolecular electron transfer mech-
anism, followed by a proton abstraction and decarboxylation, or by the intermolecu-
lar proton (hydrogen atom) transfer mechanism in the case of 2-meracptobenzoxazole
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used as co-initiator. The acenaphto[1,2-b]benzo[g]quinoxaline (AN6) coupled with (3,4-
dimethoxyphenylthio)acetic acid (diMPhTAA) shows the best photoinitiating abilities with
a polymerization rate of 116.1 µmol/s. The efficiency of this photoinitiating system is
comparable to the commercial photoinitiator, camphorquinone.

Results show that the synthesized acenaphthoquinoxaline dyes are effective photo-
sensitizers of carboxylic acids (PhAA, MPhAA, PhTAA, diMPhTAA, PhIdiAA), which can
replace mutagenic aromatic amines in the photo-curable composition. The polymerization
of acrylic monomers photoinitiated by the tested systems in the presence of glass ionomer,
a filler in dental fillings, gives permanent fillings with a natural white color. This suggests
that the two-component photoinitiating systems tested may have potential applications
in dentistry.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14174881/s1, 1H and 13C NMR spectra of the synthesized compounds. Figure S1: Nor-
malized electronic absorption, fluorescence and phosphorescence spectra of the dyes in anhydrous
ethanol illustrating the influence of dye structure on the bands position.
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16. Kucybała, Z.; Wrzyszczyński, A. Photolysis of N-[(4-benzoyl)benzenesulfonyl]benzenesulfonamide. J. Photochem. Photobiol. A
Chem. 2002, 153, 109–112. [CrossRef]

17. Neckers, D.; Hassoon, S.; Klimtchuk, E. Photochemistry and photophysics of hydroxyfluorones and xanthenes. J. Photochem.
Photobiol. A Chem. 1996, 95, 33–39. [CrossRef]

18. Encinas, M.V.; Garrido, J.; Lissi, E.A. Polymerization photoinitiated by carbonyl compounds. VIII. Solvent and photoinitiator
concentration effects. J. Polym. Sci. Part A Polym. Chem. 1989, 27, 139–145. [CrossRef]
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24. Ścigalski, F.; Jędrzejewska, B. Structural effect of oxazolone derivatives on the initiating abilities of dye-borate photoredox systems
in radical polymerization under visible light. RSC Adv. 2020, 10, 21487–21494. [CrossRef]
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