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Abstract: The effect of different constitutive modelling choices is crucial under a high strain rate as
encountered in ballistic applications. Natural fragmentation of explosively driven cylinder rings is
chosen as a simplified example to describe the ability of numerical simulations to describe fractures.
The main research interests are the importance of (i) material imperfections, (ii) the accuracy of
fracture models vs. damage models, (iii) the plasticity algorithm (stress update), (iv) the introduction
of a triaxiality cutoff criterion to the damage models, and (v) different constitutive models (plasticity
and damage). Due to the complexity of the propagation and coalescense of multiple cracks in classical
methods, smoothed-particle hydrodynamics (SPH) is used as a tailor-made method to discretise the
model. An elasto-plasticity model, a damage model and an equation of state describe the material
behaviour. The required material parameters are determined based on stress–strain curves from
quasi-static and dynamic tests. The Johnson–Cook model, with and without a modification of the
strain rate term, and the Rusinek–Klepaczko model are used to describe plasticity. These plasticity
models are combined either with the Johnson–Cook, the Lemaitre, or the Dolinski–Rittel damage
model and the Mie–Grüneisen equation of state. The numerical results show that (i) a random
distribution of initial damage increases irregularity of cracks, and gives more realistic fragment
shapes, (ii) a coupling of plasticity model and fracture criterion has only a small effect on the fracture
behaviour, (iii) using an iterative plasticity solver has a positive effect on the fracture behaviour,
although this effect is marginal, (iv) adding a triaxiality cutoff criterion to the damage models
improves the predicted fragment masses in the numerical simulations significantly, and (v) good
accordance between experiments and numerical simulations are found for the Dolinski–Rittel and
Lemaitre damage model with both plasticity models.

Keywords: constitutive modelling; damage modelling; smoothed-particle hydrodynamics; highly
dynamic expansion; fragmentation

1. Introduction

Fragmentation of cylinder rings is a demonstrative application where a high strain
rate fragmentation of ductile materials occurs. Fast compression or expansion can provoke
the break up of the ring. In experiments, this can be induced by electromagnetic forces that
are generated by discharging a capacitor; or by pressure forces due to the detonating of
an explosive. Grady and Benson [1], and others [2–4] compare electromagnetically driven
expanding ring experiments and Olovsson et al. [5] investigate electromagnetically driven
compression. Our study investigates ring expansion due to the detonation of an explosive
that generates characteristic fragments. The idea of looking at the fragmentation of cylinder
rings goes back to the pioneering work of Mott [6]. Since then, many authors investigated
fragmentation of cylinder rings under radial expansion analytically and numerically to
study fracture of ductile material at high strain rates [3,7–20].

Materials 2021, 14, 4235. https://doi.org/10.3390/ma14154235 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-8860-5597
https://doi.org/10.3390/ma14154235
https://doi.org/10.3390/ma14154235
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14154235
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14154235?type=check_update&version=1


Materials 2021, 14, 4235 2 of 21

The experiments for our study have been conducted at ISL and published by De Vuyst
et al. [21]. Furthermore, ref. [21] presents numerical results for this application. The main
drawbacks of the model are the description of circumferential cracks and the fragment
mass distribution for the smallest ring size. Becker et al. [22] studied different numerical
formulations and material parameters in LS-DYNA® for this application for one single ring
size to evaluate the SPH capabilities of LS-DYNA®.

This paper focuses on all ring sizes and introduces new modelling techniques. Section 2
discusses the relevant methodology, including SPH, plasticity, and fracture models. Section 3
describes the determination of the material parameters. Section 4 illustrates the application
and the results obtained with the improved numerical model. This model gives a better
description of qualitative aspects compared to the original model [21]. e.g., the fragment
mass distribution matches better for all ring sizes and the second fragment layer for larger
ring sizes, observed in the experiments, is predicted by our model.

2. Numerical Methods and Identification of Material Parameters
2.1. Smoothed-Particle Hydrodynamics (SPH)

SPH is a meshless method to approximate the solution of partial differential equations.
The family of meshless methods is, besides many other applications, of particular interest
for the prediction of fracture and fragmentation at high strain rates in metals. Meshless
methods can deal with large deformations as well as propagation, bifurcation, and joining
of cracks. In contrast, mesh-based methods, such as the Finite Element Method (FEM), need
additional modeling techniques, such as node-splitting or erosion criteria, to represent
cracks that occur during natural fragmentation. Furthermore, large deformations decrease
the accuracy of standard element formulations and increase the run time. Initially, the SPH
method was developed for astrophysics problems by Lucy [23] and Gingold [24]. Later,
Libersky and Petschek et al. [25,26] extended SPH to deal with materials with strength.
The discretized conservation equations used in this paper are

dρa

dt
= ρa ∑

b

mb
ρb

(va − vb)∇aWab,

dva

dt
= −∑

b
mb

(
σa

ρ2
a
+

σb

ρ2
b

)
∇aWab + fbWab, and

dEa

dt
= −σa

ρ2
a

∑
j

mj(va − vb)∇aWab,

(1)

where ρa denotes the density, va the velocity, Ea the internal energy, ma the mass, and
σa the stress of a particle a. Wab is the so-called kernel function W evaluated at the
distance ||xa − xb|| between two particles a and b, fb are the body forces and ∇a is the
gradient with respect to xa. The standard SPH formulation presented in Section 2.1 suffers
from a numerical instability [27]. Therefore, total Lagrangian descriptions that overcome
the problem have been developed in the recent years [28,29]. However, these kinds
of formulations are only applicable to moderate strains [30]. Thus, a total Lagrangian
description poses numerical difficulties for our application. Eulerian methods, on the other
hand, are able to deal with large deformations and fracture [31,32]. We assured by using a
Monaghan bond viscosity [33] that tensile instability is not influencing the solution in our
application (compare Figure 1).

Our SPH solver integrates these equations with a central difference scheme in time [4,34].
In the following subsections, we present the constitutive models to describe σ in (1).



Materials 2021, 14, 4235 3 of 21

60 µs

cracks

60 µs

fracture model no fracture model

no cracks

plastic strain
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

damage
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Figure 1. Cracks are visible only when the fracture model is enabled. Otherwise, the ring stays intact
until the particles loose contact.

2.2. Modeling Metal Plasticity

We use the isotropic metal plasticity by the von-Mises yield criterion, which is com-
bined with a hardening rule that specifies the yield strength σy for a particular loading
condition at each point. Natural fragmentation includes high strain rates, which are only
considered by particular hardening rules. A previous study indicates that the Cowper–
Symonds modification in the Johnson–Cook hardening rule improves the qualitative
description of natural fragmentation [21]. Since this modification adds another empirical
parameter to the model, we aim for a model which is based on physical rules and requires
less parameters to fit, such as the Rusinek–Klepaczko model. Furthermore, the Rusinek–
Klepaczko model is supposed to be accurate over a wider range of strain, strain-rates,
and temperatures. Consequently, we compare the following three hardening rules: the
Johnson–Cook model (with and without a modification of the strain rate term), and the
Rusinek–Klepaczko model [12]. A Mie–Grüneisen equation of state is combined with the
elasto-plasticity model to capture the large pressure waves due to the explosive loading.
Among the plasticity models, the Rusinek–Klepaczko model has not been combined with
an equation of state so far [12].

2.2.1. Johnson–Cook (JC) Model

The JC model [35] expresses the hardening in terms of effective plastic strain ε̄p, plastic
strain rate ˙̄εp, and current temperature T

σy(ε̄p, ˙̄εp, T) =
(

A + Bε̄n
p

)(
1 + C ln(ε̇∗)

)(
1− (T∗)m

)
(2)

where A is the yield stress at ambient conditions, B, C, n, and m describe other input constants,

ε̇∗ =
˙̄εp

ε̇0
(3)

is the effective plastic strain rate normalized with the testing strain rate ε̇0, and

T∗ =
T − Tr

Tm − Tr
(4)

is a homogenized temperature, defined by the melting temperature Tm and room tempera-
ture Tr. To account for an adiabatic temperature increase, the temperature is updated by
the Taylor–Quinney equation

T = T0 +
β

ρCp

∫ ε̄p

0
σ
(
ε̄p, ˙̄εp, T

)
dε̄p, (5)

where T0 is the initial temperature, ρ is the density, Cp is the specific heat, and β is the
Taylor–Quinney coefficient which may vary with plastic deformation [36], but is assumed
to be a constant β = 0.9 in our work (e.g., Nahson et al. [37]).
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2.2.2. Cowper-Symonds (CS) Modification of the JC Model

The CS model accounts for a nonlinear change of the strain rate hardening. Here, the
modification is applied to the JC model resulting in a modified JC model. Instead of the
term (1 + C ln(ε̇∗)) in (2), the scaling factor for the CS model reads

1 +
(

ε̇∗

C̄

) 1
p̄ (6)

where C̄ and p̄ are material specific constants. The modified equation is

σy(ε̄p, ˙̄εp, T) =
(

A + Bε̄n
p

)1 +
(

ε̇∗

C̄

) 1
p̄

(1− (T∗)m
)

. (7)

According to the experimental data published by Meyers [38] and Lee et al. [39], the
empirical formula describes the material behaviour of metals better at very high strain
rates (>1000 s−1).

2.2.3. Rusinek–Klepaczko (RK) Model

The RK model consists of two physics-based components: The first one is the internal
stress σµ that describes the creation of new immobile dislocations which lead to strain
hardening, and the second one is the effective stress σ∗ that models the thermal activation
process. The yield stress is defined as follows:

σy(ε̄p, ˙̄εp, T) =
E(T)

E0

(
σµ(ε̄p, ˙̄εp, T) + σ∗(ε̄p, ˙̄εp, T)

)
, (8)

where E is the evolution of Young’s modulus as a function of temperature softening, and
E0 is the Young’s modulus at initial conditions. The expression for the evolution of E is
based on physical considerations [40] and reads

E(T)
E0

= 1− T
Tm

exp
(

Tch
Tm

(
1− Tm

T

))
, (9)

where Tm is the melting temperature and Tch is a characteristic temperature. Note that the
temperature normalization is different from the definition in the JC model (compare (4)).
For the internal and effective stress components, the following expressions are used:

σµ = B( ˙̄εp, T)(ε0 + ε̄p)
n( ˙̄εp ,T), (10)

with internal stress B and strain-exponent n described in the following, and

σ∗ = σ∗0

[
1− D̃1

T
Tm

log
(

ε̇max
˙̄εp

)]m
, σ∗ ≥ 0, (11)

where σ∗0 is the initial effective stress, D̃1 is a material specific constant, ε̇max defines a case
specific upper bound of the strain rate, and σ0 is the effective stress at T = 0 K. The constant
D̃1 is a dependent parameter and can be identified as follows: the stress component σ∗

vanishes when the critical temperature is reached

D̃1
Tc

Tm
log
(

ε̇max

ε̇min

)
= 1, (12)

where Tc is the critical temperature (in practice, the room temperature). The second stress
term σ∗ is also physics-based as it is similar to the equation of Arrhénius [41], which
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describes the kinetics of thermally activated processes. The internal stress components B
and n are described by the following two equations:

B( ˙̄εp, T) = B0

[
T

Tm
log
(

ε̇max
˙̄εp

)]−ν

, and (13)

n( ˙̄εp, T) = n0

(
1− D̃2

T
Tm

log
( ˙̄εp

ε̇min

))
n( ˙̄εp, T) ≥ 0, (14)

where n0 is the strain hardening exponent at T = 0 K, D̃2 is a material constant, ε̇min is
the minimum strain rate assumed in the model, B0 is the so-called plasticity modulus at
T = 0 K, and the constant ν characterizes the temperature sensitivity of flow stress. The
model parameters are only given for T = 0 K but estimated from tests at ambient conditions.
If a negative value is computed for n, it is set to 0. To account for an adiabatic temperature
increase, we update the temperature similar to the JC model with the Taylor–Quinney
equation (Equation (5)).

2.3. Modeling Damage Accumulation of Metals

A damage model consists of two parts: a fracture criterion, which accumulates an
internal damage variable D until a threshold value Dc, and a relation between D and the
yield stress. When the fracture criterion

D = Dc (15)

is fulfilled, the material fails and the off-diagonals of the stress tensor are set to zero. By this,
the material is not able to respond to external loading. Consequently, the failed particles
behave like a fluid and can still exchange momentum, but are not connected to other
particles anymore. The following equation describes the accumulation of damage D for the
effective plastic strain ε̄p

D =
∫ ε̄p

0
Ḋ(σi, ε̇, T, . . .)dε̄p (16)

where σi are stress components or stress invariants of σ, ε̇ is the strain rate and T the
temperature. The stress state includes, in particular, triaxiality σ∗, which is the ratio of the
hydrostatic pressure or mean stress σm to the equivalent von Mises stress σeq

σ∗ =
σm

σeq
. (17)

Depending on the choice of Ḋ, we obtain different types of ductile fracture criteria;
e.g., the Johnson–Cook (compare Section 2.3.1), the Lemaitre (compare Section 2.3.2), and
the Dolinski–Rittel model (compare Section 2.3.3).

2.3.1. Johnson–Cook Fracture Criterion (JCf)

The JC fracture model is a well-known model for high velocity impact [42]. It calculates

Ḋ =
(

D1 + D2 exp(D3σ∗)
)(

1 + D4ln(ε̇∗)
)(

1 + D5T∗
)−1

, (18)

where D1, D2, D3, D4, and D5 are material specific damage parameters, ε̇∗ is the effective
plastic strain rate (3), and T∗ is the normalized temperature (4). Since the information
Dc is already implemented in D1D5, we set Dc in (15) to 1. The JC model proposes an
exponential depending on the stress triaxiality, a logarithmic influence of the strain rate,
and a linear influence of the normalised temperature.
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2.3.2. Lemaitre Fracture Criterion (LEf)

The LEf model goes back to the work of Lemaitre [43] in 1985 and is based on elastic
strain energy to failure. It suggests

Ḋ =
1

Dc

(
−Y

S

)t
(19)

with

−Y =
σ2

eq

2E(1− D)2

(
2
3
(1 + ν̄) + 3(1− 2ν̄)

(
−p
σeq

)2
)

(20)

where σeq is the equivalent von Mises stress, ν is the Poisson’s ratio, and Dc, E, S and t are
material parameters. Here, Dc is a material parameter and not necessarily equal to one.
It has been demonstrated to be a well-suited model for the application of high-velocity
impact [21].

2.3.3. Fracture Criterion Due to Dolinski and Rittel (DRf)

Dolinski and Rittel propose an energy failure criterion based on plastic work [44–47].
They define a critical level of plastic strain energy density

Wcrit =
∫ ε̄crit

p

0
σeqdε̄p, (21)

where ε̄crit
p is a material specific level of plastic strain at which the structural strength starts

to deteriorate. In this model, gradual element failure

σ∗eq = σeq(1Db). (22)

where b describes the amount of softening, is a substantial part, as the reduced yield
strength is required in the computation of the plastic strain energy density (21). For the JCf
and LEf model, the coupling is described in Section 2.5. The damage evolution is

D =

0 W ≤Wcrit
W −Wcrit

Wfrac −Wcrit
W > Wcrit

, (23)

where Wfrac is the plastic strain energy density at which the stress drops to zero, and

W =
∫ ε̄p(t)

0
σ∗eqdε̄p. (24)

Considering the definition of the fracture parameters, this fracture criterion is very
descriptive. The user only needs to specify ε̄crit

p and Wfrac.

2.4. Damage Accumulation under Different Triaxialities

The fracture characterization test results by Bao and Wierzbicki [48] “proved con-
clusively that there is a cutoff value η = −1/3 below which the fracture never occurs
no matter what the magnitude of the equivalent strain may be”. This criterion can be
directly applied to all prior described damage models, and we show in Section 4.5 that
modifying the LEf and DRf model with this criterion is essential to obtain qualitatively and
quantitatively better accordance with the experimental results for our application.

2.5. Modifying the Yield Strength Due to Damage

The motivation for modifying the yield strength not only for the DRf model (com-
pare (22)) is to improve the description of material weakening during the necking phase.
The softening factor due to damage CD is defined by
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σy = CDσ0
y with CD = 1− (D/Dc)

1/c, (25)

where c is a material specific softening parameter analogous to Dolinski et al. [44]. The
material weakening of initial yield strength σ0 due to damage is a similar mechanism like
temperature softening. Therefore, we implement it in the plasticity model in the same way:

In the JC model, we multiply CD as a fourth factor in (2), resulting in another modified
JC model

σy(ε̄p, ˙̄εp, T) =
(

A + Bε̄n
p

) (
1 + C ln(ε̇∗)

) (
1− (T∗)m

)
CD. (26)

In the RK plasticity model, the temperature reduction affects directly the Young’s
modulus (9). In terms of damage softening, we assume that the Young’s modulus is also a
function of damage

E(T, D)

E0
= CD

(
1− T

Tm
exp

(
Tch
Tm

(
1− Tm

T

)))
. (27)

Since the RK plasticity model suggests that the elastic modulus is proportional to
the material weakening, we decided to also soften the Young’s modulus for the JC and
CS model:

E = CDE0. (28)

This affects the elastic predictor that uses the shear modulus, which is an invariant
of E. The next section presents the material calibration of the applied 4340 steel. This
section further clarifies the necessity of including necking in the plasticity model (compare
Figure 2a).

2.6. Parameter Estimation for the JC and RK Plasticity Model

In this section, we show the calibration of the plasticity model parameters for the ring
steel in our experiments (4340 steel); parameters for the RK model are not available and
both JC and RK models have to be calibrated to the same curves for consistency. The input
constants for the plasticity model are (i) properties that are general for steel, (ii) numerical
parameters, (iii) parameters that describe the state for static loading, and (iv) parameters
describing the dynamic loading. Values (i) are found in literature [49], and (ii) are defined
based on the numerical problem (e.g., the range of strain rates). Thus, we determine the
material constants (iii) and (iv).

These parameters are fitted to stress–strain curves obtained by material testing (com-
pare Figure 2). For both plasticity models, we decouple the estimation of static and dynamic
parameters. First, the static input values are identified based on tensile tests that were
carried out as part of the original investigation [21]. Then, to fit the dynamic material
constants, we utilise experimental data of the same type of steel (4340 steel) from the paper
of Lee and Yeh [39]. Considering the experimental data of the static tests, obtained at
standard conditions, and the extrapolation of the dynamic data to quasi-static conditions,
both give the same yield strength; this is an indication that both kinds of steels are similar.
Neglecting the dynamic part of the hardening rules at first, we obtain simplified models to
fit the static input constants: The JC rule (2) becomes

σy(ε̄p) =
(

A + Bε̄n
p
)
, (29)

with flow stress q, plastic strain ε̄p, and static parameters σy, B, n. The RK model (compare
Section 2.2.3) becomes

σy(ε̄p) = B0 2−ν(ε0 + ε̄p)
n0 , (30)

with static input constants B0 and n0, and the dynamic parameter ν.
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Figure 2. Material calibration: the red dotted lines show the experimental results. (a) fit of static
constants for the JC and RK model with damage (dashed lines) and without damage (solid lines);
(b–d) fit of dynamic parameters (JC model) for different strain rates (500 s−1 to 2500 s−1) with data
of Lee and Yeh for temperatures between 300 K and 1372 K [39].

As only the static stress–strain curve has to be fitted, there is no need for automation
or a hierarchical systematic approach.

The dynamic parameters are then determined based on the experimental curves from
Split–Hopkinson pressure bar (SHPB) tests [50,51] conducted by Lee and Yeh [39]. The
experimental curves and the corresponding fit is shown in Figure 2b–d. For the calibration,
we use a least-squares regression on a hierarchical grid. Since the static input constants are
already determined, the approximation space is small enough to distribute possible values
for the constants on a regular grid (compare Figure 3).
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initial guess

1st iteration

2nd iteration

parameter combinations

best combination

best approximation

x1

x2

x3

x4

additional directions

parameter space

Figure 3. 2D schematic of the hierarchical approach used to approximate parameters quickly in high-
dimensional parameter space; each dimension represents one parameter xi; the algorithm identifies
the best fit for the given data (here stress–strain pairs from material tests) (published in [52]).

We discretise the 12 experimental curves with 10 data points resulting in 120 fitting
points in total. Assuming that the parameter combination with minimal mean-square
error on a coarse grid is close to the global minimum, we refine the grid around the
minimum of the parent grid and improve the parameter estimate until convergence. For
the plasticity model, this approach finds material constants that approximate all twelve
curves well. However, it is difficult to say whether the constants determined in the range of
500–2500 s−1 are also accurate for strain rates between 1.0× 104–1.0× 106 s−1 as observed
in our experiments.

The results for the calibration for both plasticity models are presented in Tables 1 and 2.
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Table 1. Estimated JC and CS parameters: static behaviour determined according to test data [21]
and dynamic behaviour, according to Lee and Yeh [39]. The values are converted from the test strain
rate to the reference strain rate of 1 s−1.

Parameter JC Paper JC Fit CS Fit Comment

A [MPa] 792 880 880 static parameter
B [MPa] 510 833 830 static parameter
n [-] 0.26 0.26 0.26 static parameter
m [-] 1.05 0.75 0.75 thermal softening
C [-] 0.014 0.025 - strain rate parameter
C̄ [s−1] - - 9× 106 strain rate parameter
p̄ [-] - - 5 strain rate exponent

Table 2. Estimated RK parameters determined: static behaviour according to test data [21] and the
dynamic behaviour, according to Lee and Yeh [39].

Parameter Value Determined By

B0 [MPa] 1600 static experiment (scaling)
n0 [-] 0.12 static experiment (curvature)
ε0 [-] 0.018 numerical parameter
D̃1 [-] 0.49 general for steel
ν [-] 0.225 dynamic experiment
σ∗0 [MPa] 352 dynamic experiment
m [-] 1.10 dynamic experiment
D̃2 [-] 0.0108 dynamic experiment
E0 [GPa] 212 general for steel
θ∗ [-] 0.59 general ferritic steel
Tm [K] 1600 general for steel
ε̇max [s−1] 107 numerical parameter (defined)
ε̇min [s−1] 10−5 numerical parameter (defined)
Cp [J kg−1 K−1] 470 general for steel
β [-] 0.9 general for steel
ρ [kg m−3] 7800 general for steel
α [K−1] 10−5 general for steel

2.7. Other Modelling Aspects

The numerical model is set up as follows: the discretisation length of the explosive
is identical to the cylinder ring to guarantee correct physical interactions resulting in
approximately 20,000 particles for the ring and 150,000 for the explosive for the 1:1 case.
The spatial resolution is kept constant for the different ring sizes. The material parameters
were extracted from quasi-static and dynamic stress–strain curves (see Section 2.6) and
are presented in Tables 1 and 2. In addition to the plasticity model, a Mie–Grüneisen
equation of state describes the change in the thermodynamic state with the following
set of parameters: speed of sound C = 4570 m/s, linear shock parameter S1 = 1.4,
and Grüneisen parameter γ0 = 1.67. For the explosive, a Jones–Wilkins–Lee equation
of state [53,54] describes the expansion during the explosion. The equation of state is
combined with a high explosive (HE) material model that describes the Chapman–Jougot
pressure (pCJ = 292 Mbar), the detonation velocity (vd = 8250 m/s), the artificial viscosity
coefficients (Q1 = 1.5, Q2 = 2.0), and the initial density of the explosive (ρ0 = 1740 kg/m3).
For the interaction between explosive and steel, no explicit contact algorithm is needed in
SPH. The contact is described with the standard kernel interpolation of SPH.
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3. Case Setup and Review of Experiment

The experiments are explained in detail by De Vuyst et al. [21]. A hollow steel cylinder
(grade 4340) is placed over an explosive charge (Comp B, RDX/TNT 65/35), and the charge
is detonated. The detonation pressure leads to a radial acceleration where the ring is
subjected to complex loading history, which results in fracture. The study includes four
different height to width (h/w) aspect ratios (1:1, 2:1, 3:1, 10:1). Figure 4 illustrates the size
of the cylinder ring.

Composition B
explosive

hollow steel cylinder

Initiation w w

di do
do di

x1 h x2
x

y

z

y

x

Figure 4. Charge dimensions of the experiment. Constant for all cases: The inner diameter
(di = 38.1 mm), the outer diameter (do = 57.2 mm), the charge extension left (x1 = 45 mm), the
charge extension right (x2 = 32 mm), and the wall thickness of the cylinder (w = 9.5 mm). (Image
similar to [21]).

In the experiment, fragments were recovered in a water basin covering approximately
25% of the cylinder ring. Due to the complexity of the setup, only 60% to 80% of the ex-
pected mass was recovered. Particularly for the 1:10 case, the water basin was considerably
deformed, and the experimental results have to be interpreted carefully. In addition to the
fragment recovery, X-ray reveals the qualitative behaviour (see Figure 5).

initial state
cylinder filled with explosive

fragments 60 µs after impact

fragments 120 µs after impact

Figure 5. Double-exposed X-ray visualization of ring expansion for 1:2 aspect ratio (exposures 60 µs
and 120 µs after detonation).



Materials 2021, 14, 4235 12 of 21

4. Numerical Results
4.1. Overview of the Numerical Simulations

The numerical simulations investigate the influence of the following modelling aspects:

1. the description of material imperfections with a randomised initial damage distribution,
2. the modelling of damage mechanics,
3. the improvement of the accuracy of the plasticity algorithm with an iterative stress solver,
4. the effect of a triaxiality based damage cutoff criterion, and
5. the range of applications for different combinations of plasticity models and fracture

criteria and all aspect ratios of the ring.

Each aspect is addressed individually in the following paragraphs. Studies 1–4
investigate the 1:2 rings with the CS plasticity model and the LEf damage model if not
further specified.

4.2. Randomisation of the Initial Damage

We implement a randomised distribution of initial damage to model the imperfections
in the material (see Figure 6). These imperfections are assumed to be small and only present
for a small amount of material or particles. We calculate the initial damage of particle i as

D0(i) = D0,max rand(i)2; rand ∈ [0, 1) (31)

where D0,max ≥ 0 is the maximum value of initial damage, and rand(i) is an equally
distributed random value between 0 and 1. For a non-uniform distribution that favours
small values of D0, we use the square function in (31). We use the same random seed for
each ring size, to compare two simulations with a random initialization. As a default value,
we use D0,max = 0.1 and compare it with larger initial damage (0.3, 1.0) and no initial
damage (0.0) in Figure 7a.

Figure 6. Initial damage distribution for an aspect ratio of 2:1 and D0,max = 0.1.

The plot in Figure 7a shows the mass distribution of the fragments at the final state of
the simulation. The experimental results are visualised in red and the numerical simulations
in blue, orange, green, and dark red. Experiments and numerical simulations are in good
agreement in terms of the amount of small and medium-sized fragments (m ≤ 5 g). For
large fragments (m > 5 g), the simulation predicts a larger number of fragments. With
randomised initialisation, the number of large fragments is higher and also the mass of
the large fragments is bigger than without initial damage. The qualitative behaviour of
the cracks is only described with initial damage correctly (compare Figure 7b). Without
randomization of initial damage, artificial crack patterns occur. On the contrary, the
randomization of initial damage leads to crack patterns as they are found for the fragments
of the experiments. This is an important attribute of our numerical model, and we identify
a suitable value of D0,max in the following. Considering the curves with random damage
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initialisation in Figure 7a, we observe that an increase of the initial damage parameter
from 0.1 to 0.3 has negligible influence, while a more significant difference can be observed
for D0,max = 1.0. A value of 0.1 for initial damage is sufficiently small to not lead to
earlier crack formation compared to the model without random damage initialisation,
yet it is large enough to give similar fracture patterns to a larger initial damage value.
The randomisation avoids preferred crack propagations and models the imperfections as
required. Small initial damage does not provoke an earlier fracture of the ring.
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(a) fragment mass distribution; experiment from [21]

(i) no initial damage (ii) initial damage

random spreadregular spread

crack along
discretization

randomized
crack (45◦)

(b) crack patterns 1:1
Figure 7. Influence of implementing an initial damage distribution to the fracture behaviour of the
hollow cylinder ring; the label “0.0”–“1.0” is the amount of maximum damage D0,max during the
initial distribution.

4.3. Coupling of Plasticity and Fracture Model

As observed in the static stress–strain curves, a coupling of plasticity and fracture
model to describe the reduced yield strength due to damage improving the hardening
curve shape (compare Figure 2a). We recall the coupling function (25), where CD is defining
the reduction in yield strength σy due to damage D with the constant c and the initial
yield strength σ0

y . The parameter c according to static stress–strain curves of our material
is c = 0.3. This is in agreement with the analysis of Dolinski et al. [55]. Figure 8 shows
the influence of the coupling in the ring experiments. Three parameters are chosen for c:
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a simple failure criterion (c = 0.0), the experimental fit described before (c = 0.3), and
(c = 1.0) as it is implemented in classical damage mechanics. Dolinski and Rittel [44,47]
also suggest c = 1 for most applications. In terms of our application, the necking only
affects the mass of the largest fragment. The material behaves softer for strongly damaged
particles when the coupling is activated. Otherwise, these particles might stay attached,
leading to larger fragments. While the largest fragment is 20% heavier compared to the
experiment, the simulation with coupling activated predicts the equivalent mass. The
coupling with the fitted value (c = 0.3) predicts less large fragments (m > 5 g), c = 1 does
not change the fragment statistics compared to c = 0.3. For our application, we conclude
that enabling the coupling, as suggested by the experimental data, has a positive but small
impact on general behaviour and is obligatory to describe the material correctly.
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Figure 8. Coupling of plasticity and fracture model: c = 0 is no coupling, c = 0.3 is best fit, and c = 1.0
is the description in classical damage mechanics; experiment from [21].

4.4. Newton–Raphson Iterative Solver in the Plasticity Algorithm

The plasticity algorithm predicts the stress update by back projecting the elastic pre-
dictor’s stress state to the yield surface. This constitutes a nonlinear system of equations.
To minimise the projection’s error, we can use an iterative predictor-corrector scheme
developed by Key and Krieg [56,57] and further developed by Simo et al. [58]. The iterative
approach increases the runtime compared to a “one-step prediction” commonly imple-
mented in commercial code for performance reasons (e.g., Nemat-Nasser [59]). However,
particularly for large strain increments, an iterative approach also improves the stress
approximation precision. The one-step prediction that we apply returns the deformation
based on one iteration of the iterative approach. The iterative approach calculates several
iterations which use a cutoff criterion to determine convergence that evaluates the relative
difference between equivalent stress and flow stress. Our study defines the relative cutoff
of 1× 10−5, which is generally reached with less than five iterations. Due to the highly
dynamic expansion of the cylinder rings, we assume large strain increments. On the other
hand, the time step that is calculated by the minimum distance of particles and the speed
of sound in the material—in the explicit time integration—partly compensate for this. The
question to be answered is whether an iterative approach influences the solution or not.
Figure 9 shows that the iterative approach does not significantly impact the result, but it
shows a tendency in the right direction (better match with experimental data).
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Figure 9. Influence of using several Newton–Raphson iterations instead of only one iteration;
experiment from [21].

4.5. Modifications of the Fracture Criterion

In the previous comparisons, we have seen that (i) damage initialisation, (ii) coupling,
and (iii) a modification of the plasticity algorithm have only little influence on the result.
In this section, we show that the damage model is the primary driver of the fractures.
This result is essential as we can focus on the damage model and do not expect significant
changes when using modifications proposed above.

Our LEf model is modified with two additional criteria [43,60]. First, a widely accepted
triaxiality cutoff criterion by Bao and Wierzbicki [48] prevents damage accumulation for
(η < −1/3). Second, damage is only accumulated above a defined threshold strain ε̄p < ε̄t

p.
The original model is retained by setting ε̄t

p = 0.0.
In Figure 10a, we investigate four cases: the baseline result with both criteria (both),

one case with only a triaxiality criterion (triax), one using only a plastic strain criterion
(strain), and one without any modification (none). The latter case is not able to reproduce
the experiments at all. The fragments are much smaller as they scatter already in a very
early stage of the simulation. Using only the plastic strain criterion coincides with the
experiment except for the largest fragment. The baseline result (both) and (triax) predict the
same statistical distribution. Both overpredict the number of large fragments but are closer
to the experiment regarding the largest fragment mass. Since the two results are identical,
we conclude that the triaxiality criterion is stricter than the plastic strain criterion. This
result might be directly related to our application: the pressure of the expanding explosive
dominates the stress state in the beginning. When the pressure drops and the ring is
radially accelerated, tensile and shear stresses occur. At this stage, the plastic threshold
strain of 0.1 is already reached.

In a second step, we add the triaxiality criterion also to our implementation of the
JCf and DRf model. We observe the same scattering as for the LEf model (red and purple
curve in Figure 10b) if no modification of the damage model is implemented. Applying
the triaxiality criterion results in a distribution which is much closer to the experimental
findings and enhances the applicability of the model (compare Figure 10a,b). Therefore, it
is applied to all fracture models in the final study presented in the following paragraph.
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(a) LEf model
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Figure 10. Modifications of the damage criterion for LEf, JCf, and DRf, results with the triaxiality
cutoff criterion are much closer to the experiments for all criterias; experiment from [21].

4.6. Plasticity and Fracture Models

We have quantified the influence of all modifications implemented in our numerical
model and determined suitable settings to describe material imperfections and damage. In
this final study, we apply our model to different cylinder sizes and compare three hardening
rules (JC (blue), CS (yellow), and RK (green)), and three fracture models (JCf (black), LEf
(yellow), and DRf (purple)) against each other (see Figure 11). Based on previous findings,
we expect that the differences due to the fracture models predominate. Each subplot of
Figure 11 shows a different ring size (1:1, 1:2, 1:3 and 1:10). In the following, we use the
default values determined above (initial damage distribution 0.1, reduction of the yield
strength with (c = 0.3), and triaxiality cutoff activated). The experimental results (red) are
the references for our validation. Based on the statistical errors of the few experiments,
the focus is a qualitative comparison rather than a quantitative. Up to twice as heavy
fragments are predicted by the numerical model than the experiment. The largest deviation
from experimental data is found for the smallest ring size.
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Figure 11. Fragment mass distribution for different combinations of hardening rule and damage
model: JC_LEf = JC hardening + LEf damage, CS_JCf = CS hardening + JCf damage, CS_LEf = CS
hardening + LEf damage, CS_DRf = CS hardening + DRf damage, RK_LEf = RK hardening + LEf
damage; experiment from [21].



Materials 2021, 14, 4235 18 of 21

We can see small differences between the numerical data regarding the plasticity
model, best visible for an aspect ratio of 1:3. Regarding the fracture model, we observe
more significant differences than between the plasticity models: For 1:1 and 1:2, the
numerical models’ mass distribution is similar, while, for 1:3 and 1:10, the fracture models
predict different results with the same parameters. As the change of plasticity model
does not influence the mass distribution, we conclude that some fracture models do not
correctly capture all fracture mechanisms or need further parameter calibration. Only the
JCf model is not predicting the experiments for large aspect ratios of the ring correctly. It
underpredicts the fragment mass for the 1:3 and 1:10 case. In contrast to the inaccurate
prediction of the JCf model for the large fragments, it is more accurate in the number of
small fragments (m < 2 g) for the 1:1 and 1:2 case. The JCf model parameters are more
difficult to determine than the DRf and LEf parameters because the JCf model contains
more input parameters than the other two, which are less descriptive and need more
calibration data. We conclude that the parameters we identified for the JCf model can only
describe a small range of our application cases. The DRf and LEf model, on the other hand,
are consistent in the fragment mass prediction: for both, cracks occur a few microseconds
later than in the experiment, resulting in larger fragments.

5. Conclusions

We investigated five modifications of a numerical model to describe the natural
fragmentation of cylinder rings better, which can be transferred to the application of
ballistic impact: (i) a randomised damage initialisation to describe material imperfections,
(ii) a use of a damage model, instead of a fracture criterion, to capture the strain softening
part of the stress–strain curve, (iii) an iterative plasticity radial return algorithm to improve
accuracy, (iv) adding a triaxiality cutoff criterion to the damage models, and (v) different
constitutive models (hardening rules) to determine the most suitable model. Our results
demonstrate that, in particular, the inclusion of a triaxiality cutoff criterion in the damage
models, which allows damage accumulation only for η > −1/3, is essential for highly
dynamic scenarios, such as ballistic impact. The LEf (fracture model due to Lemaitre) and
the DRf (fracture model due to Dolinski and Rittel) model modified with the triaxiality cut-
off criterion described the ring’s breakup for all ring sizes correctly, while the JCd (fracture
model due to Johnson and Cook) did not reproduce the fracture behaviour for larger aspect
ratios. The damage initialisation is also important, as it improves the triggering of random
crack patterns, and results in more realistic fragment shapes. Finally, the strain softening
introduced by the coupling of damage and plasticity models and the iterative plasticity
algorithm also has a positive effect on the fragment mass distribution, but this effect is
secondary. In terms of the choice of the hardening rule, we observed small differences.

The determination of the material parameters was done as part of this work. While
we found literature data to calibrate the plasticity models, we used the ring experiments’
qualitative results to determine damage parameters. This was easiest for the DRf model
since it contains only three illustrative parameters. For the LEf model, we set the parameters
determined in the original study. For the JCf model, it was not possible to determine
suitable values for the five parameters applicable for all tests.

Our approach, using a simplified experiment, allowed us to isolate the study of
damage parameters from other influences such as the contact modeling required for
ballistics. The damage parameters and the modifications of the model determined in
this study are applied for ballistic applications in the future to verify the benefits of the
suggested model choices.
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