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Abstract: Luminance is an essential quality of a TFT-LCD display. Manufacturers have attempted
to improve the soft-to-hard lamination stage to enhance the luminance of their TFT-LCD displays.
In addition, many customers have complained about the insufficient luminance of the TFT-LCD
displays of the case company. While product engineers have kept tuning the control factors in the
soft-to-hard lamination stage through the trial and error method, the improvement of the luminance
was not good enough. This study aims to assist the product engineers to fine-tune the settings of
the control factors using a new method composed of the Taguchi method, a neural network, and a
genetic algorithm. The confirmation experiments showed that the proposed method had increased
the average luminance of the TFT-LCD displays from 17.03 to 25.15, which was higher than the
required luminance value of 25. As a result, the number of complaints on the TFT-LCD displays had
been significantly reduced.

Keywords: laminated materials; TFT-LCD displays; Taguchi method; neural network; genetic
algorithm

1. Introduction

Luminance is an important quality characteristic of a TFT-LCD display. Consumers
prefer to have a TFT-LCD display with enough luminance. Several control factors in
manufacturing a TFT-LCD display may affect the luminance of a TFT-LCD display. Tuning
the control factors using a trial and error method incurs significant overhead in time and
resources such as the material and the workforce. Therefore, a more efficient method is
required for tuning the control factors in manufacturing TFT-LCD displays. To fine-tune
the control factors, we need to perform experiments to find the luminance of TFT-LCD
displays for different settings of the control factors. An experiment to find the luminance
for a specific parameter setting of the control factors requires about 1.5 months for the case
company. To reduce the time in fine-tuning the control factors, we should not perform too
many experiments in a new method. In this paper, we first used the traditional Taguchi
method to find a control factors’ setting to enhance the luminance of TFT-LCD displays.
However, because the Taguchi method allows only a few fixed levels for each control factor,
it usually cannot find the global optimal setting for the control factors. Therefore, this
paper proposes to improve the Taguchi method by incorporating the Taguchi method with
the neural network and the genetic algorithm. In the proposed method, we used the data
collected from the Taguchi method to train a neural network to predict the luminance of a
TFT-LCD display for a given control factors’ setting. Then, we used a genetic algorithm to
search for the global optimal control factors’ setting using the predicted luminance of a
control factors’ setting as the fitness value of the setting.

The case company is a TFT-LCD display manufacturer in Taiwan. In performing the
optical film lamination step in the liquid crystal module assembly process (LCM), the case
company observed color streaks, as shown in Figure 1, on some of their TFT-LCD displays.
The color streaks reduced the luminance of the TFT-LCD displays. Therefore, to enhance
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the luminance of TFT-LCD displays, the optical film lamination step needs to be optimized.
The optical film lamination step consists of five stages: the raw material inspection, the soft-
to-hard lamination, the circuit test, the protection film lamination, and the clean process,
as shown in Figure 2. According to a failure analysis performed by the case company,
the color streaks on a TFT-LCD display were mainly due to improper setting of control
factors in the soft-to-hard lamination stage. Therefore, this paper focuses on optimizing the
soft-to-hard lamination stage to improve the luminance of TFT-LCD displays.

Figure 1. A TFT-LCD display with color streaks.

Protection
materlal Soft-'to-l%ard Circuit test film Clean
lamination ..
Inspection lamination

Figure 2. Optical film lamination in the LCM process.

For the quality improvement purpose, engineers of the case company selected five
positions, as shown in Figure 3, on a TFT-LCD substrate to measure their corresponding
values of luminance. The luminance of a TFT-LCD display is the average of the five values
of luminance of the selected positions. The case company manufactured about 5000 TFT-
LCD displays per day. Therefore, the TFT-LCD displays’ average luminance at a specific
date was calculated by averaging the luminance of all the TFT-LCD displays made at
that particular date. Figure 4 shows the trend chart for the TFT-LCD displays’ average
luminance. The average of the average luminance at all dates in a selected time interval
is defined as the baseline, the red line shown in Figure 4. Before fine-tuning the control
factors in the sot-to-hard lamination stage, the baseline was 17.03, which was less than the
required minimum luminance of 25. Thus, to enhance the TFT-LCD display’s luminance,
one needs to find a setting of the control factors such that the baseline is larger than the
required minimum luminance of 25. Therefore, we propose in this paper a new method
that combines the Taguchi method, a neural network, and a genetic algorithm to fine-tune
the setting of control factors in the soft-to-hard lamination stage to enhance the TFT-LCD
displays’ luminance.

Many researchers have studied the performance of laminated materials. For example,
Lee and Kim [1] investigated the influence of mechanical characteristics on the performance
of optical laminating materials in automotive applications by varying the H/vinyl ratio
and the hydrogen source ratio. Serhat and Basdogan [2] proposed a multi-objective design
methodology to set the parameters’ values in a lamination process to optimize the stiffness
of the composite plate with dynamic and load-carrying requirements. Ridhuan et al. [3]
studied the effect of interconnecting thickness and yield strength to find maximum peak
stress in the longitudinal cross-section of a photovoltaic (PV) laminate during the soldering
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and lamination processes. For determining the accumulated final residual stresses in a PV
laminate, Song et al. [4] simulated the stress evolution of solar cells in manufacturing a
conventional silicon wafer-based photovoltaic laminate.
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Figure 3. Positions on the substrate to measure the luminance.
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Figure 4. Trend chart of the TFT-LCD display’s average luminance.

2. Literature Review

Since the proposed method combines the Taguchi method, neural networks, and the
genetic algorithm to fine-tune the control factors in the lamination stage, we briefly explain
the related works and methods in this section.

2.1. Manufacturing Processes of TFT-LCD Displays

Thin-film transistor liquid crystal displays (TFT-LCDs) are widely used in many
consumer electronic products. The structure of a basic TFT-LCD unit, as shown in Figure 5,
consists of a TFT device and a pattern of Indium Tin Oxides (ITO) film-layer for controlling
the angle of liquid crystal [5,6]. The TFT device is a switch that controls the number of
electrons on the ITO. The TFT device turns on its switch to allow electrons to flow into
the ITO. When the number of electrons in the ITO reaches a specific value, the TFT device
turns off its switch to trap the electrons in the ITO. A TFT array consisting of millions of
TFT-LCD units is the major component of a TFT-LCD display. The other key components
of a TFT-LCD display include the glass substrate, the color filter, the polarizer, the driver
IC, the liquid crystal (LC), the Polyimide (PI), the Backlight module, the ITO film-layer,
and chemical materials. A TFT-LCD uses an active driving mode to control the irradiation
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of light on the backlight module. The lower polarizer then polarizes the light from the
backlight module. Finally, the voltage of an electrode is applied to the liquid crystal to
control the angle of the liquid crystal. Different angles of the liquid crystal give different
intensities of the polarized light, which pass through the RGB pixels of the color filter to
show different luminance and colors on the TFT-LCD display.

TFT device ITO
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-
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Gate line - v

Signal line
Figure 5. The structure of a TFT-LCD unit.

The TFI-LCD display’s three major manufacturing processes are the TFT array process,
the LCD cell process, and the LC module assembly process. The TFT array process
consists of five steps: the gate metal (gate line), the a-Si island (a semiconductor layer), the
source (the signal line), the passivation (the insulation layer), and the ITO film-layer (the
conductive glass). The LCD cell process assembles the pre-processed TFT array substrate
with the color filter substrate and injects liquid crystal between the two substrates. The
LCD cell process consists of the PI rubbing step, the one drop filling (ODF) step, the cutting
step, and the polarizer lamination step. Finally, the LC module assembly process (LCM)
assembles all the required components into a TFT-LCD display. The LCM process consists
of the optical film lamination step, driver IC bonding step, the PCB bonding step, the
assembly step, and the packing step [5,6].

2.2. Taguchi Method

Genichi Taguchi developed a theory for quality control to optimize a system by
experimental design. Taguchi’s work, known as the Taguchi method, was based on
engineering applications rather than statistics. The Taguchi method has been widely
used in the industry for experimental design. For example, Tole et al. [7] used the Taguchi
method to find a better combination of engineering parameters to optimize the degree of
amorphization (DOA). Lin et al. [8] applied the Taguchi method to simplify the analysis
of a product development process. Akyalcin et al. [9] adopted an Lg orthogonal array to
investigate the optimal desilication conditions on mesopore volume.

The Taguchi method can be used for experimental design to improve the quality of
a product. At the process design stage, the experimental design aims to determine the
setting of control factors to enhance the quality of products. For experimental design
efficiency, Taguchi proposed to use an orthogonal array to obtain a complete and reliable
experimental result [10]. Table 1 shows an orthogonal array of L12(2'1). Columns from A to
K of Table 1 represent different control factors. A value in the orthogonal array is called
a level of its corresponding control factor. Table 1 contains eleven columns and twelve
rows, indicating that up to eleven control factors and twelve treatments are allocated in the
experimental design.
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Table 1. L15(2!) orthogonal array.

Treatment A B C D E F G H I J K
1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 2 2 2 2 2 2
3 1 1 2 2 2 1 1 1 2 2 2
4 1 2 1 2 2 1 2 2 1 1 2
5 1 2 2 1 2 2 1 2 1 2 1
6 1 2 2 2 1 2 2 1 2 1 1
7 2 1 2 2 1 1 2 2 1 2 1
8 2 1 2 1 2 2 2 1 1 1 2
9 2 1 1 2 2 2 1 2 2 1 1

10 2 2 2 1 1 1 1 2 2 1 2
11 2 2 1 2 1 2 1 1 1 2 2
12 2 2 1 1 2 1 2 1 2 2 1

The Taguchi method uses a loss function to measure the quality of a product [10].
When the target value of a product’s quality characteristic is consistent with the actual value
of the quality characteristic, the quality loss function is minimized. In other words, the
smaller the value of the quality loss function, the better the quality of the product. Taguchi
introduced the signal-to-noise ratio (S/N ratio) to measure the quality of a setting of the
control factors in an experimental design based on the quality loss function. Measured in
decibel (dB), an S/N ratio considers both the average and the variance of the experimental
result. An S/N ratio can be defined in three different ways [11]: nominal-the-better, smaller-
the-better, and larger-the-better.

The nominal-the-better (NTB) has a specific target value. The quality of a setting of
the control factors with NTB is measured by the differences between all the experimental
results and the target value. The closer the experimental results to the target value, the
better the quality of the experiment is. The S/N ratio for the normal-the-better, denoted
by S/NnTs, is defined in Equation (1), where m denotes the target value; S?> denotes the
variance of the experimental results; y; refers to the result of the ith experiment; n refers to
the number of measurements with the same control factors’ setting.

n L 2
S/Nnrs = —10log [Ll(ynmw = —10log| (7 — m)* + 7] 1)

The smaller-the-better (STB) aims for a small target value. The definition of the S/ Ng7p
is shown in Equation (2).

n o2
S/Nsrp = —1010g%y’ — —10log( + S?) ?)
The larger-the-better (LTB) aims for a large target value. The definition of the S/ Ny 13

is shown in Equation (3).
n 1
i=1 2

S/Nirs = —10log Ty )

2.3. Neural Network

A neural network (NN) can be used to construct a model to capture the relation-
ship between the input control factors and the output responses of a manufacturing
problem [12,13]. In this paper, we use the multi-layer perceptron, one of the well-known
NN, to construct a model to predict the luminance of a TFT-LCD display given an input
of values of different control factors. The neural network is used as the fitness function
of a genetic algorithm to find the best setting of the control factors. Figure 6 shows a
three-layered NN network where each node in the input layer accepts the value of an input
variable, and the output nodes represent the results of the response variables. The input



Materials 2021, 14, 4481

6 of 18

layer is connected to the output layer through one hidden layer. Each link between two
nodes in different layers of the NN is associated with an adjustable weight.

Input Hidden Output

. e O

X

n
Figure 6. The structure of a three-layered neural network.

To construct an NN, we first specify the structure of the NN and then train the NN
with a training dataset. The training of an NN comprises two stages: forward propagation
and backward propagation. In the forward propagation stage, inputs are fed into the
network to compute the output values. In the backward propagation stage, the differences
between the output values and their corresponding actual values are calculated. A loss
function based on the differences is defined. Based on the gradient of the loss function, a
gradient descent algorithm updates the weights on all the links of the neural network to
minimize the loss function [14]. Neural networks have been successfully used in learning
the relationship between the input values of the control factors and the output values of the
response variables in many manufacturing problems. For example, Mehrpouya et al. [15]
used an artificial neural network model to find the optimal laser parameters to join the PET
(polyethylene terephthalate) films. Sheikholeslami et al. [16] constructed a neural network
to estimate the heat transfer rate in channels for transport fluids in the oil and gas industry.
Azizi et al. [17] used an artificial neural network to predict the compressibility factor (z-
factor) of natural gases. Ansari et al. [18] trained an artificial neural network to predict the
ultimate recovery factor of oil reservoirs by steam-assisted gravity drainage (SAGD).

2.4. Genetic Algorithm

A genetic algorithm (GA) imitates the law of survival of the fittest in natural selection.
A GA adopts an efficient probabilistic search in a high-dimensional solution space [19].
Many researchers have applied GAs to find solutions to engineering optimization problems.
For example, Hosseinabadi et al. [20] adopted a genetic algorithm to solve the open-shop
scheduling problem (OSSP). Quan et al. [21] used a genetic algorithm to acquire the
relationship between the power, wavelength, current, and temperature from a distributed
Bragg reflector laser. Finally, Alipour-Sarabi et al. [22] used a genetic algorithm to minimize
the total harmonic distortion of the output signals.

This paper adopted a binary encoding to encode a feasible setting of the control factors
into a chromosome. For example, assume that the range of a control factor X is [L;, U],
and there are m digits of significance in the fraction part of X. Then, the number of bits in
the chromosome of the control factor X is determined by Equation (4).

(U — Ly) x 10" <2Y —1 — b > [logo (U}, — Ly) x 10™ +1)] (4)
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Example: Assuming that X € [0.15, 0.75], the number of significant digits in the
fraction part of X is 2.
Then, the number of bits for X, denoted by b, is calculated in the following:

b > [loga((0.75 - 0.15) x 102 +1)] = 6

In the beginning, the GA randomly generates a set of feasible solutions, each of which
is encoded into a chromosome. The collection of all the randomly generated solutions
constitutes the first generation of the GA. Then, depending on the application, a fitness
function is defined to evaluate the quality of each feasible solution. Finally, the GA iterates
itself with three genetic operations: reproduction, crossover, and mutation, to evolve the
current generation to the next generation until a chromosome with a satisfying fitness
value has been found or a pre-defined maximum number of iterations has been reached.
When the GA stops, it returns the best solution of the last population [23].

This paper uses the roulette wheel method to reproduce the child chromosomes from
a set of parent chromosomes. The probability for a parental chromosome to be chosen to
produce the child chromosomes is proportional to its fitness value.

We applied a two-point crossover operation on each control factor in the parental chro-
mosomes to generate child chromosomes from a pair of parental chromosomes. Figure 7
shows an illustrative example of five two-point crossover operations on five control factors
in a chromosome. In Figure 7, the bit segment from the second position to the fourth
position of each control factor at the first chromosome is exchanged with its counterpart in
the second chromosome.

Factor A Factor B Factor C Factor D Factor E
15t chromosome 0[1(1]0{1(0|0[0]| [O[O]|OfT]1|1|{1]|0[0O|1| [O]1{1]0[0[0]|1{1|0[Of |1{1|0[O[1]|O{1|1]1|1| [0|O|O[O|O[1|0|1|1]0O
2nd chromosome [0[1|1[0]1[o[o[o[olo] [0[1]0[o]1]0]0[0]1]1] [o[1]0]o]o|1]1{1]1]1] |1]0]1]|1|1|1|0l0/0lO| |OlO|1|0lOIO|1|1|1|0

s
=

Figure 7. The two-point crossover operation.

3. The Proposed Method

This paper first used an orthogonal array to assist the case company in conducting
experiments to collect experimental data. Then, it used the Taguchi method to select key
control factors for the soft-to-hard lamination stage. Finally, this paper used the Taguchi
method to find a better setting for the control factors. However, the pre-defined levels
of control factors limited the search space of the Taguchi method. Therefore, the control
factors’ setting found by the Taguchi method may not be globally optimal.

Consequently, we use the proposed approach to search for the global optimal setting
of the control factors. In the proposed method, we trained an artificial neural network (NN)
to predict the luminance of a TFT-LCD display given the input value of each control factor.
Then, we used a genetic algorithm (GA) to search for the global optimal setting of the
control factors. Finally, we compared the average luminance of the pure Taguchi method
with that of our proposed method. Figure 8 shows the flowchart of the proposed method.
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Using Taguchi method to select important control X | Control factors
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Using Taguchi method to collect data and find the
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Step 3
Using a neural network to model the fitness function

l

Step 4
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parameter setting of the control factors

Step 5 F
Performing confirmation
experiments

[ Releasing optimal recipes J

Figure 8. The flowchart of the proposed approach.
4. Case Study

Artificial neural network

Input Hidden Output

O
O

O,

Genetic algorithm

| Reproduction H Crossover H Mutation |

The proposed method consists of five steps:

4.1. Using the Taguchi Method to Select Important Control Factors

A TFT-LCD product consists of three layers: the protection film, the optical film,
and the TFT-LCD substrate, as shown in Figure 9. As suggested by the engineers of the
case company, the improper setting of control factors in the soft-to-hard lamination stage
undermines the luminance of a TFT-LCD display. The soft-to-hard lamination stage consists
of four operations: catching the optical film, waiting on the stage, removing the release film
from the optical film, and laminating the optical film to a TFT-LCD'’s substrate as shown in
Figure 10. Based on suggestions from on-site engineers, we selected the following eleven
control factors for quality improvement: Pre-heating, Roller temperature, Roller wait time,
Roller angle, Roller pressure, Roller speed, Dummy, Vacuum pressure, BTW gap, Transfer
speed, and Hold time. Table 2 shows the levels and their corresponding values for each

control factor.

Protection film

Optical film

TFT-LCD

Figure 9. Structure of a TFT-LCD product.
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Catching the optical film
Waiting on the stage
Removing the release film
from the optical film
Laminating the optical film
to the TFT-LCD's substrate

Figure 10. Operations in the soft-to-hard lamination stage.

Table 2. Control factors and their corresponding levels for the Lip(21) experiment.

Pre- Roller Tem- Roller Roller Roller Roller Dumm Vacuum BTW Ga Transfer Hold
Heating perature Wait Angle Pressure Speed (bcs) y P (mm) P Speed Time (ms)
Factor Qo) e} Time (s)  (Degree)  (kg/em?)  (mm/min) pes ressure mom. (mm/s) me tms
A B C D E F G H I J K
Lv1 50 40 3 80 07 5000 2 2.8 5 4000 60
Lv2 70 50 5 85 0.8 6000 4 3 10 5000 70
This paper used an Li(2!!) orthogonal array in the experimental design for the
quality improvement of the TFT-LCD displays. Table 3 shows the five values of measured
luminance, from N to N5, of a TFT-LCD display, the average and standard deviation of the
five luminance values, and the S/N ratio for the experiments with different control factors’
settings. The results of the S/N ratio analysis, including the factor response table, the factor
response graph, and the analysis of variance (ANOVA), are shown in Table 4, Figure 11,
and Table 5, respectively. Table 4 and Figure 11 show the effect of each control factor on
the S/N ratio. It shows that the order of importance of the control factors is that A (0.87) >
K (0.85) > F (0.84) > E (0.67) > B (0.56) > C (0.29) >1(0.20) > G (0.18) > D (0.16) > H (0.07) >
J (0.03). Similarly, the results of the luminance analysis are shown in Table 6, Figure 12, and
Table 7. Table 6 and Figure 12 show that the order of importance of each control factor on
the average luminance is that K (1.48) > A (1.46) > F (1.31) > E (1.13) > B (0.87) > C (0.48)
>1(0.35) > G (0.32) > D (0.28) > ] (0.15) > H (0.07). From Tables 5 and 7, the p-values of
control factors A, B, E, F, and K are less than 0.05. Therefore, control factors A, B, E, F, and
K are the key control factors for quality improvement in the soft-to-hard lamination stage.
Table 3. L15(2'") orthogonal array and data for the Taguchi method experiment.
EXP. Control Factors Luminance Avt?rage Star}de}rd SIN
A B C D E F G H 1 ] K Ny N, N3 Ny Ns Luminance Deviation
1 1 1 1 1 1 1 1 1 1 1 1 1761 1677 1745 1699 1630 17.03 0.53 24.61
2 1 1 1 1 1 2 2 2 2 2 2 133 1512 1270 1491 1457 14.13 1.06 2294
3 1 1 2 2 2 1 1 1 2 2 2 1418 1430 1466 1392 1348 14.11 0.44 2298
4 1 2 1 2 2 1 2 2 1 1 2 1545 1570 1561 1572 1452 15.40 0.50 23.74
5 1 2 2 1 2 2 1 2 1 2 1 1669 1560 1515 1653 1528 15.85 0.71 23.98
6 1 2 2 2 1 2 2 1 2 1 1 1793 1646 1703 1722 1516 16.76 1.04 24.44
7 2 1 2 2 1 1 2 2 1 2 1 1628 1656 1590 1580 1552 16.01 041 24.08
8 2 1 2 1 2 2 2 1 1 1 2 1392 1249 1219 1223 1138 12.44 0.92 21.84
9 2 1 1 2 2 2 1 2 2 1 1 1341 118 1204 1191 1363 1257 0.88 21.94
10 2 2 2 1 1 1 1 2 2 1 2 1568 1524 1497 1563 1424 15.15 0.59 23.59
11 2 2 1 2 1 2 1 1 1 2 2 128 1299 1324 1387 1311 13.22 0.39 241
12 2 2 1 1 2 1 2 1 2 2 1 1450 1526 1441 1628 1520 15.13 0.75 2357
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Table 4. Factor response table for the S/N ratios of the L15(2!!) experiment.

Factor A B C D E F G H I J K
Level 1 23.78 23.07 23.20 23.42 23.68 23.76 23.25 23.31 23.45 23.36 23.77
Level 2 2291 23.62 23.49 23.27 23.01 22.93 23.44 23.38 23.24 23.33 22.92
Effect 0.87 0.56 0.29 0.16 0.67 0.84 0.18 0.07 0.20 0.03 0.85
Rank 1 5 6 9 4 3 8 10 7 11 2
The response graph for the S/N ratios of L,5(2'") experiment
24.0
238 3.78 .
@ @ @3'68 @3,76 @3 77
23.6 | 3.62 ¥ \
\ #2349 \ \
234 b A K3 A2 22344 92345 \
\ / N \ S e BN #2633
s\ A v 227\ \ 2305 Yo 2324 \
po oo\ $BO b 2301 "‘\‘ \‘&
* 2291 $22.93 2292
28
26 |
224 — — : —_ —
Al A2 Bl B2 Cl C2 DI D2 El E2 FI F2 Gl G2 Hl H2 Il I2 Jl J2 KI K2
Figure 11. The response graph for the S/N ratios of the L1(2'!) experiment.
Table 5. ANOVA on the S/N ratios of the Li(2!1) experiment.
Source DF SS MS F-Value p-Value
A 1 2.297 2.297 24.61 0.003
B 1 0.934 0.934 10 0.019
C 1 0.244 * - - -
D 1 0.076 * - - -
E 1 1.357 1.357 14.53 0.009
F 1 2.099 2.099 22.48 0.003
G 1 0.102 * - - -
H 1 0.014 * - - -
I 1 0.121°* - - -
] 1 0.003 * - - -
K 1 2.183 2.183 23.39 0.003
Error (6) (0.5601) (0.09335) - -
Total 11 534.71 - - -
R-Sq R-Sq(adj)
94.1% 89.1%
* pooling into the error term.
Table 6. Factor response table for the average luminance of the Li5(2'') experiment.
Factor A B C D E F G H I J K
Level 1 15.55 14.38 14.58 14.96 15.38 15.47 14.65 14.78 14.99 14.89 15.56
Level 2 14.09 15.25 15.05 14.68 14.25 14.16 14.98 14.85 14.64 14.74 14.07
Effect 1.46 0.87 0.48 0.28 1.13 1.31 0.32 0.07 0.35 0.15 1.48
Rank 2 5 6 9 4 3 8 11 7 10 1
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The response graph for the average luminance of the L,,(2!") experiment
16.0
15.5 5.55 ey 5.47 5.56
525
150 15‘951\4:)6 14.98 14.99
5 : 14.8 489
48 14.68 01/4.;5 o \ 14.;:]\’ 14.74
145 | :
14.38 1425
1o 14.09 ' 14.16 4.07
135
13.0 B T ——
Al A2 Bl B2 Cl C2 DI D2 El E2 FI F2 Gl G2 HI H2 11 I2 JI ]2 KI K2
Figure 12. The response graph for the average luminance of the Lip(21) experiment.
Table 7. ANOVA on values of the average luminance of the Lip(21) experiment.
Source DF SS MS F-Value p-Value

A 1 6.3739 6.37388 22.72 0.003

B 1 2.2755 2.27552 8.11 0.029

C 1 0.6828 * - - -

D 1 0.2325 * - - -

E 1 3.8466 3.84656 13.71 0.01

F 1 5.1493 5.14933 18.35 0.005

G 1 0.3167 * - - -

H 1 0.015 * - - -

I 1 0.3683 * - - -

] 1 0.0684 * - - -

K 1 6.6032 6.60323 23.53 0.003
Error (6) (1.684) (0.2806) - -
Total 11 25.932 - - -

R-Sq R-Sq(adj)
93.51% 88.10%

* pooled into the error terms.

4.2. Using the Taguchi Method to Collect Data and Find the Better Setting of Control Factors

As shown in Figure 8, we used the Taguchi method in step 2 to find a better control
factor setting. Table 8 lists the levels and their corresponding values in the experiments for
each control factor. We used an Lig(2! x 37) orthogonal array for the experimental design.
Table 9 shows the five measured luminance values on a TFT-LCD display, the average and
standard deviation of the five luminance values, and the S/N ratio for each experiment
with different control factors’ settings. The results of the S/N ratio analysis, including the
factor response table, the factor response graph, and the analysis of variance (ANOVA), are
shown in Table 10, Figure 13, and Table 11, respectively. Table 10 and Figure 13 show that
the order of importance of control factors on S/N ratio is that B (2.11) > K (1.89) > F (1.50)
> A (1.45) > E (0.89). Similarly, Table 12, Figure 14, and Table 13 show the results of the
luminance analysis. Table 12 and Figure 14 show that the order of importance of the control
factors on the average luminance is that B (4.27) > K (3.95) > F (3.14) > A (2.82) > E (1.66).
Based on Tables 11 and 13, the p-values of all control factors are less than 0.05. Therefore,
all five control factors are important for quality improvement in the soft-to-hard lamination
stage. Since the luminance of a TFT-LCD display is the larger, the better, based on Figures
13 and 14, the better setting for control factors is A, By, E1, F», and K3, which means that A
is set to level 2, B to level 1, E to level 1, F to level 2, and K to level 3 [10].
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Table 8. Control factors and their corresponding levels for the L1g(2! x 37) experiment.

. Roller Roller Pressure Roller Speed .
Pre-Heating (°C) o 2 P Hold Time (ms)
Factor Temperature (°C) (kg/cm?) (mm/min)
A B E F K
Level 1 25 50 0.15 2500 20
Level 2 50 65 0.45 4000 40
Level 3 - 80 0.75 5500 60
Table 9. L1g(2' x 37) orthogonal array and data for the Taguchi method experiment.
EXP. Control Factors Luminance Average Standard SIN
’ A B E F K Ny N, N Ny Ns Luminance Deviation
1 1 1 1 1 1 17.32 17.23 17.04 17.23 17.62 17.29 0.21 2475
2 1 2 2 2 2 19.74 19.90 19.74 19.79 19.66 19.77 0.09 25.92
3 1 3 3 3 3 13.98 13.74 13.87 13.64 13.58 13.76 0.16 22.77
4 1 2 2 3 3 18.59 18.44 18.58 18.55 18.43 18.52 0.08 25.35
5 1 3 3 1 1 11.78 11.64 11.48 11.59 11.71 11.64 0.11 21.32
6 1 1 1 2 2 22.84 2258 22.80 23.31 22.81 22.87 0.27 27.18
7 1 1 3 2 3 21.49 21.34 21.62 21.08 21.05 21.32 0.25 26.57
8 1 2 1 3 1 14.34 15.18 14.46 14.85 14.70 14.71 0.33 23.34
9 1 3 2 1 2 14.97 15.56 15.06 15.49 15.35 15.29 0.26 23.68
10 2 3 2 2 1 16.94 16.98 17.04 16.86 16.92 16.95 0.07 2458
11 2 1 3 3 2 20.27 19.80 19.42 19.29 18.66 19.49 0.60 25.79
12 2 2 1 1 3 21.34 23.01 20.89 21.13 21.26 21.52 0.85 26.64
13 2 3 1 3 2 18.89 18.84 18.31 19.12 18.63 18.76 0.31 25.46
14 2 1 2 1 3 25.04 24.61 24.88 24.46 25.19 24.84 0.30 27.90
15 2 2 3 2 1 19.38 19.64 19.47 19.30 19.38 19.43 0.13 25.77
16 2 2 3 1 2 20.94 20.81 20.65 20.99 20.56 20.79 0.18 26.35
17 2 3 1 2 3 21.49 21.27 21.23 20.98 21.34 21.26 0.19 26.55
18 2 1 2 3 1 17.64 17.42 17.99 17.38 17.07 17.50 0.34 24.98
Table 10. Factor response table for the S/N ratios of the Lig(2! x 37) experiment.
Level A B E F
1 24.54 26.18 25.66 25.11 24.10
2 25.99 25.56 25.38 26.10 25.73
3 - 24.06 24.76 24.60 25.97
Effect 1.45 2.11 0.89 1.50 1.86
Rank 4 1 5 3
The response graph for the S/N ratios of L,4(2'x37) experiment
27
26
25
24
23
Al A2 Bl B2 B3 ElI E2 E3 Fl1 F2 F3 KI K2 K3

Figure 13. The response graph for the S/N ratios of the Lig(2! x 37) experiment.
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Table 11. ANOVA on the S/N ratios of the L1g(2! x 37) experiment.
Source DF SS MS F p-Value
A 1 9.404 9.4045 49.49 0
B 2 14.2 7.1001 37.36 0
E 2 2.514 1.2571 6.61 0.02
F 2 6.983 3.4914 18.37 0.001
K 2 12.332 6.1659 32.44 0
Error 8 1.52 0.19 - -
Total 17 46.954 - - -
R-Sq R-Sq(adj)
96.76% 93.12%
Table 12. Factor response table for the average luminance of the Lig(2! x 37) experiment.
Level A B E F K
1 17.24 20.55 19.40 18.56 16.25
2 20.06 19.12 18.81 20.27 19.49
3 - 16.28 17.74 17.12 20.20
Effect 2.82 4.27 1.66 3.14 3.95
Rank 4 1 5 3 2
The response graph for the average luminance of L;(2'x37) experiment
21
20
19
18
17
16
15
14
Al A2 Bl B2 B3 ElI E2 E3 F1 F2 F3 Kl K2 K3
Figure 14. The response graph for the average luminance of the Lig(2! x 37) experiment.
Table 13. ANOVA on values of the average luminance of the Lig(2' x 37) experiment.
Source DF SS MS F p-Value
A 1 35.815 35.815 39.15 0
B 2 56.797 28.3983 31.04 0
E 2 8.522 4.2609 4.66 0.046
F 2 29.708 14.8542 16.24 0.002
K 2 53.229 26.6146 29.09 0
Error 8 7.319 0.9149 - -
Total 17 191.39 - - -
R-Sq R-Sq(adj)
96.18% 91.87%
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According to [10], the predicted S/N ratio 7 is calculated using Equation (5), where
T is the average of the eighteen S/N ratios in Table 9, and A,, By, Eq, F, and K3 are the
average S/N ratios of Ay, By, Eq, F,, and K3, respectively.

7 =T+ (A—T)+B1—T)+(E1~T)+ (F2~T) + (K3~ T)
=Ay+B1+E1+ Fy+ K3 —4T (5)
= 25.99 + 26.18 4+ 25.66 + 26.10 + 25.97 — 4 x 25.27 = 28.815

According to Equation (6), the predicted luminance L is equal to 25.88. Note that in
Equation (6), L denotes the average of all the eighteen luminance values in Table 9; Ly,
denotes the average of the nine luminance values in Table 9 with control factor A equal to
level 2. Similarly, Lg,, Lg,, L,and Lk, denote the averages for the corresponding luminance
values with B = Level 1, E = Level 1, F = Level 2, and K = Level 3, respectively.

L =L+ (Lay,—L)+ (Lp, —L)+ (Lg, = L) + (Lp, = L) + (Lg, — L)
:LA2+LBl+LE1+LF2+LK3_4L (6)
= 20.06 + 20.55 + 19.40 4 20.27 + 20.20 — 4 x 18.65 = 25.88

We conducted a confirmation experiment with three replicated experiments to verify
whether the predicted S/N ratio and luminance are acceptable or not. The 95% confidence
intervals for both S/N ratio and luminance are calculated according to Equation (7) [24] in
where

the following:
1 1
Cl= | Fgip, X Ve X + - (7)
neff r
Fy1,4, = the F ratio;

« = risk. The confidence level =1 — «;

v, = degrees of freedom for pooled error variance;
Ve = pooled error variance;

ne = Effective number of observations

I Total number of experiments )
off T 1+ [total degrees of freedom associated with items used in estimating mean]’

®)

r = number of replicated experiments.
The 95% confidence intervals of the S/N ratio and luminance are calculated as follows:

1.8;

Horr — 18 _ 18 _
eff = THvatvptvetvptvg  1+142+424242

Clsy = \/F0.05;1.8 X Vex (7 +1) = \/5.32 %019 x ({5 +1) = 0948;

ClLuminance = \/FO.OS;I.S X Ve X (,1317 + %) = \/5-32 x 0.9149 x (1178 + %) = 2.08;

Accordingly, the 95% confidence interval for the S/N ratio is 28.815 4 0.948, and the
95% confidence interval for the luminance is 25.88 =+ 2.08. Table 14 shows that the average
S/N ratio is 27.94 and the average luminance is 24.98 for the confirmation experiment. Both
figures fall into their corresponding confidence intervals, indicating that the predictions
made by the Taguchi method are accurate.
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Table 14. Results of the confirmation experiments for the Taguchi Method.

Control Factors Luminance

EXP. Ave.rage Stal}difl‘d SIN
A B E F K N; N, N; Ny Ns Luminance Deviation
1 2 1 1 2 3 26.58 23.89 23.53 25.09 24.75 24.77 1.192 27.85
2 2 1 1 2 3 2448 26.09 24.50 25.36 2517 2512 0.668 27.99
3 2 1 1 2 3 24.98 25.08 24.62 25.62 25.04 25.05 0.370 28.01
Total average 24.98 0.743 27.94
Table 15 shows that the control factors” setting found by the Taguchi method has
offered an improvement of 46.67 percentage in luminance (from 17.03 to 24.98) and an
improvement of 13.53 percentage in the S/N ratio (from 24.61 to 27.94).
Table 15. The average luminance of TFT-LCD displays before and after the Taguchi method.
Pre-Heating (°C) Roller Temperature Roller Pressure Roller Speed Hold Time
Comparison 8 (Yo (kg/cm?) (mm/min) (ms) Average SIN
Luminance
(A) (B) (E) (F) (X)
Before improvement 50 40 0.7 5000 60 17.03 24.61
Taguchi method 50 50 0.15 4000 60 24.98 27.94
Improvement 46.67% 13.53%

Since the Taguchi method allows only a few fixed levels for each control factor, it may
not find the global optimal setting for all the control factors. We, therefore, use a genetic
algorithm to search for the global optimal setting for the control factors.

4.3. Using a Neural Network to Model the Fitness Function

To construct an effective genetic algorithm, we need to define a suitable fitness function.
In this paper, we choose to use a neural network model to predict the fitness value for
a specific setting of the control factors. We used the dataset in Table 9 to train a neural
network model to compute the luminance of a TFT-LCD display, given a specific setting
of the control factors. The average luminance and the control factors’ values together
constitute a training example in the dataset. We then randomly selected eighty percent
examples from the dataset as the training dataset and the rest as the testing dataset. The
proposed neural network in Figure 15 has five input nodes, one hidden layer, and one
output node. We used ReLU as the activation function and set the maximum number of
iteration to 1000 as the termination condition.

Pre- Roller Roller Roller Hold
heating temperature  pressure speed time
Input
Hidden
Output Luminance

Figure 15. The NN structure for the soft-to-hard lamination stage.

Furthermore, we set the learning rate and the momentum to 0.1 and 0.9, respectively.
Finally, we constructed nine different neural networks with varying numbers of hidden
nodes to determine the best neural network architecture. We then chose the neural network
with five hidden nodes for the fitness function since it produced the smallest root-mean-
squared-error on predicting the testing dataset, as shown in Table 16.



Materials 2021, 14, 4481 16 of 18

Table 16. Candidate neural networks.

NN Structure 5-2-1 5-3-1 5-4-1 5-5-1 5-6-1 5-7-1 5-8-1 5-9-1 5-10-1
Training RMSE 0.037 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
Testing RMSE 0.138 0.119 0.105 0.090 0.102 0.127 0.113 0.102 0.094

Note: Learning rate = 0.1, momentum = 0.9; number of epochs = 1000.

4.4. Using a Genetic Algorithm to Search for the Global Optimal Setting for the Control Factors

In the proposed GA, we first encoded the value of each input factor into a bit string,
as discussed in Section 2.4. We then set the population size to 100, used the roulette wheel
method for reproduction, and applied a two-point crossover for the crossover operation.
Finally, we set the crossover rate to 0.9, the mutation rate to 0.05, and the maximum iteration
to 1000.

Table 17 summarizes the luminance values of the ten executions of the GA. Figure 16
depicts the luminance for each execution and shows that the maximum luminance is 25.02.
Therefore, the global optimal control factors’ setting predicted by the GA is that A =29 °C,
B =50 °C, E = 0.15 kg/cm?, F = 2500 mm/min, and K = 57 ms.

Table 17. Summary on values of luminance of the ten executions of the GA.

Item The Largest Luminance The Smallest Luminance Average Standard Deviation

Luminance 25.02 24.57 24.87 0.148

Values of luminance of the ten executions of the genetic algorithm

251 25.02
25.0 ® © 24.99 ® 25.00 ® 24.99
24.9

24094
® 2488 ® 2487

24.8 ® 2479

24.7 ® 24.70

24.57
24.6

24.5

Figure 16. Luminance values of the ten executions of the genetic algorithm.

4.5. Performing Confirmation Experiments

We conducted three confirmation experiments to verify the feasibility of the global
optimal setting found by the GA Table 18 shows the luminance of the confirmation exper-
iments with A =29 °C, B =50 °C, E = 0.15 kg/cmZ, F = 2500 mm/min, and K = 57 ms.
Table 19 shows the average luminance of the original data, the Taguchi method, and the
proposed method, respectively. The confirmation experiments showed an average lumi-
nance of 25.15, which is very close to 25.02, the maximum luminance predicted by the GA.
Table 19 shows that the GA has offered a 47.68 percentage improvement in luminance and
a 13.82 percentage improvement in the S/N ratio compared to the original data.
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Table 18. Confirmation experiments for the genetic algorithm.

Luminance
EXP. Ave?rage Star}da.rd SN
N; N, N3 Ny Ns Luminance Deviation
1 25.08 25.11 25.31 25.18 25.23 25.181 0.092 28.02
2 25.08 25.08 25.11 25.08 25.03 25.075 0.028 27.98
3 25.50 25.24 24.90 25.25 25.07 25.195 0.224 28.03
Total average 25.150 0.115 28.01
Table 19. The luminance of the original data, the Taguchi method, and the GA.
RN Roller Temperature Roller Pressure Roller Speed .
Comparison Pre-Heating (°C) €0) (kg/em?) (mm/min) Hold Time (ms) Ave.rage SIN
Luminance
A) (B) (E) (F) (K)

Before improvement 50 40 0.7 5000 60 17.03 24.61
Taguchi methods 50 50 0.15 4000 60 24.98 27.94
Proposed method 29 50 0.15 2500 57 25.15 28.01

Improvement 47.68% 13.82%

5. Conclusions

The case company suffered from color streaks on its TFT-LCD displays in their LCM
manufacturing process. This paper proposed a new method to set the control factors’ values
to enhance the TFT-LCD displays’ luminance. We first used the Taguchi method to collect
on-site manufacturing data for quality improvement [10,11]. Then, we used the analysis of
variance (ANOVA) to find the key control factors in the soft-to-hard lamination stage for
improving the luminance of a TFT-LCD display [10]. The selected key control factors are
Pre-heating (A), Roller temperature (B), Roller pressure (E), Roller speed (F), and Hold time
(K). Afterward, we used the Taguchi method to determine the setting of the key control
factors for enhancing the TFT-LCD displays’ luminance. The Taguchi method has found a
setting of the key control factors that promoted the luminance of a TFT-LCD display from
17.03 to 24.98, which is slightly less than the required luminance of 25. However, because
the Taguchi method allows only a few fixed levels for each control factor, it usually cannot
find the global optimal setting for the control factors [10]. Therefore, we proposed to use a
neural network to predict the luminance for a given control factors’ setting [12,13]. With
the predicted luminance for each control factors’ setting, we used a GA to search for the
global optimal setting of the control factors [23]. The proposed GA has found a control
factors’ setting, which is better than the Taguchi method. The confirmation experiments
showed that the proposed GA method had increased the luminance of a TFI-LCD display
from 17.03 to 25.15, which was higher than the required luminance of 25. After improving
the luminance of the TFT-LCD displays, the case company has increased its annual revenue
by USD 950,000.
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