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Abstract: In a fast-growing population of the world and regarding meeting consumer’s requirements,
solid waste landfills will continue receiving a substantial amount of waste. The utilization of solid
waste materials in concrete has gained the attention of the researchers. Ceramic waste powder (CWP)
is considered to be one of the most harmful wastes for the environment, which may cause water,
soil, and air pollution. The aim of this study was comprised of two phases. Phase one was based on
the characterization of CWP with respect to its composition, material testing (coarse aggregate, fine
aggregate, cement,) and evaluation of concrete properties both in fresh and hardened states (slump,
28 days compressive strength, and dry density). Concrete mixes were prepared in order to evaluate
the compressive strength (CS) of the control mix, with partial replacement of the cement with CWP
of 10 and 20% by mass of cement and 60 prepared mixes. However, phase two was based on the
application of the artificial neural network (ANN) and decision tree (DT) approaches, which were
used to predict the CS of concrete. The linear coefficient correlation (R2) value from the ANN model
indicates better performance of the model. Moreover, the statistical check and k-fold cross validation
methods were also applied for the performance confirmation of the model. The mean absolute error
(MAE), mean square error (MSE), and root mean square error (RMSE) were evaluated to confirm the
model’s precision.

Keywords: ceramic waste powder; concrete; cement; artificial neural network; prediction; machine
learning algorithms

1. Introduction

One of the challenging tasks for the world is to utilize the waste materials obtained
from various industries, such as ceramic waste powder (CWP) [1]. It has been reported
that 1.4 million tons of ceramic waste are being produced from ceramic manufacturing
per year in the EU alone, and the amount of ceramic waste produced in Europe from
different production stages of the ceramic industry is increasing and the majority of this
waste is being disposed of in landfills. [2]. The strict rules in the European union regarding
landfills have resulted in the increase of the cost for its deposition. Industries will have
to take an alternative solution for the reuse of ceramic waste. The practical application of
this waste has been practiced in numerous industrial sectors with its limited usage [3,4].
However, the construction industry plays a vital role to reuse all such types of waste to
minimize the environmental risks [5–7]. Environmental conditions are severely affected
by waste obtained from industries, which alternately plays a role in the increase of global
warming [8]. This threat to the environment can be minimized by reprocessing the waste
materials to produce effective and environmentally friendly materials, like concrete, which can
accommodate many waste materials by replacing the cement in it at a certain amount [9–12].
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Concrete is one of the most famous and high-demand materials all over the world [13].
The use of cement as a binder material in concrete also increases as the demand of concrete
increases [14]. A huge number of gases are generated during the manufacturing of cement,
and about 4 billion tons of Portland cement (PC) is generated per annum and around one
ton of PC produces one ton of CO2 [15]. This indicates not only the environmental risks
but also increases the global warming [16]. The process of cement replacement with waste
materials are playing a positive role in reducing the risks [17]. The different metallurgical
wastes such as steel slag, basic oxygen furnace slag (BOFS), red mud, and other wastes
are also widely used for cement replacement in concrete [18,19]. Early attempts of incor-
porating the ceramic powder in concrete was not effective due to inexperience and poor
type of powder, but it shows better performance later when proper engineering practices
were adopted with the application of various types of ceramic powder in concrete [20].
The replacement of this waste in concrete not only showed a satisfactory performance of
concrete for use in construction projects, but also minimizes the environmental risks [21,22].
The application of waste material in concrete not only improves its mechanical properties,
but also makes it durable and fulfills the increasing demand of the concrete [23–25].

The application of various waste material in concrete not only showed satisfactory
results for concrete’s properties, but also made a positive impression on environmental
conditions. Siddique et al. [26] conducted a study on the sustainable utilization of ceramic
waste in concrete, in which they use different percentages of waste to analyze the properties
of concrete. The waste was used as a coarse aggregate to produce durable concrete. El-Dieb
et al. [27] studied CWP as an alternative replacement of cement in concrete in terms of
characterization and evaluation. They put forward the idea that CWP can be used as
an alternative ingredient, which can partially replace the cement and can improve the
durability of concrete. Sarkar et al. [28] studied the application of partial replacement
of metakaolin with ceramic waste in a geopolymer. They observed mortar with 33 and
50% ceramic waste gives the maximum compressive strength. Xu et al. [29] study was
based on the use of ceramic waste tile powder to investigate the properties of low-carbon
ultra-high-performance concrete incorporating its various percentages in concrete.

The most important parameter of concrete is its compressive strength (CS), which
cannot be ignored in any type of construction work [30]. To obtain the desired compressive
strength, it usually undergoes a time-consuming process using the hit and trial method for
28 days. However, supervised machine learning (ML) algorithms are of great interest in the
field of civil engineering to predict the strength properties of concrete. The ML approaches
generally use various input variables to run the model for the predicted outcome at a
certain accuracy. Abuodeh et al. [31] uses deep ML techniques to forecast and assess ultra-
high-performance concrete, and an analytical model was developed for this forecasting
purpose. They used the proposed artificial neural network (ANN) for the prediction in
which the correlation coefficient R2 value was about 80%, indicating a high accuracy level
of the model. Feng et al. [32] represents the application of an adaptive boosting approach
for the prediction of concrete compressive strength. They employed 1030 datasets to
train the model and achieved an accuracy of 98%. DeRousseau et al. [33] worked on the
various ML methods for comparison in predicting the compressive strength of field-placed
concrete. The random forest approach was applied and obtained an R2 value of 0.51.
Ahmadi et al. [34] conducted work on the application of the ANN approach for predicting
the compressive strength of circular steel confined concrete, in which he represents the
performance of the ANN model for 268 datasets. Lee et al. [35] present the performance of
ANN for the prediction of concrete strength and they recommended the ANN algorithms
for accurate prediction of the compressive strength of concrete. Basyigit et al. [36] present
their study on the prediction of compressive strength of heavyweight concrete using the
ANN technique, in which they use 45 experimental results for running the models. Nguyen
et al. [37] present the compressive strength of green fly ash-based geopolymer concrete via
a deep neural network (DNN) and RestNet. The 335 mixes were conducted to obtain the
data for the model. Marani et al. [38] employed ML approaches for the prediction of the
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compressive strength of phase-change materials integrated into cementitious composites,
in which the model also gained superior accuracy in terms of prediction. Gupta et al. [39]
also present the performance of the ANN approach to predict the mechanical properties of
reprised concrete exposed to elevated temperatures, and they also evaluated the impact of
input parameters used to predict the performance of the ANN model. Sevim et al. [40] put
forward the idea for prediction of cementous composites with waste material applying ML
techniques. They use ANN and an adaptive network-based fuzzy inference system (ANFIS)
in the study. Ahmad et al. [41] compared the performance of individual and ensemble
ML approaches for the compressive strength of fly ash-based concrete, in which they
present that ensemble techniques give a better response when R2 equals 0.91 as opposed to
individual approaches. The main objective of this study is to incorporate the waste material
(ceramic waste powder) in concrete to replace the cement by 10 and 20% to analyze the
compressive strength and for comparison with that of normal concrete. The novelty of this
study is not only relying solely on the experimental results, but also the application of (ML)
approaches, ANN, and DT to forecast the compressive strength of ceramic powder-based
concrete. The comparison was also made among the actual results obtained from the
experimental work at the laboratory and the results from the ML algorithms, for better
understanding. Statistical checks and the k-fold cross validation were applied to check
the accuracy level between the actual and predicted outcomes. The ANN showed high
accuracy with less variance as compared to DT when opting for the available data. The
findings of this study are anticipated to promote knowledge and guidance on utilizing
CWP as a waste material in concrete to reduce its negative impact on the environment and
help to produce the environmentally friendly concrete. In addition, it is also important to
investigate the supervised ML approaches for the prediction of the strength property in
advance for comparison with the actual result, which would help researchers to investigate
the outcomes from the input parameters without consuming time in the practical work.

2. Experimental Program and Data Description

This research consists of two phases. Phase one includes the laboratory tests on the
material used in order to determine the compressive strength of concrete containing CWP.
Phase 2 concerns the application of DT and ANN approaches for the prediction of the
compressive strength of CWP-based concrete. Spyder (python 3.8) from the anaconda
navigator software was used to run the models using python coding from the sklearn
(Scikit-learn) library.

2.1. Phase One

In this phase, the properties of the materials used in the experimental program were
evaluated, and the compressive strength of normal concrete as well as that containing CWP
at certain percentages (10 and 20%) were observed at the age of 28 days. The effect of
CWP on concrete mixtures was investigated by performing various tests to determine both
fresh and hardened properties of concrete. The workability of fresh concrete was measured
by a standard slump test as per ASTM C143 [42]. The hardened property of concrete
(compressive strength) developed with age (28 days) and dry density of the specimens
were measured.

2.2. Phase Two

This phase focused on ANN and DT-based modeling for forecasting the compressive
strength of concrete developed during the experimental work at the laboratory. The CS
was predicted via ANN and DT models and the accuracy level was compared between
the actual and predicted outcomes through coefficient correlation (R2) values. The model
performance was also investigated through statistical checks as well as other metrics and
the k-fold cross-validation method. The error distribution was also evaluated in this phase
to confirm the accuracy level of the model.
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3. Materials

The mixtures of concrete were prepared using ordinary Portland cement (OPC, with
a brand name Bestway cement, Islamabad, Pakistan) as a principal binder. The OPC
gives confirmation to the ASTM C150 [43]. Type I Cement’s surface area was 385 m2/kg.
Chemical compositions of the used cement and CWP are presented in Table 1. The CWP
used in this research was obtained from the local tile industry in Gujrat city of Pakistan.
Initially, the available ceramic waste was wet. The moisture content at that stage was 29%
by mass. After this, the CWP was allowed to dry, and it was observed that the largest-
size particles are available, and after being sieved, it was also reported that the amount
passing the 300 µm sieve was a limited amount. Therefore, the CWP was ground using
a wooden-type grinder (locally prepared). The specific surface area (SSA) of the CWP
was then measured by air-permeability (Blaine test, MATEST, Treviolo, Italy) and was
562 m2/kg.

Table 1. Chemical compositions of cement and CWP (all presented values in %).

Ingredients Cement (%) Ceramic Waste Powder (CWP) (%)

Silicon dioxide (SiO2) 19 66.50
Aluminum oxide (Al2O3) 9.87 19.50

Ferric oxide (Fe2O3) 3.46 0.82
Magnesium oxide (MgO) 1.63 2.40

Calcium oxide (CaO) 60 1.85
Sodium oxide (Na2O) 0.84 -

Potassium oxide (K2O) 1.19 -
Phosphorus pentoxide (P2O5) 0.063 -

Sulfur trioxide (SO3) 2.63 0.10
Others 1.317 8.83

The coarse aggregate employed in this experimental program was natural crushed
stone (igneous rock, Margalla Hills, Pakistan) with a nominal size of 10 and 20.5 mm.
The specific gravity for the coarse aggregate was noted as 2650 kg/m3 and the water
absorption was 1.2%. The grading analysis for the fine aggregate (Margalla Hills, Pakistan)
and coarse aggregate are listed in Tables 2 and 3, respectively, while the gradation curve
for fine and coarse aggregates can be seen in Figures 1 and 2, respectively. The specific
gravity of the fine aggregate was 2670 kg/m3 and water absorption was noted as 2.2%. The
physical properties of the cement used are illustrated in Table 4. In addition, the view of
the experimental work at different stages can be seen in Figure 2.

Table 2. Grading analysis of fine aggregate.

Sieve
Diameter

Retained
Weight (g) % Retained Cumulative %

Retained
Cumulative %

Passing

4.75 mm 23.38 2.34 2.34 97.66
2.63 mm 74.5 7.45 9.79 90.21
1.18 mm 216.14 21.61 31.4 68.6
600 µm 229.95 23 54.40 45.6
300 µm 217.2 21.72 76.12 23.88
150 µm 153.12 15.31 91.43 8.57
200 µm 67.78 6.78 98.22 1.79

<200 µm 15.4 1.54 99.75 0
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Table 3. Grading analysis of coarse aggregate.

Sieve
Diameter

Retained
Weight (g) % Retained Cumulative %

Retained
Cumulative %

Passing

25.4 mm 0 0 0 100
19 mm 1093 36.43 36.43 63.57

12.7 mm 1327 44.23 80.67 19.33
9.5 mm 462 15.4 96.07 3.93

<9.5 mm 104 3.47 99.53 0

Figure 1. Grain size curve of fine aggregate.

Figure 2. Grain size curve for coarse aggregate.
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Table 4. Physical properties of cement.

Properties Values

Specific density (kg/m3) 3050
Average particle size (µm) 20

Blain fineness (cm2/g) 1720
Initial setting time (min) 95
Final setting time (min) 360

Loss on ignition (%) 1.03
Blain fineness (cm2/g) 1720

The materials in this study have been used for two different processes, for the experi-
mental work performed in the laboratory and as an input parameter used to run the model
for the predicted outcome. The data in the arranged form used to run the model can be
seen in annexure A. Python coding was used via the anaconda software to run the model.
The six parameters (cement, ceramic waste powder, water, fine aggregate, coarse aggregate
and age) were used as inputs and one parameter (compressive strength) was used as the
output for the ANN model. The descriptive analysis with the mathematical indication of
the variables used to run the models, along with their ranges, are listed in Table 5, while
the spearman rank correlation coefficients for the parameters are shown in Table 6.

Table 5. Descriptive analysis of the parameters.

Parameters
Description Cement Waste Fine

Aggregate
Coarse

Aggregate Water

Mean 13.49705 1.49965 18.19705 35.3611 6.3862
Standard Error 0.340103039 0.165085 0.665502 1.14417 0.15477

Median 13.2365 1.4705 18.096 32.834 6.495
Standard Deviation 2.634426811 1.278746 5.154953 8.862703 1.198846

Sample Variance 6.940204625 1.63519 26.57354 78.5475 1.437232
Kurtosis 0.041478386 −1.17781 2.125386 −0.94989 0.006432

Skewness 0.458010591 0.205647 −0.45923 0.267513 0.007548
Range 12.738 4.169 26.211 32.107 5.088

Minimum 8.109 0 3.808 19.392 3.852
Maximum 20.847 4.169 30.019 51.499 8.94

Sum 809.823 89.979 1091.823 2121.666 383.172
Count 60 60 60 60 60

Table 6. Spearman rank correlation coefficients for the parameters in this study.

Parameter Cement Waste Fine
Aggregate

Coarse
Aggregate Water Compressive

Strength (CS)

Cement 1 - - - - -
Waste −0.28861988 1 - - - -

FA 0.672262724 0.153871621 1 - - -
CA 0.50502207 0.115597808 0.752079311 1 - -

Water 0.735129108 0.168261584 0.616811018 0.530847489 1 -
CS 0.274814801 −0.721281675 0.014898041 −0.079462241 −0.255920482 1

3.1. Mix Proportions and Mix Designs

A total of 60 mix designs were prepared with different water cement ratios, from
which 20 mix designs were based on the control mixes. A total of two minutes were given
for the mixing of plain concrete in the concrete mixing machine, while three minutes were
given for concrete containing ceramic waste. A replacement of ordinary Portland cement
was carried out by 10 and 20% of ceramic waste powder, from which the 20 mix designs
were prepared for each percentage. Six cubes were cast from each batch of mix design. The
details of all the mix designs are listed in Appendix A.
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3.2. Test Methods

The compressive strength of all the concrete samples (cubes) prepared with and
without waste material were tested after 28 days of curing. These specimens were tested
according to the standard of ASTMC129. The average value of three specimens were taken
as the compressive strength of the said mix. Moreover, fresh properties like slump tests
were also carried out for each mix as per the ASTM standard.

3.3. Artificial Neural Network (ANN)

Artificial intelligence (AI) with innovative advances gives a clear indication that
artificial neural networks (ANNs) learn to solve multiplex problems in a limited time [44].
ANNs are the tools of non-linear statistical data modeling connections among the input
and output data, which may be an adaptive system that can alter its structure based on
the details that proceed via the network during the process of learning. The neurons are
arranged in layers of feed-forward networks. In the different layers, all available neurons
are attached to one another, though in the same layer, no attachment is found between
the neurons. Usually, the initial layer is called the input layer, which indicates the input
parameters of the ANN, and an equal number of neurons in the input results in the ANN
having an equal number of neurons as the problem output. The hidden layers are located
between these two layers. The equal number of hidden layers and the equal number of
neurons in every layer may not be recognized beforehand, which is because of the problem
under exploration [45–47]. The ANN opted for a loop from the from the input to the output
of the hidden layer. The process of the ANN model can be seen in Figure 3. The activation
function used in this study was adopted from previously published articles [48].

Figure 3. The function of the artificial neural network (ANN) model.

4. Results and Discussions
4.1. Slump Tests

The slump tests were carried out for all mixes at a room temperature of 25 ◦C ± 1 ◦C
as per ASTM C143 [49]. The slump test was caried out in such a way that the clean slump
cone was initially placed on the horizontal nonporous and smooth base plate. The cone
was then filled with fresh concrete in four equal layers, in which tampering was done by
applying 25 strokes to each layer by assuring that the compaction was uniform. The surface
of the filled cone was then leveled with the trowel. After that, the mold was resigned from
the concrete immediately, yet slowly, in the upward direction. The slump values were then
measured by the difference between the height of the mold and the height point of the
concrete sample being tested. It was observed that the workability of the control mix varied
in all mixes with a maximum slump value of 200 mm and a minimum value of 5 mm. In
comparison, the slump test value for the replacement of 10% ceramic waste and 20% waste
was reported to be almost similar, as illustrated in Figure 4.
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Figure 4. Slump values of the mixes.

4.2. Dry Density of Specimens

The densities of the specimens were also evaluated in kg/m3 as per ASTM C138 [49].
The density of the specimens was calculated at a room temperature of 25 ◦C ± 1 ◦C. The
mass of the specimen was calculated using a digital weight balance (MATEST, Treviolo,
Italy) and the dimensions were measured with a measuring tape in order to be used in the
formula of mass per unit volume to calculate the density of the specimen. The results of
the densities were close to each other for all mixes with less margin. The maximum and
minimum values for the control mix were 2228 and 2181 kg/m3, respectively. Specimens
with 10% ceramic waste gave the maximum and minimum values for dry densities of 2178
and 2002 kg/m3; similarly, these values for the specimen with 20% ceramic waste were
2103 and 2002 kg/m3, respectively, as depicted in Figure 5.

Figure 5. Indicating dry densities of all specimen of each mix.
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4.3. Compression Test

The compressive strength test for all concrete specimens was conducted in compliance
with the guidelines of ASTM C39 [50]. The compression testing (on cubes) was done on
the compression testing machine (tecnotest, Treviolo, Italy) with the capacity of 2000 kN at
a room temperature of 25 ◦C ± 1 ◦C. For the prevention of stress concentration, smooth
wooden planks with a thickness of about 3 mm were placed at each end of the specimen
connected to the loading plate of the compression testing machine. The maximum, min-
imum, and average values of the compressive strength for the control mix were 41.03,
26.23, and 32.48 MPa, respectively. The maximum, minimum, and average values of the
compressive strength containing 10% CWP were 36.5, 19.07, and 28.61 MPa, respectively.
Similarly, these values for 20% CWP were reported as 27.9, 16.2, and 21.63 MPa. The
results of compressive strength for each mix can be seen in Figure 6. For the compressive
strength of all mixes, the average values of the specimens were taken as the test result. If
the difference among the minimum and maximum values of the three results was up to
15% of the mean values, then the obtained mean value was selected as the compressive
strength result. If any of the results showed more than the 15% of the median value, then
the data of the test were considered as invalid, which ultimately resulted in repetition of
the mix. However, no mix repetition was done for the mixes where the difference between
the minimum and maximum value was not more than 15% of the mean value.

Figure 6. Compressive strength of the specimens of various mixes.

5. Artificial Neural Network (ANN) and Decision Tree (DT) Model Results and Analysis
5.1. Statistical Analysis

The general distribution of the actual, predicted, and constant mean results of the
model can be seen in the Figure 7. The same trend was adopted in the study to evaluate
the constant mean model. The statistical analysis result for the actual compressive strength
and the outcome from the artificial neural network (ANN) and decision tree (DT) models
along with their error distribution is presented in Figure 8 The ANN model shows a
strong relation indicated from the correlation coefficient value of R2 equal to 0.67 between
the actual and predicted output, as well as with less variance, as presented in Figure 8a,
while its error distribution can be seen in Figure 8b. The error distribution in Figure 8b
presents information about the average error of the training set, which is equal to 1.90 MPa.
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However, the maximum and minimum values of the error were noted as 5.75 and 0.46 MPa,
respectively. In addition, 41% of the data showed error between 0.45 and 1.0 MPa and
25% of the error data lies above 2.0 MPa as shown in Figure 8b. Meanwhile, the relation
between the actual and predicted outcome for DT model can be seen in Figure 8c, which
indicates an R2 value equal to 0.63, and the error distribution for the DT model is presented
in Figure 8d. The distribution of the errors shows an average value equal to 2.53 MPa.
However, the maximum and minimum values of the error distribution were 5.16 and
1.39 MPa, respectively.

Figure 7. Distribution of constant mean model result.

Figure 8. Cont.



Materials 2021, 14, 4518 11 of 17

Figure 8. Result of the numerical analysis representing the relation between the actual and predicted variable as well as the distribution
of the errors for ANN model (a,b); DT (c,d).

5.2. K-Fold Cross Validation Method

An analysis was done to check the actual performance of the model through the
k-fold cross validation method. This method is normally adopted to evaluate the execution
level of the employed models. K-fold cross validation involves splitting the randomly
set data into k-groups. In this study, 10 groups were prepared from the data and out of
these ten, nine groups were utilized for training purposes, and one was employed for
the validation of the model. This process was rerun ten times to obtain the average of
these iterations. There is a possibility of observing high performance of the model with
the application of the k-fold cross validation method. In addition, the employment of the
statistical check provides the response of the model towards the prediction as shown in the
form of Equations (1)–(5).

RMSE =

√
∑n

i=1 (exi −moi)
2

n
(1)

MAE =
∑n

i=1|exi − moi|
n

(2)

RSE =
∑n

i=1(moi − exi)
2

∑n
i=1(ex− exi)

2 (3)

RRMSE =
1
e

√
∑n

i=1(exi −moi)
2

n
(4)

R2 =
∑n

i=1(exi − exi)(moi −moi)√
∑n

i=1(exi − exi)
2 ∑n

i=1(moi −moi)
2

(5)

where,

exi = experimental value,
moi = predicted value,
exi = mean experimental value,
moi = mean predicted value obtained by the model,
n = number of samples.
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The parameters correlation coefficient (R2), mean square error (MSE), mean absolute
error (MAE), and root mean square error (RMSE) were applied to assess the obtained result
of the cross-validation for both ANN and DT as shown in Figures 9 and 10, respectively.
The ANN model gives the reflection of less errors and a better R2 value, equal to 0.67,
indicating high accuracy of the predicted result, while DT gives the R2 value of 0.63 and
seems close to the ANN result with a smaller margin. The average value of the correlation
coefficient (R2) for the ANN model was equal to 0.44 with the maximum and minimum
values of 0.80 and 0.12, respectively. The result of the MAE was also reported with average,
maximum, and minimum values of 12.03, 16.49, and 5.67 MPa, respectively. These values
of the same order for MSE were 15.69, 21.37, and 11.34 MPa. Similarly, the RMSE gives
maximum and minimum values of 4.62 and 3.37 MPa, respectively, as depicted in Figure 9.
The average vale of R2 for DT was 0.10, with maximum and minimum values equal to
0.96 and 0.60, respectively. While the average, maximum, and minimum values of the
MAE were 19.37, 7.53, and 3.33 MPa, these values for MSE were 28.48, 9.63, and 5.35 MPa,
respectively, as shown in Figure 10. Moreover, the data from k-fold cross validation of the
ANN model and the information of the statistical checks can be seen in Tables 5 and 6,
respectively. Statistically, the MAE gives a value of 6.94 MPa, the MSE value was 20.76, and
RMSE shows its result to be equal to 4.55, as illustrated in Table 6.

This research describes the application of ceramic waste powder in concrete at 10 and
20% replacement of the ordinary Portland cement (OPC) and analyzes the effect on the
compressive strength (CS) of concrete and the prediction of CS through the ANN model.
The supervised machine learning algorithm (ANN) model outcome for CS was compared
with the actual result. The replacement of OPC with ceramic waste in concrete affects
the strength properties with less variance and was utilized successfully with appreciable
results. In addition, the ANN model also shows an impressive result in terms of forecasting
the compressive strength of the concrete containing ceramic waste. The indication of a
better response of the ANN model can be visualized from the coefficient correlation (R2)
value, which was equal to 0.67 in this study, indicating the strong relation between the
actual and predicted outcomes, as depicted in Figure 8a. The sklearn (Scikit-learn) library
was used which normally takes 80% of the data for training purposes and 20% for testing.
The values of the statistical checks (MAE, MSE, and RMSE) are illustrated in the Table 7. In
addition, the actual and predicted values of the ANN and DT models can be seen in the
Appendix B.

Figure 9. Statistical Indication for k-fold cross validation for the ANN model.
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Figure 10. Statistical Indication for k-fold cross validation for the DT model.

Table 7. Statistical check.

Machine Learning Algorithm MAE (MPa) MSE (MPa) RMSE (MPa)

Artificial neural network (ANN) model 6.94 20.76 4.55
Decision Tree (DT) 6.12 17.98 4.29

6. Conclusions

This study explains the behavior of concrete’s compressive strength when ceramic
waste is used as a partial replacement of ordinary Portland cement at certain percentages
(10 and 20%), as well as the predicted outcome of the CS from the ANN model. The
results from the experimental work, compared with the outcomes from the supervised
machine learning algorithm (ANN), shows innovation for research work. The ANN model
shows a strong relation through the linear correlation coefficient (R2) and low values of
the parameters describing the errors of the forecasting. The following conclusions can be
drawn from the study.

• Ceramic waste powder is very effective for replacing the OPC at certain percentages
reducing the environmental risks (e.g., land pollution).

• This waste can be utilized in concrete where the normal strength of concrete is recom-
mended.

• ANN and DT are very useful supervised machine learning (ML) approached for the
prediction of compressive strength of any type of concrete and can be favorably used
for this purpose.

• In comparison, the ANN model shows better accuracy with less variance between the
actual and predicted result by indication of the R2 value equal to 0.67, as opposed to
DT, which gives a value of R2 equal to 0.63.

• The K-fold cross validation method also proved the high performance of the ANN model.

The two positive aspects of this research are the utilization of waste material in
concrete minimizing the environmental risks, and the other is the prediction of CS at an
initially high accuracy. To obtain a desired CS, it normally takes 28 days by employing the
hit and trial method, which is a time-consuming task. ML algorithms can be successfully
used without investing money and consuming significant time. However, more research is
still required for the evaluation of the best-performing ML approach.
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• Other various types of ceramic waste (white paste for twice-fired ceramic and white
paste for sanitary ware) can be used in concrete as a partial replacement of OPC to check
the other mechanical properties of concrete (like flexural and split tensile strength).

• The data points can be increased with the practical work to obtain a better response
from the models.

• More checks and analysis can be applied to evaluate the model’s performance (like
sensitivity analysis).

Author Contributions: H.S.—conceptualization, investigation, writing the original and revised draft;
A.A.—modelling, visualization and review; K.A.O.—investigation, formal analysis, editing, review,
funding and supervision; M.D.—visualization and formal analysis. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Faculty of Civil Engineering of Cracow University of
Technology and National Natural Science Foundation of China, No.51478089; the Liaoning nature
science fund guidance project of China (2019-ZD-0178); and the Basic Scientific Research Project of
the Central Universities, No.0220/110006.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this article are available within the article.

Acknowledgments: The authors would like to acknowledge the supportive role of Furqan Farooq in
this research.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Details of all mix designs.

Cement
(kg/m3)

Ceramic Waste
Powder
(kg/m3)

Fine
Aggregate

(kg/m3)

Coarse
Aggregate

(kg/m3)

Water
(kg/m3)

Compressive
Strength

(MPa)

528.03 0.00 497.17 1302.63 200.64 33.67
665.95 0.00 250.19 1274.08 253.08 34.35
464.68 0.00 531.29 1151.07 271.22 26.77
572.54 0.00 588.52 1071.99 228.61 30.70
512.83 0.00 538.46 1123.09 225.17 26.23
579.32 0.00 550.36 973.26 274.03 27.37
499.92 0.00 569.90 1174.81 219.86 27.78
562.88 0.00 596.64 1035.73 247.60 36.47
480.45 0.00 590.95 1205.96 221.00 34.87
579.76 0.00 678.29 997.14 222.45 32.60
541.48 0.00 682.25 990.92 228.20 34.13
449.15 0.00 543.46 1311.50 178.27 28.03
433.85 0.00 620.42 1223.50 191.40 26.80
482.04 0.00 636.27 1137.59 198.24 33.20
423.45 0.00 571.66 1350.80 186.32 34.87
501.72 0.00 717.43 1013.44 196.79 37.87
481.51 0.00 693.36 1136.37 185.24 36.00
389.09 0.00 579.74 1330.67 188.51 41.03
413.98 0.00 637.55 1237.83 174.54 34.77
476.71 0.00 700.77 1148.90 172.92 32.27
465.11 51.67 486.58 1274.90 196.37 32.53
598.29 66.51 249.76 1271.88 252.64 28.00
403.15 44.78 512.13 1109.57 261.45 19.07
507.42 56.37 579.52 1055.60 225.11 24.27
479.21 53.26 559.08 1166.08 233.79 30.47
538.41 59.82 568.32 1005.03 282.97 29.47
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Table A1. Cont.

Cement
(kg/m3)

Ceramic Waste
Powder
(kg/m3)

Fine
Aggregate

(kg/m3)

Coarse
Aggregate

(kg/m3)

Water
(kg/m3)

Compressive
Strength

(MPa)

448.20 49.80 567.72 1170.31 219.02 28.07
501.79 55.74 590.97 1025.87 245.25 30.00
439.91 48.89 601.19 1226.84 224.83 23.93
514.63 57.18 669.03 983.53 219.41 36.23
482.85 53.63 675.96 981.79 226.10 22.23
410.09 45.57 551.33 1330.51 180.85 21.27
393.22 43.68 624.78 1232.10 192.74 25.97
441.65 49.06 647.76 1158.13 201.82 26.17
383.85 42.66 575.79 1360.56 187.67 29.33
456.18 50.69 724.79 1023.82 198.80 31.40
439.97 48.89 703.94 1153.71 188.07 30.70
359.86 39.97 595.74 1367.41 193.72 30.80
380.86 42.32 651.69 1265.28 178.41 36.50
425.23 47.26 694.51 1138.63 171.37 35.87
405.11 101.27 476.82 1249.32 192.43 24.83
521.69 130.41 244.99 1247.59 247.82 27.55
370.44 92.63 529.45 1147.09 270.28 16.20
451.01 112.77 579.51 1055.60 225.11 24.97
416.23 104.04 546.28 1139.39 228.44 21.80
452.26 113.07 537.06 949.75 267.41 16.87
390.47 97.62 556.41 1147.00 214.66 17.60
429.05 107.27 568.50 986.86 235.92 18.93
372.36 93.08 572.48 1168.26 214.09 19.43
455.34 113.83 665.94 978.98 218.40 24.83
426.03 106.52 671.01 974.59 224.44 22.50
346.05 86.51 523.40 1263.10 171.69 21.37
329.68 82.43 589.32 1162.18 181.81 18.10
388.33 97.09 640.73 1145.58 199.63 23.27
331.04 82.78 558.65 1320.06 182.08 21.20
408.27 102.07 729.75 1030.83 200.17 25.50
378.78 94.69 681.80 1117.43 182.15 22.27
309.47 77.38 576.40 1323.02 187.43 18.97
331.27 82.80 637.70 1238.12 174.58 18.70
372.28 93.06 684.06 1121.49 168.79 27.90

Appendix B

Table A2. Actual and predicted values of the ANN and DT models.

Artificial
Neural Network (ANN) Decision Tree (DT)

Predictions Test Predictions Test

29.4307 28.77 25.374 26.77
26.8661 27.9 35.9683 34.13
25.0034 23.07 22.735 27.9
27.6048 28.07 25.364 22.54
26.5993 25.93 30.9033 26.23
33.6147 34.13 21.2 18.7
21.6579 24.83 30.0762 28.07
35.0682 30.03 34.648 32.163
27.9408 29.33 25.764 23.93
19.4944 18.7 26.55 28.47
31.9883 26.23 22.735 24.83
30.0159 31.4 26.364 28.03
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