
materials

Article

Comparison of J Integral Assessments for Cracked Plates
and Pipes

L’ubomír Gajdoš 1,*, Martin Šperl 1, Jan Bayer 1 and Jiří Kuželka 2
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Abstract: The purpose of this article is to compare two predictive methods of J integral assessments
for center-cracked plates, single-edge cracked plates and double-edge cracked plates produced from
X52 and X70 steels, and a longitudinally cracked pipe produced from X70 steel. The two methods
examined are: the GSM method and the Js procedure of the French RCC-MR construction code,
designated here as the FC method. The accuracy of J integral predictions by these methods is
visualized by comparing the results obtained with the “reference” values calculated by the EPRI
method. The main results showed that both methods yielded similar J integral values, although
in most cases, the GSM predictions were slightly more conservative than the FC predictions. In
comparison with the “reference” values of the J integral, both methods provided conservative results
for most crack configurations, although the estimates for cracks of a relative length smaller than 1/8
were not found to be so conservative. The prediction of burst pressures for external longitudinal
semielliptical part-through cracks in X70 steel pipe showed that the magnitudes of predicted burst
pressures came very close to each other, and were conservative compared to FEM (finite element
method) calculations and experimentally determined burst pressures.

Keywords: crack; stress intensity factor; J integral; stress concentration; strain energy density;
Ramberg–Osgood relation; linepipe steels X52; X70

1. Introduction

The aim of this study was to demonstrate that the newly modified GS method [1],
now renamed as GSM method, provides reliable J integral predictions which compare
well with predictions based on the generally accepted Js procedure of the French RCC-MR
construction code [2]. Before defining the problems concerned with these predictions it
should be stated that the J contour integral, as proposed by Rice [3], has gained recognition
as a fracture-characterizing parameter in elastic–plastic solids. Being based on an energy
balance approach, it can also be used as an elastic–plastic energy release rate (under certain
restrictions). J integral is still used widely in several state-of-the-art papers, e.g., [4–6].
Generally, the determination of the J integral for a cracked body loaded with a certain
stress pattern is not simple and the solution of this problem requires, with the exception
of some simple bodies and crack configurations, employment of computerized numerical
methods. In some situations, the exact determination of the J integral may not be required.
What may be required (or at least desirable), however is a simple method that can show,
from the viewpoint of integrity, whether the exploited structural component containing a
crack-like defect is still safe to continue operating. In such cases, a conservative estimate
of the J integral could provide essential information on the integrity of a cracked body. A
more precise (and therefore expensive) FEM analysis would then only be used when this
conservative approximate analytical method predicts failure. Therefore the relevancy of
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the study can be seen in that the developed GSM method provides a good conservative
estimation of the J integral for various cracked components.

In contrast to J integral computation, determination of the stress intensity factor K,
as a fracture characterizing the parameters of brittle materials, is much simpler. Several
compendia on stress intensity factors exist, e.g., Tada et al. [7], Rooke and Cartwright [8],
and Murakami [9], which enable various crack problems to be solved in the area of linear
elastic fracture mechanics. From the definition of the J integral, it is clear that this quantity
is dependent not only on the stress pattern, size, and configuration of a crack (like it is for
K) but also on the stress–strain relationship of the material of the body. This consequently
indicates that there is some relationship between the J integral, the stress intensity factor,
and the stress–strain dependence. Although several approximate methods have been
proposed for the determination of this relationship, we have concentrated on two of them:
the GSM method and the FC method. The latter method, proposed as early as 1985 in
Addendum A16 of the French nuclear code [2] as the Js method, became a subject of
further development and was then integrated into the 2007 edition of the RCC-MR code
as published by Marie et al. [10]. In this edition, the correction factor in the plastic zone
ϕ (according to the denotation used in this article) has been altered compared to the
1985 edition. Further development of the AFCEN Codes yielded the RCC-MX Code in
2008, and finally the RCC-MRx Code in 2018. As reported by Muňoz Garcia et al. [11], the
2018 code contains a set of technical rules to be applied in the design of research reactors.
It should be stated that the general formalism for the Js integral is based on the reference
stress concept introduced by Ainsworth [12].

2. Background of the GSM and FC Methods
2.1. The GSM Method

This method is based on (i) a formal description of the J integral for a circular notch
from the definition, (ii) substitution of the relative strain energy density along the periphery
of the notch by a third power of the cosine function of the polar angle, and (iii) allowing
the radius of the circular notch to go to zero in the final expression for the J integral. The
idea of a formal description of the J integral, for a circular notch followed by reducing the
notch radius to zero in the final expression for obtaining the J integral of a crack, is not new.
There are some papers by Matvienko and Morozov [13,14] and by Matvienko [15] which
demonstrate such an approach.

As shown by Norio and Yasuhiro [16], stress intensity factors can be determined
from the limiting values of elastic stress concentration factors as the root radius ρ of the
notch approaches zero. In the derivation of the J integral, the GSM method considers a
symmetrically loaded notch with its tip embedded in a mode I stress field. The maximum
stress σmax occurs directly ahead of the notch. Dimensional considerations of the crack-tip
stress field for an isotropic elastic body lead to:

KI
p =

√
π

2
ktσn
√

ρ (1)

According to the definition, the J integral for a cracked body is given by the expression

J =
∫
Γ

wdy−
∫
Γ

Ti
∂ui
∂x

ds (i = 1, 2) (2)

where

w =
εij∫
0

σijdεij is the strain energy density

Γ is any contour encircling the tip of the crack in a counterclockwise direction
Ti are the components of the traction vector
ui are the displacement vector components
ds is a length increment along the contour Γ
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Let us consider a body with external notches on both sides, loaded perpendicularly
to the plane of the notches. A section of the notched body around the notch is shown in
Figure 1.

Figure 1. A section of a notched body, loaded by a remote uniform stress, and an indication of the
path of integration.

The shape of the notch root is semicircular, the radius being ρ. By the concept of the
invariance of the J integral, the value of the J integral does not depend on the path of
integration. In its derivation the J integral is formally written for the notched body, and
the path of integration is chosen so as to coincide with the periphery of the semicircular
notch root (see Figure 1). Since the path of integration leads over a free surface, the second
term on the right-hand side of Equation (2) becomes zero, so that after the transformation
of Cartesian to polar co-ordinates of the points on the semicircular notch root (Figure 2),
the J integral for the notched body takes the form:

J =
∫
Γ

wdy =

+ π
2∫

− π
2

w(θ)ρ cos θdθ (3)

Figure 2. Polar co-ordinates of a point on the semicircular periphery of the notch.

The GSM method relates the strain energy density w(θ) at point M on the periphery of
the notch root, characterized by the polar angle θ, to the maximum strain energy density
wmax = w(θ=0). The relation between w(θ) and wmax depends not only on the polar angle θ
but also on the magnitude of the load. The results of finite element investigations into the
strain energy density along a notch root in a double-edge notch panel [1] showed that the
relative strain energy density (w(θ)/wmax) can be substituted with a certain approximation
by the function cos3θ. Considering this, Equation (3) can be rewritten as:

J =
∫
Γ

wdy =

+ π
2∫

− π
2

wmaxρ cos4 θdθ =
3
8

πρwmax (4)
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The infinitesimal strain energy density dw is given in principal stresses and strains as:

dw = σ1dε1 + σ2dε2 + σ3dε3 (5)

In the notch root, characterized by θ = 0, the stress σ2 is always zero because of the
free surface; the stress σ3 is zero for the plane stress state; and the strain ε3 is zero for the
plane strain state. This means that the infinitesimal strain energy in the notch root (θ = 0) is
reduced to

dw = σ1dε1 (6)

so that the strain energy density becomes

w =
∫

dw =

ε1∫
0

σ1dε1 (7)

or, with the notation used before:

w =

εmax∫
0

σmaxdεmax (8)

The GSM method supposes that material obeys the Ramberg–Osgood dependence
(9) and that the hypothesis of equivalent strain energy density at the notch tip [17] can
be applied:

ε

ε0
=

σ

σ0
+ α

(
σ

σ0

)n
(9)

According to the concept of this hypothesis, the following equation holds

w = wnkt
2 (10)

where wn is the energy density due to the net section stress σn.
By combining (8) and (10), we arrive at:

w = kt
2

εn∫
0

σndεn. (11)

By differentiating the Ramberg–Osgood relation (9), and considering that ε0 = σ0/E, it
is possible to arrive at:

dε =

[
1
E
+

αn
E

(
σ

σ0

)n−1
]

dσ (12)

When applying this equation for εn and σn to Equation (11), the following expression
for w is obtained:

w = kt
2

σn∫
0

σn

[
1
E
+

αn
E

(
σn

σ0

)n−1
]

dσn = kt
2

[
σn

2

2E
+

αnσ0
2

(n + 1)E

(
σn

σ0

)n+1
]

(13)

By substituting wmax in Equation (4) with this expression, the J integral for a notch
obtains the form:

J =
3
8

πρkt
2

[
σn

2

2E
+

αnσ0
2

(n + 1)E

(
σn

σ0

)n+1
]

(14)

Recalling Equation (1), it is seen that the stress intensity factor for a crack can be
expressed by:

KI = lim
ρ→0

ktσn

2
√

πρ (15)
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From there it follows as:

lim
ρ→0

ρkt
2 =

4K2

πσn2 (16)

By combining Equations (14) and (15) we obtain:

J =
3
4

K2

E
+

3
2

K2

E
αn

(n + 1)

(
σn

σ0

)n−1
(17)

A multiple of four/three is applied to the first term in expression (17); this does not
have a theoretical basis, but was incorporated to provide a well-known form of the elastic
component of the J integral: Jel = K2/E′, where E′ = E for plane stress and E′ = E/

(
1− ν2)

for plane strain, ν being Poisson´s number.
Equation (17) then obtains the form:

J =
K2

E′

[
1 +

3αn
2(n + 1)

(
σn

σ0

)n−1
]

(18)

Since the strain energy density w(θ) in Equation (4) was substituted with wmax cos3θ
regardless of whether plane stress or plane strain conditions were concerned, the resulting
Formula (18) can be used as a basis for the J integral assessment at conditions of plane
stress and plane strain. As is known, the EPRI estimation scheme for the J integral [18]
comes from stresses given by the HRR singularity and it arrives at the relationship simply
expressed as:

Jpl ≈ (P/P0)
n+1 (19)

P0 can be defined arbitrarily, e.g., as the limit load PL. In order to make Equation (18)
comply with this, a so-called limit load parameter C, by which the uniaxial yield stress σ0
in (18) is to be multiplied, is introduced into the GSM method. The C parameter is given by
Equation (20):

C =
PL
P

σn

σ0
(20)

Equation (18) then obtains the form:

J =
K2

E′

[
1 +

3αn
2(n + 1)

(
σn

Cσ0

)n−1
]

(21)

The limit load PL in Equation (20) can be determined as the product of the yield stress
σ0 and a certain geometrical function, which is specific for each panel and depends on
the crack length a and the width b of a cracked panel of unit thickness. It is seen that the
difference between the J assessment in the plane stress condition and in the plane strain
condition is given (besides Young´s modulus E′) by the level of the limit load parameter C.

2.2. The FC Method

As already mentioned, the FC method was proposed in Addendum A16 of the French
nuclear code [2] as the Js method, and its further development was published by Marie
et al. [10]. The basis of this method was the R6 procedure [19], which made it possible to
arrive at the following formula for the J calculation:

J = Je

[
εre f

εe
+ ϕ

]
(22)
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In Equation (22), Je is the elastic component of the J integral, εref is the reference strain
corresponding to the reference stress σref defined by Equation (23), εe = σref/E is the elastic
strain, and ϕ is the plastic zone size-correction factor given in [10] by Equation (24):

σre f = σ0
P
PL

(23)

ϕ = 0.5

(
σre f /σ0

)2

(
σre f /σ0

)2
+ 1

(24)

It can be pointed out that, owing to Equation (20), the reference stress σref can also be
written as:

σre f =
σn

C
(25)

The first term in the brackets of Equation (22) reflects what experimentalists observed
a long time ago, namely that at a certain load the J integral is proportional to the ratio of the
actual strain to its elastic component. The quantities used in expression (22) are illustrated
in Figure 3 for the Ramberg–Osgood approximation of the tensile curve of the material.

Figure 3. Ramberg–Osgood stress–strain diagram and denotation of the quantities used.

The Ramberg–Osgood dependence (9) can be rewritten by substituting σ with σref and
ε with εref to obtain the form:

εre f =
σre f

E

[
1 + α

(
σre f

σ0

)n−1
]

(26)

By denoting

1 + α

(
σre f

σ0

)n−1
= A (27)

and considering
σre f

E = εe
Equation (26) obtains the form:

εre f = Aεe (28)

According to Equation (22), and considering Equations (24) and (28), the J integral is
then expressed by Equation (29):

J = Je

A + 0.5

(
σre f /σ0

)2

(
σre f /σ0

)2
+ 1

 (29)
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This type of equation is also used in later editions of the RCC-MR code. The very last
edition from 2018, denoting the RCC-MRx code, is not readily available from public sources.
As follows from [11], it has been designed primarily for the mechanical components of high-
temperature structures of nuclear installations; however, it can also be used for mechanical
components of other types of nuclear installations. Although not mentioned explicitly
in [11], it is likely that an equation of the type in (29) is also used in the RCC-MRx code, at
least for some specific conditions like force-imposed mechanical loading, the modified limit
load basis for the reference stress, and the Ramberg–Osgood description of the stress–strain
curve.

Coming back to Equation (29), the fraction σre f /σ0 in Equations (26) and (27) can be
substituted, according to Equation (25), by σn/(Cσ0) to obtain

J =
K2

E′

A + 0.5

(
σn

Cσ0

)2[(
σn

Cσ0

)2
+ 1
]
 (30)

where

A = 1 + α

(
σn

Cσ0

)n−1
(31)

3. Use of the GSM and FC Methods for Cracked Plates
3.1. Description of Procedure

Before beginning to describe the procedure of comparing predictions using the GSM
and FC methods, a few notes regarding the main way in which the GS method was
modified, should be considered. It is worth noting that the first modification was made a
few years ago when the so-called plastic constraint factor on yielding C′ was introduced
to account for crack-tip constraint in cracked pipes from pipeline steels. On the basis
of experimentally determined fracture pressures for part-through axial cracks of known
dimensions, the C′ factor was found to vary between 2.0 and 2.4 for relative crack depths
a/t ranging between 0.57 and 0.72 [20–22]. This enabled us to predict critical conditions for
pipes containing deep part-through cracks. Owing to the limited group of steels tested
and the narrow range of crack dimensions, there was a need for a more general approach
to determine the J integral for various types of components. This is why the limit load
concept was used in the GSM method instead.

For verification of the Formulas (21) and (30), it is necessary to compare the results
calculated on the basis of these formulae with those obtained by exact calculations, mostly
using finite-element analysis. The verification should be done for a wide range of crack
sizes, component geometries, and loadings. However, in general, this requires versatile
elastic–plastic computer programs. On the other hand, several simplified post-yield fracture
mechanics methods, even if based on finite elements calculations, have been developed.
Among these, the EPRI method [18] seems to be very convenient for the verification of the
formulae derived, although it has been demonstrated in some papers that the EPRI method
contains errors and inaccuracies in some of the J estimates. However, the EPRI method
is easy to apply for simple component geometries and it utilizes the Ramberg–Osgood
description of the stress–strain relationship of the material. It is widely used, so there is no
need to describe it here.

With a view to test specimen configurations for which the EPRI method offers J
integral solutions, the following specimens have been considered: (i) center-cracked panel
(CCP), (ii) double-edge cracked panel (DECP), and (iii) single-edge cracked panel (SECP).
These panels are shown schematically in Figure 4.
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Figure 4. Specimens used in the investigations.

Since the plastic component of the J integral strongly depends on the strain hardening
exponent n, it is advisable to consider materials with various n values. For this reason,
two pipeline steels were taken into account: X52 and X70. These steels were manufactured
by Mannesmann company, Siegen, Germany. The stress–strain curves for these steels, as
approximated by the Ramberg–Osgood relationship, are shown in Figure 5. The Ramberg–
Osgood parameters, as well as the magnitudes of the U.T.S. for these steels are presented
in Table 1.

Figure 5. The stress-strain curves for the steels used.

Table 1. The Ramberg–Osgood parameters and ultimate strengths of the steels used.

Material
Characteristics

α (1) n (1) σ0 (MPa) Rm (MPa)

X52 2.40 6.25 313 493
X70 5.92 9.62 536 644
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The procedure for the verification of the GSM and FC methods consists in several
steps. Firstly, it is necessary to determine the limit load parameter C according to Equation
(20) for each type of specimen (panel) in both the plane stress and plane strain condition.
The limit loads for the specimens used in the investigation can readily be found in various
publications, e.g., [23,24]. They are recapitulated here:

CCP specimen
PL = 2(b− a)σ0 plane stress
PL = 4√

3
(b− a)σ0 plane strain

DECP specimen
PL = 4√

3
(b− a)σ0 plane stress

PL = b
[
0.72 + 1.82

(
1− a

b
)]

σ0 plane strain
SECP specimen

PL = 1.072ψ(b− a)σ0 plane stress
PL = 1.455ψ(b− a)σ0 plane strain

where

ψ =

√
1 +

(
a/b

1− a/b

)2
− a/b

1− a/b
(32)

The results of transforming these limit loads to the limit load parameters C for CCP,
DECP, and SECP specimens are shown in Table 2.

Table 2. Limit load parameters for the specimens used.

Specimen
C

Plane Stress Plane Strain

CCP 1 2/
√

3
DECP 2/

√
3 0.91 + 0.36/(1 − a/b)

SECP 1.072 ψ 1.455 ψ
A note: parameter ψ is given by Equation (32).

In the next step, the stress-intensity factors K are determined. For this purpose,
the handbook [7] cited earlier is used. For the specimens used, the formulae for the K
determination have the common form

K = f (a/b)σ
√

πa (33)

where σ is gross section stress and the function f (a/b) is specific for each type of specimen:
i.e., fCCP for CCP specimens, fDECP for DECP specimens, and fSECP for SECP specimens.
The mathematical notations for these functions are the following:

fCCP =
1− 0.5(a/b) + 0.37(a/b)2 − 0.044(a/b)3

√
1− a/b

(34)

fDECP =
1.122− 0.56(a/b)− 0.205(a/b)2 + 0.471(a/b)3 − 0.19(a/b)4

√
1− a/b

(35)

fSECP =
0.752 + 2.02(a/b) + 0.37

(
1− sin πa

2b
)3

cos πa
2b

√
tg πa

2b
πa
2b

(36)

Knowing the magnitudes of the limit load parameter C and the magnitudes of the
stress-intensity factor K, the J integrals can be calculated by the GSM and FC methods
using Equations (21) and (30) with (31). As it is more convenient in the comparison of the
two investigated methods to use gross section stress σ instead of the net section stress σn, it
is necessary to transform σn to σ in Equations (21), (30) and (31).
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3.2. Results of Calculations
3.2.1. The Center-Cracked Panel (CCP)

The comparisons of J values, determined using the GSM and FC methods with the
EPRI procedure, are presented in Figures 6 and 7 for specimens made from X52 steel, and
in Figures 8 and 9 for specimens made from X70 steel.

Figure 6. Comparison of J integral for CCP X52 steel specimens in the plane stress condition as determined by the EPRI,
GSM, and FC methods.

Figure 7. Comparison of J integral for CCP X52 steel specimens in the plane strain condition as determined by the EPRI,
GSM, and FC methods.
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Figure 8. Comparison of J integral for CCP X70 steel specimens in the plane stress condition as determined by the EPRI,
GSM, and FC methods.

Figure 9. Comparison of J integral for CCP X70 steel specimens in the plane strain condition as determined by the EPRI,
GSM, and FC methods.

3.2.2. The Double-Edge Cracked Panel (DECP)

The comparison of J values, determined by the GSM and FC methods, with the EPRI
procedure is presented in Figures 10 and 11 for specimens made from X52 steel, and in
Figures 12 and 13 for specimens made from X70 steel.
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Figure 10. Comparison of J integral for DECP X52 steel specimens in the plane stress condition as determined by the EPRI,
GSM, and FC methods.

Figure 11. Comparison of J integral for DECP X52 steel specimens in the plane strain condition as determined by the EPRI,
GSM, and FC methods.
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Figure 12. Comparison of J integral for DECP X70 steel specimens in the plane stress condition as determined by the EPRI,
GSM, and FC methods.

Figure 13. Comparison of J integral for DECP X70 steel specimens in the plane strain condition as determined by the EPRI,
GSM, and FC methods.

3.2.3. The Single-Edge Cracked Panel (SECP)

The comparison of J values, determined by the GSM and FC methods, with the EPRI
procedure is presented in Figures 14 and 15 for specimens made from X52 steel, and in
Figures 16 and 17 for specimens made from X70 steel.
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Figure 14. Comparison of J integral for SECP X52 steel specimens in the plane stress condition as determined by the EPRI,
GSM, and FC method.

Figure 15. Comparison of J integral for SECP X52 steel specimens in the plane strain condition as determined by the EPRI,
GSM, and FC methods.
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Figure 16. Comparison of J integral for SECP X70 steel specimens in the plane stress condition as determined by the EPRI,
GSM, and FC methods.

Figure 17. Comparison of J integral for SECP X70 steel specimens in the plane strain condition as determined by the EPRI,
GSM, and FC methods.

4. Use of the FC and GSM Methods for Cracked Pipes
4.1. Preparation of Pipe Segment

The verification of simplified engineering methods is best when conducted on real
cracked components. Simplified methods, such as the FC and GSM methods, can be used,
e.g., in the assessment of the integrity of pressure gas pipelines. They can be damaged
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by corrosion defects at the outside surface when corrosion protection fails [25]. The
technical state of gas pipelines is therefore periodically assessed. This becomes increasingly
significant when the planned lifetime of gas pipelines is close to expiring [26]. It is then
necessary to increase the frequency of inspections of pipelines to identify in time the
most dangerous of defects in pipelines—cracks. In order to evaluate critical conditions
for a crack (crack size, gas pressure), it is very important to assess the J integral as the
fracture-characterizing parameter and compare it with the fracture toughness Jm of the
pipe material.

For this purpose, we conducted tests on a segment taken from a gas pipeline made
from X70 steel, measuring 1018 mm in outside diameter and 11.7 mm in wall thickness.
The effective length of the pipe segment (the distance between the welds in dished bottoms)
was approximately 3.5 D, where D was the outside diameter. A ring approximately 300 mm
long was also cut from the pipeline to manufacture specimens for testing the mechanical
and fracture-mechanical properties of the pipe material.

The tensile specimens were orientated circumferentially, and orientation of the CT
specimens was such that crack-starter notches were axial. A curved semiproduct from
the ring was press-straightened and then used to manufacture flat specimens for tensile
tests. The tensile properties, namely the yield stress σY = σ0 and U.T.S. = Rm (including
Ramberg–Osgood parameters determined subsequently), are presented in Table 1 for X70
steel. The fracture toughness of the steel was determined on the basis of the J integral
with the Jm parameter used as fracture toughness. The magnitude of the Jm parameter was
found to be 439 N/mm.

4.2. Procedure of the Tests and Experimental Results

Two types of part-through longitudinal slits were cut on the outside surface of the pipe
segment; two working slits and a check slit. The check slit was approximately the same
surface length as the working slits, but its depth was greater. Because the pipe segment
was cycled by internal water pressure in order to initiate and develop a fatigue crack, the
check slit functioned as a safety measure to prevent cracks that developed at the working
slits from penetrating through the pipe wall. Efforts were made in the fracture tests to
keep the hoop stress below the yield stress, because the operating stress in gas pipelines is
around one half of the yield stress (and at present it does not exceed two thirds of the yield
stress even in intrastate high-pressure gas transmission pipelines). Calculations revealed
that in order to ensure the fracture pressure be less than the yield pressure, the depth of
axial semi-elliptical cracks should be greater than one half of the wall thickness. If the
crack depth was to have a certain magnitude before the fracture test began, the depth of
the starting slit should be smaller than this magnitude by the fatigue extension of the crack
along the perimeter of the slit tip. At the same time, we should bear in mind that the higher
the fatigue extension of the crack, the better the agreement with the real crack.

In cycling the cracks, the water pressure fluctuated between pmin = 1.5 MPa and
pmax = 5.3 MPa, and the number of pressure cycles was between 3000 and 4000. The period
of a cycle was approximately 150 s. The cycling went on until a crack, initiated in the check
slit, became a through crack. This moment was easy to detect because it was accompanied
by a water leak. In order to run a test on a fracture it was necessary to remove the check
slit, which had penetrated through the wall of the test segment, and to repair the wall, e.g.,
by welding a patch on it. Afterward, the pipe segment was loaded by increasing water
pressure until it burst. Testing of the pipe is shown in the photograph (Figure 18).

After the first burst test was performed, the damaged part of the jacket were cut out
and replaced by a patch welded in instead. A second burst test then followed. Afterward,
the exact magnitudes of the surface half-crack length c, the crack depth at fracture af, and
the fracture pressure pf, were determined for both cracks, denoted by the letters A and B.
They are presented in Table 3. The flow stress σfs in Table 3 is considered as 1.1 × σ0.
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Figure 18. A view of testing pipes in the working pit.

Table 3. Some characteristics referring to the pipe segment.

Characteristics Crack A Crack B

Crack dimensions
half-length, c (mm) 115 127

depth in fracture, af (mm) 7.1 6.7
Ramberg–Osgood parameters

α/n/σ0 (MPa) 5.92/9.62/536 5.92/9.62/536
Flow stress
σfs (MPa) 590 590

Fracture toughness
Jcr = Jm (N/mm) 439 439
Fracture pressure

pf (MPa) 9.55 9.86

4.3. Verification of Applicability of FC and GSM Method for Pipes

For verification of the fracture conditions for cracks A and B in the pipe segment,
as predicted by the FC and GSM methods, we determined the fracture pressure pf for
both cracks and compared the results with the FE prediction and experiment. Due to
the fact that in the FC and GSM methods the J integral is determined as a function of (i)
crack dimensions, (ii) crack plane section stress, and (iii) the stress–strain properties of the
material, the fracture pressure was determined based on the condition that J integral is
equal to its critical value—the fracture toughness.

In principle, we proceeded in the same way as we did in Chapter 3 for CCP, DECP, and
SECP specimens. This means that we firstly determined the limit load parameter C, and
then modified the basic equations of the FC and GSM methods for a thin-walled cylindrical
shell with a longitudinal semi-elliptical part-through crack as illustrated in Figure 19.

Figure 19. A longitudinal semi-elliptical part-through crack in a thin-walled pipe.
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To be consistent with the form of the J integral, relations for the CCP, DECP, and
SECP panels, we started with Equation (20). Considering P/PL = p/pL, where P is the
load-per-unit length acting on the pipe wall in the circumferential direction due to pressure
p, and PL is the limit load due to the limit pressure pL, Equation (20) obtains the form:

C =
σn

σ0

pL
p

=
pL
pY

(37)

Referring to the R6 method [27], we assumed that the hoop stress σn could be written as

σn =
σϕ

η
(38)

where
η = 1− πac

2t(2c + t)
(39)

Equation (39) is considered satisfactory for 0.1 < a/(2c) < 0.5 and a/t ≤ 0.8. For
a/(2c) < 0.1 the parameter η is equal to (1 − a/t). The yield pressure pY can be determined
by inserting σn = σ0 into (38), and expressing σϕ as pY R/t. We then obtained:

pY =
σ0tη

R
(40)

There are several formulae for the determination of the limit pressure pL for a longitu-
dinal semi-elliptical part-through crack in a thin-walled pipe. We can use the Formula (41)
which is published in [23]

pL = σf s
t

Ri
ξ (41)

where
ξ = 1− a

t
+

a/t√
1 + 1.61c2/(Ria)

(42)

The symbol σfs in (41) stands for the flow stress, taken as 1.1 times the yield stress σ0.
The symbol Ri in (41) and (42) stands for the internal radius, as illustrated in Figure 19. As
stated in [23], Equations (41) and (42) give a lower bound estimate of the global collapse
pressure. Owing to this, fracture pressures predicted by the GSM and FC methods will be
more conservative.

After substituting pL in (37) by (41) and pY in (37) by (40), and considering σfs = 1.1× σ0
we arrived at (43):

C = 1.1
R
Ri

ξ

η
(43)

It can be seen from this equation that the limit load parameter C depended on (i)
the ratio of the mean radius to the internal radius, and (ii) the geometrical parameters of
the pipe and the crack. In the next step we determined the stress intensity factor K for
the configuration displayed in Figure 19. We started with the stress intensity factor for
a semi-elliptical part-through crack in a sheet. It was found that, for this case, a good
engineering assessment of the stress intensity factor was provided by Newman [28]. A
modified form of his solution for a longitudinal semi-elliptical part-through crack in a
thin-walled pipe is expressed by the relation (44)

KI =
[

MF +
(

Ek
√

c/a−MF

)( a
t

)s]σϕ
√

πa
Ek

MTM (44)

where MF is a function dependent on the geometry of a crack (ratio a/c),

Ek =
π/2∫
0

√
1− c2−a2

c2 sin2 θdθ is an elliptical integral of the second kind, s is a function

dependent on the geometry of a crack (ratio a/c) and on its relative depth a/t and,



Materials 2021, 14, 4324 19 of 24

MTM =

(
1− a/t

MT

)
(1−a/t) is the correction factor for the curvature of the cylindrical shell and

for an increase in stress owing to radial strains in the vicinity of the crack tip.
In the last relationship, MT is the Folias correction factor determined by the rela-

tion (45):

MT =

√
1 + 1.255

c2

Rt
− 0.0135

c4

R2t2 (45)

In order to compare the conservatism of J predictions made by the GSM and FC
methods, we used the two methods to construct J–p dependences for longitudinal part-
through cracks with the surface half-length c = 5 t and the relative depth a/t = 1/3, 1/2, and
3/4 in the X70 steel pipe segment. To do so we first modified Equations (21), (30) and (31)
to obtain

J =
K2

E′

[
1 +

3αn
2(n + 1)

(
pRi

1.1ξtσ0

)n−1
]

(46)

J =
K2

E′

A + 0.5

(
pRi

1.1ξtσ0

)2[(
pRi

1.1ξtσ0

)2
+ 1
]
 (47)

A = 1 + α

(
pRi

1.1ξtσ0

)n−1
(48)

where ξ is given by the relation (42).
The J–p dependences, determined by Equations (46)–(48), are presented in Figure 20

for the X70 steel pipe segment. The parameters α, n, σfs, as used in Equations (46)–(48), are
those given in Table 3.

Figure 20. The J–p dependences for the X70 steel pipe segment with part-through cracks of various
relative depths and of relative surface length 2c/t = 10.

As can be seen in Figure 20, the GSM method is more conservative than the FC method;
the difference in the conservatism of the J prediction decreasing with the crack depth. It
becomes practically negligible for the relative crack depth a/t = 3/4. By substituting concrete
sizes for crack A and B into Equations (46)–(48) we can construct J–p dependences for
these cracks using the GSM and FC methods as illustrated in Figures 21 and 22. These
curves are compared to the FEM curves computed using the ABAQUS software (ABAQUS
Deutschland GmbH, München, Germany). The quarter pipe model with a longitudinal
external crack was created. The pipe was loaded by internal pressure and corresponding
axial stress. The magnitudes of the internal pressure ranged from 0–9 MPa with a step
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of 0.5 MPa. The FE-based commercial software ABAQUS was used for the evaluation of
the J integral around the crack front in the plane of symmetry. In the region of interest,
the elements with full integration and hybrid formulation were used. The characteristic
element length at the vicinity of the crack was about 0.05mm.

Figure 21. J–p dependences for Crack A.

Figure 22. J–p dependences for Crack B.

It is seen here that the fracture pressure is determined as an x co-ordinate of the point
of intersection of the appropriate curve with the horizontal Jcr. The limit pressure given by
Equation (41) with Equation (42), and the fracture pressure determined experimentally, are
also represented here.

Data regarding the geometry of the pipe, the sizes of cracks at fracture, as well as
the actual fracture pressures, are summarized in Table 4. The results of determining the
fracture pressures using the GSM, FC, and FE methods (pGS, pFC, pFE) from the diagrams
in Figures 21 and 22, limit pressures pL determined by Equation (41), and experimental
pressures pf, are presented in Table 5.
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Table 4. Geometric characteristics of the pipes with cracks, crack depth at fracture, and fracture
pressure.

Quantity Ri (mm) t (mm) c (mm) af (mm) pf (MPa)

Crack A 497.8 11.7 115 7.1 9.55
Crack B 497.8 11.7 127 6.7 9.86

Table 5. Comparison of predicted and experimental fracture pressures.

Quantity pGS (MPa) pFC (MPa) pFEM (MPa) pL (MPa) pexp = pf
(MPa)

Crack A 7.16 7.26 8.56 8.63 9.55
Crack B 7.26 7.38 8.60 8.61 9.86

5. Discussion of Results
5.1. Cracked Panels

Before evaluating and discussing the J integral predictions made using the FC and
GSM methods, it should be noted that the resulting J–σ curves were compared to the
“reference” J–σ curves determined by the EPRI method. With some exceptions, the EPRI
curves can be considered to be sufficiently accurate. If we considered other published
methods or procedures for the J integral assessment, it may be found that they are mostly
concerned with concrete structural components subjected to specific loads with a partial
employment of FEM calculation [29,30]. Finally, the EPRI method appeared to be highly
qualified to provide sufficiently accurate J integral predictions. Moreover, the FC method
(RCC-MRx Code) to which the GSM method is compared, is generally recognized as a
standard used in the design of research reactors.

In principle, we can compare the FC and GSM J–σ curves among themselves, and then
we can compare them with the EPRI J–σ curves. As seen in Figures 6–17, the predicted FC
and GSM curves beyond the SSY region are very steep, despite being relatively close to
each other with the maximum differences in J values being around 20%. However, from a
practical viewpoint, it is more advantageous to compare the FC and GSM curves on the
basis of critical (fracture) gross section stress. For the highest value of the J integral in
Figures 6–17 (300 N/mm), the differences in gross section stresses as determined by the FC
and GSM methods were 10–14 MPa for the relative crack length a/b = 1/8; 5–12 MPa for the
relative crack length a/b = 1/4; 1–7 MPa for a/b = 1/2 and 1–5 MPa for a/b = 3/4. When
we referred these differences to the corresponding gross section stresses, we found that the
relative stress differences vary between 0.8% and 3.5%. From the diagrams presented in
Figures 6–17, it follows that FC and GSM predictions of J integral for specimens CCP, DECP
and SECP were conservative for most of the configurations. The situations, when they are
not conservative, are connected with small crack lengths (a/b = 1/8). The FC prediction is
also not conservative for (i) X52 and X70 CCP plane stress specimens of a/b = 1/4, and
(ii) X52 and X70 DECP plane stress specimens of a/b = 1/4. The GSM predictions were
slightly more conservative than the FC predictions for all the cases investigated, with one
exception being the X52 DECP plane stress specimens of a/b = 1/8. The biggest differences
between the J integral predictions made using the FC and GSM methods, on the one hand,
and those made using the EPRI method, on the other hand, were found to be for small
cracks (a/b = 1/8) in both the X52 and X70 DECP specimens in plane stress as well as in
most configurations of SECP specimens from both steels.

5.2. Cracked Pipes

As seen from the data in Table 5, the predicted magnitudes of the fracture pressure
were conservative for both cracks. Those obtained by the GSM and FC method were close
to each other, although the GSM predictions were slightly more conservative. The FEM
prediction, although supposed to provide accurate results, appeared to predict conservative
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fracture pressures. The likely reason for this was the substitution of the real stress–strain
dependence of steel with the Ramberg–Osgood approximation. When plotting these two
curves on one diagram it could be seen that, from a certain point on the σ–ε curve onward,
the Ramberg–Osgood stress became steadily greater than the actual stress, resulting in a
greater strain energy density and thus in a higher magnitude of the J integral. The predicted
fracture pressure for J = Jcr then became naturally smaller than that found experimentally.
As a matter of interest, Figures 21 and 22 showed that the FEM predicted fracture pressures
came close to the limit load pressures determined by Equation (41).

6. Conclusions

The main objective of this study was (i) to compare the J integral assessments as
performed by the GSM and FC methods for the center-cracked panels (CCP), double-edge
cracked panels (DECP), and single-edge cracked panels (SECP) made from steels X52 and
X70, with predictions by the EPRI method, and (ii) to compare the J integral assessments as
performed by the GSM and FC methods for a longitudinally cracked pipe produced from
X70 steel, with the results obtained by finite element calculations and with the resulting
burst pressures obtained experimentally. Both aspects of the main objective were achieved.

The results of J integral predictions for cracked panels showed that both methods
provided very close predictions. In comparison with the EPRI results, these predictions
were found to be conservative in most cases. The GSM predictions are slightly more
conservative than the FC predictions for all the cases investigated, with one exception
referring to X52 DECP plane stress specimens of a/b = 1/8.

The J integral predictions by the FC and GSM methods for the longitudinally cracked
pipe appeared to be very close, the GSM prediction being slightly more conservative than
the FC prediction. However, these predictions were widely conservative in comparison
with the prediction by the FEM analysis. As far as the fracture toughness Jcr = 439 N/mm
for X70 steel is concerned, the corresponding magnitudes of the burst pressure for two longi-
tudinal part-through cracks were: 7.16–7.38 MPa according to GSM and FC; 8.56–8.60 MPa
according to FEM; and 9.55–9.86 MPa obtained experimentally. It follows from this that
there exists a high degree of conservatism in predicting burst pressures of cracked pipes on
the basis of the GSM and FC methods.

However, when operating high-pressure pipelines or cylindrical pressure vessels, the
most important aspects that should be observed are the safety of the operation and the
integrity of the pressure systems throughout their entire projected lifetime. It is for this
reason that such methods of assessment of the life of pressure vessels and pipelines are
preferred; so that they provide a conservative prediction of burst pressure across a wide
range of possible stress states. With regard to thin-walled cylindrical pressure vessels and
pipelines, the FC and GSM methods can be ranked among such methods. It has been
proven here that the predictions of the J integral for thin-wall pressure pipelines using
the FC and GSM methods is more conservative than those made using the FE method.
On the other hand, the FE method provided lower magnitudes of fracture pressure than
those found experimentally, i.e., it was conservative. It is very likely that the cause for this
disagreement consists in substituting the real stress–strain dependence of the steel with the
Ramberg–Osgood approximation.

Finally, it can be stated that the main contribution of this study is verification of the
applicability of the newly developed GSM method for assessment of the J integral for
cracked plates and pipes. Together with the FC method, it can be used for a conservative
prediction of fracture parameters for cracked plates as well as for cylindrical pressure
vessels and pipelines with relatively deep longitudinal part-through cracks.
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Notation
The following symbols are used in this paper:
a = crack length (depth);
b = specimen width;
c = half crack length;
C = limit load parameter;
D = outside diameter of a pipe;
E = Young’s modulus;
f = specific function of the ratio a/b for cracked specimens;
J, Jcr = J integral, critical J integral;
Je = elastic component of J integral;
Jm = J integral corresponding to the maximum load in testing CT specimens;
Jpl = plastic component of J integral;
kt = theoretical stress concentration factor;
KI, KI

p = stress intensity factor for mode I, provisional KI;
n = Ramberg–Osgood exponent;
p = internal pressure in a pipe;
pL = limit internal pressure;
pY = yield internal pressure;
P = acting load;
P0 = reference load;
PL = limit load;
R, Ri = mean radius, internal radius of a pipe;
Rm = ultimate tensile strength;
t = wall thickness of a pipe;
w = strain energy density;
α = Ramberg–Osgood constant;
εo = elastic strain at the yield stress;
εe = elastic strain at the reference stress;
εref = reference strain;
η, ξ = geometric parameters for a surface semi-elliptical crack in a pipe wall;

σn
= net section stress or hoop stress in the ligament surrounding a longitudinal surface
crack in a pipe wall;

σo = yield stress;
σref = reference stress;
σfs = flow stress;
σϕ = hoop stress;
(ρ, θ) = polar coordinates of a point on the periphery of the notch root;
ϕ = correction function for small plastic zone;
ψ = geometric parameter for SECP specimens;
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